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Abstract—In the near future, robots are expected to work
with humans or operate alone and may replace human workers
in various fields such as homes and factories. In a previous
study, we proposed bilateral control-based imitation learning that
enables robots to utilize force information and operate almost
simultaneously with an expert’s demonstration. In addition,
we recently proposed an autoregressive neural network model
(SM2SM) for bilateral control-based imitation learning to obtain
long-term inferences. In the SM2SM model, both master and
slave states must be input, but the master states are obtained
from the previous outputs of the SM2SM model, resulting in
destabilized estimation under large environmental variations.
Hence, a new autoregressive neural network model (S2SM) is
proposed in this study. This model requires only the slave state
as input and its outputs are the next slave and master states,
thereby improving the task success rates. In addition, a new
feedback controller that utilizes the error between the responses
and estimates of the slave is proposed, which shows better
reproducibility.

I. INTRODUCTION

Owing to the aging populations in several countries, an

increasing number of robots are expected to be utilized for

work instead of humans. To realize robot automation, they are

required to perform tasks in diverse environment and while

treating various objects. Moreover, motion control is difficult

but its demand is rising [1], [2]. Therefore, machine learning

is being used to study motion planning of robots to generate

various motions and facilitate easier programming for motion

planning. In recent years, two learning methods for robotic

manipulation have been primarily researched: reinforcement

learning and imitation learning.

In reinforcement learning, robots learn motions au-

tonomously by maximizing the cumulative reward while re-

peating trials. Although Levine et al. achieved grasping tasks

with reinforcement learning [3], the method required exces-

sive trials. A few approaches to solve this issue have been

proposed. For example, sim2real is a method of repeating

trials in simulated environments instead of real environments

[4]. Although this method can reduce the training time, it

cannot bridge the learning gap between simulated and real

environments, especially when performing tasks that include

contact with other objects. Offline reinforcement learning,

which utilizes previously collected data without using addi-

tional online data, has also been studied to obtain a policy

for generating motion without trials in real environments.

However, it still has unsolved problems, such as distribution

shifts [5].

On the other hand, imitation learning is one of the methods

that can solve the problems encountered in reinforcement

learning and sim2real. In imitation learning, robots can imitate

expert behaviors using direct teaching [6], [7], motion captures

[8], and teleoperation [9], [10]. In imitation learning, because

robots learn from training data collected during human demon-

stration, they can learn behaviors more effectively than in

reinforcement learning. In recent years, studies that considered

both position and force information have been reported and

proved to be effective for tasks manipulating deformable

objects [11]–[13].

We propose bilateral control-based imitation learning as a

method of using force information [14]–[16]. Bilateral control

is a teleoperation method where a human operates the master

robot and the slave robot performs tasks in the workspace

[17]–[20]. During this period, position synchronization and

presentation of the reaction forces are simultaneously exe-

cuted. Thus, the law of action and reaction is established

between the torques of the master and slave. In addition, by

introducing bilateral control to imitation learning, the master

measures the action force, and the slave measures the reaction

http://arxiv.org/abs/2103.08879v1


force during the data collection phase. We used bilateral con-

trol for data collection, and the method showed effectiveness

in tasks that required force adjustment and demonstrated fast

motion [14]–[16]. In bilateral control-based imitation learning,

an S2M model that predicts the next master state from the

current slave state was used. Another method, autoregressive

learning, repeatedly uses predicted values of the model as

the next input, and is known to be effective for long-term

prediction tasks. Sasagawa et al. proposed the SM2SM model

to adapt autoregressive learning to our bilateral control-based

imitation learning [21]. Consequently, they demonstrated the

effectiveness of long-term prediction and a high adaptivity to

environmental changes. Although the SM2SM model requires

two inputs, the response values of the slave and master, only

those of the slave can be measured during the autonomous

operation because it operates alone during the autonomous

operation. Therefore, the predicted master’s state in the pre-

vious step is used as the input of the model. This state is the

virtual master state, not the actual one, and the system tends

to be unstable in large environmental perturbations.

Thus, an S2SM model was proposed in this study. In the

S2SM model, the model was trained to predict the next state of

the slave and master only from the current slave state. Because

the response values of the master are not required in the

S2SM model, stable motion generation can be achieved even

in sudden environmental changes. In addition, autoregressive

learning can be implemented in the S2SM model; therefore,

the advantages of the SM2SM model shown by Sasagawa et

al. are not lost. As shown in Fig. 1, the output of the SM2SM

and the S2SM model consisted of Ŝ and M̂ . Sres is the

response value of the slave, M res is the response value of the

master, and M̂ res is its estimate. Ŝ and M̂ denote the predicted

values of the slave state and the master state, respectively.

M̂ is also used as the command value of the slave during

the autonomous operation. During the autonomous operation

in the conventional method, the slave may not be able to

achieve desirable behaviors because the perturbation of the

environment changes the desired control goals, as shown in

Fig. 2. Therefore, a method to adapt to the environmental

disturbances is also proposed. Notably, in bilateral control-

based imitation learning, the master and slave estimates are

strongly related because they are naturally controlled for

synchronization. Therefore, in this study, we assumed that the

slave’s estimation error is equal to the master’s, and the slave’s

estimated error is fed back to the master’s estimates.

To sum up the above-described issues, two methods are

proposed in this paper as follows:

1) The S2SM model is used to stabilize the motion gener-

ation against sudden environmental changes during the

bilateral control-based imitation learning.

2) A method to is proposed to feed back the estimation

errors to suppress them against environmental distur-

bances.

To validate the effect of the proposed methods, the task of

drawing arcs was executed with each model: S2M, SM2SM,

Fig. 1. Comparison of models

Fig. 2. Concept of the proposed feedback method

and S2SM. The S2SM model was more effective in imitating

the experts’ behavior because it improved the stability. Fur-

thermore, the force adjustment was realized more precisely

due to the addition of the proposed feedback method.

The remainder of this paper is structured as follows.

In Section II, the control system and bilateral control are

explained. Section III describes the proposed method and

imitation learning. Detailed experimental procedures and their

results are described in Section IV. Finally, conclusions of the

study are presented in Section V.

II. CONTROL SYSTEM

The details of the control system are described in [21]. In

addition, we used the same gains and parameters as described

in [21].

We used two TouchTM USB haptic devices, manufactured

by 3D Systems, as shown in Fig. 3. The joint angles of the

manipulator are shown in the center and right side of Fig. 3.

The block diagram of the controller is shown in Fig. 4. Here,

θ, θ̇, and τ represent the joint angle, angular velocity, and robot

torque, respectively. The superscripts res, ref, and cmd indicate

the response, reference, and command values, respectively.

The controller comprised position and force controllers. The

position controller consisted of a proportional and a derivative

controller, while the force controller included a proportional

controller. The manipulators measured the angle θres of each

joint, θ̇res was calculated using a pseudo-derivative, and the

disturbance torque τdis was estimated with a disturbance

observer (DOB) [22]. Moreover, the torque responses τres

were calculated using a reaction force observer (RFOB) [23].

In this study, robots were operated in a 1 ms control cycle.

In this study, a 4ch bilateral control was used to collect

the training dataset. 4ch bilateral control is a remote control

system using two robots: a master and a slave [16]. The

operator manipulating the master robot can feel the tactile

sense generated by the slave robot’s touch. This is because of

the synchronized positions of the two robots and the feed back



Fig. 3. TouchTM USB haptic device

Fig. 4. Controller

of each other’s forces. The control goals of the 4ch bilateral

control are shown in (1) and (2). In addition, the block diagram

satisfying them is shown in Fig. 5,

θresm − θress = 0, (1)

τresm + τress = 0, (2)

where the superscripts m and s indicate the master and slave

robots, respectively. These equations hold at all angles and

torques.

III. BILATERAL CONTROL-BASED IMITATION

LEARNING

In this section, our approach is explained. In addition,

two proposed methods, the S2SM model and the command

feedback in autoregressive models, are explained. Imitation

learning was executed in the following phases:

1) Data collection phase,

2) Training phase,

3) Autonomous task execution phase.

The details of each phase are described below.

A. Data Collection Phase

The training dataset was collected by using a 4ch bilateral

control every 1 ms. A human operated the master robot

directly, and the teleoperated slave robot performed tasks in

the workspace.

Fig. 5. 4ch bilateral controller used for data collection

Fig. 6. Training of models

B. Training Phase

After the end of data collection, the sampling rate was

reduced to 20 ms. In Fig. 6, M [t], S[t] are the states of the

slave and the master, respectively, at each time step. During

the training phase, each time-step was set as 20 ms. Three

models compared in this paper are described below.

1) S2M Model:

In the S2M model, which is shown at the top of Fig. 6, the



neural network was trained to predict the next state of the

master robot from the slave robot’s state [16].
2) SM2SM Model:

When training the SM2SM model, shown in the center of

Fig. 6, the output of the model was used as the input of the

neural network recursively. This model is good at predicting

long-term tasks [21].
3) S2SM Model (the proposed method):

In the S2SM model, shown at the bottom of Fig. 6, the

neural network was trained to predict the next state of the

master and slave robots from the slave robot’s state. In this

model, by using the predicted state as the input of the model,

the far future state can be estimated, which enables the

neural networks to plan long-term motions comparable to the

SM2SM model. However, in the SM2SM model, we predict

that the appropriate motions cannot be generated because the

virtual master state and the measured slave state are used as

the input. On the other hand, this problem is solved in the

S2SM model because only the slave state is used as the input

without using the virtual master state. In summary, this model

is expected to maintain the long-term prediction ability of

the SM2SM model and improve stability during autonomous

operation.

C. Autonomous Task Execution Phase

In this phase, the slave robot executes tasks autonomously.

The slave robot measures the response values Sres and uses

it as inputs of the trained neural networks, as shown in Fig. 1.

Subsequently, the master outputs of the neural network are

used as command values. The neural network repeated this

procedure every 20 ms, and the control cycle was 1 ms.
1) conventional control method:

In the conventional method, M̂ of the model is used as the

command value of the slave robot as follows:

θcmd
s = θ̂m, (3)

θ̇cmd
s = ˆ̇

θm, (4)

τcmd
s = τ̂m. (5)

2) Command Feedback in Autoregressive Models (the pro-

posed method):

Because the true values of the master’s behavior cannot be

measured in autonomous operation, we cannot calculate the

estimation errors in the S2M model. On the contrary, by

using autoregressive models such as SM2SM and S2SM,

we can obtain both true and estimated values of the slave

states, and thus can calculate the estimation errors. Notably,

in bilateral control-based imitation learning, the master and

slave estimates are strongly related because they are naturally

controlled to satisfy the following control goals (1) and (2).

Therefore, in this study, we assumed that the estimation error

of the slave is equal to the estimation error of the master, as

follows:

θresm − θ̂m = θress − θ̂s, (6)

θ̇resm −
ˆ̇
θm = θ̇ress −

ˆ̇
θs, (7)

τresm − τ̂m = −(τress − τ̂s). (8)

Fig. 7. TouchTM USB haptic devices used during the autonomous operation

Moreover, these equations can be transformed as following:

θresm = θ̂m + (θ̂s − θress ), (9)

θ̇resm = ˆ̇
θm + (ˆ̇θs − θ̇ress ), (10)

τresm = τ̂m − (τ̂s − τress ). (11)

These are interpreted as equations that add the slave’s es-

timation error’s feedback term to the conventional control

method, which allows us to compensate the command values

with the estimation errors caused by environmental changes

by adopting (9), (10), and (11) as the new command values.

In addition, as shown in (3), (4), and (5), the predicted next

state of the master was used as the command value in the

conventional method. On the other hand, these new command

values are regarded as more appropriate because the master’s

response values were used as the command values for the slave

during the bilateral control in the data collection phase. In the

experiments, a low-pass filter was used to avoid chattering.

Therefore, the command values are defined as follows:

θcmd
s = LPF{θ̂m + (θ̂s − θress )}, (12)

θ̇cmd
s = LPF{

ˆ̇
θm + (

ˆ̇
θs − θ̇ress )}, (13)

τcmd
s = LPF{τ̂m − (τ̂s − τress )}. (14)

The low-pass filter described as LPF was defined as follows:

yt = Kyt−1 + (1−K)xt, (15)

where the coefficient K was 0.5. Here, x is the input of the

low-pass filter and y is the output of LPF at each time step

t.

IV. EXPERIMENT

A. Data Collection Phase

In this phase, a ballpoint pen was fixed to the slave robot, as

shown in Fig. 7, and a human operator teleoperated it through

the master robot. Fifteen trials were performed in total, with

each trial of 13 s duration. In addition, the heights of the paper

samples during collection of data were set at 70 mm, 45 mm,

and 19 mm, with five data points collected for each height

measurement. In this study, the behavioral data required to

draw arcs through points A and B were collected as shown in

Fig. 8.



TABLE I
TRAINING TIME AND EPOCH NUMBER OF EACH METHOD

Model Autoregression number Epoch Time

S2M - 1000 6min34seconds

SM2SM
1 1000 6min45seconds
5 3000 19min53seconds
10 4000 26min30seconds

S2SM
1 1000 7min1seconds
5 3000 20min9seconds
10 4000 26min25seconds

TABLE II
RESULTS OF AUTONOMOUS OPERATION AT EACH PAPER HEIGHT AND METHOD

Heights
of
papers
[mm]

S2M

S2SM SM2SM
Autoregression number Autoregression number
1 5 10 1 5 10
conv fb conv fb conv fb conv fb conv fb conv fb

70 X X X X X X X X X X X - -

55 X X X X X X X X X X X - -

45 X X X X X X X X X X X X -

31 X X X X X X X X X X - X X

19 X X X X X X X - X X - X X

Fig. 8. A paper for experiments

Fig. 9. Angle responses while drawing arcs

B. Training Phase

The above-mentioned three model types (S2M, SM2SM,

and S2SM) were executed in the training phase. The models

were trained on a machine with Ubuntu 18.04 OS, AMD

Ryzen 7 3700x 8-core processor, and GeForce RTX 2080. The

training time and epoch number of each method are shown in

Table I.

C. Autonomous Task Execution Phase

The operations were executed autonomously in this phase.

The performance of each model was tested at five paper

heights (70, 55, 45, 31, and 19 mm). The behavior with

command feedback (denoted as fb) was compared with that

obtained with the conventional method (denoted as conv).

Table II shows the success (X) or failure (-) of the autonomous

execution. As shown in Table II, the S2SM model showed a

higher success rate compared with the SM2SM model. Here,

each number (1, 5, and 10) indicates the number of times

the autoregression was repeated in the training phase, and the

details of the autoregression are described in Section III-B. As

shown in Table II, the success rates of the S2M and S2SM

models were 100%, respectively, while that of the SM2SM

model was 76.7%, which means that the use of master states

in the inputs of the neural network resulted in poorer stability.

It is known that S2M is effective for performing periodic tasks

[21]; the S2SM model also proved to be effective in executing

periodic tasks. In addition, S2SM showed superior results to

the S2M model in terms of the reproducibility of the training

data discussed in Section IV-E.

D. Evaluation of the variance ratio between two methods

Command feedback is considered to work to compensate

for the difference between Ŝ and Sres. Therefore, the variance

between Ŝ and Sres at θ1, θ2, θ3, θ̇1, θ̇2, θ̇3, τ1, τ2, and τ3
were calculated as follows:



Vθ =
1

T

T∑

t=1

(θrest − θ̂t)
2, (16)

Vθ̇ =
1

T

T∑

t=1

(θ̇rest −
ˆ̇
θt)

2, (17)

Vτ =
1

T

T∑

t=1

(τrest − τ̂t)
2, (18)

where T is the time step when the autonomous op-

eration ended. Subsequently, the variance ratio (conven-

tional/feedback) was considered as follows:

V ratio
θ =

1

3

i=3∑

i=1

V conv
θi

V
fb
θi

, (19)

V ratio

θ̇
=

1

3

i=3∑

i=1

V conv

θ̇i

V
fb

θ̇i

, (20)

V ratio
τ =

1

3

i=3∑

i=1

V conv
τi

V
fb
τi

. (21)

These ratios were higher than 1.0 when the command feedback

reduced the differences between Ŝ and Sres. For a compre-

hensive evaluation of each method, the total variance V total
ratio

was defined as follows:

V total
ratio = V ratio

θ + V ratio

θ̇
+ V ratio

τ . (22)

Although the evaluation considering this total ratio may not

be absolutely correct, it is possible to assess the overall effect

of the feedback. First, the features of the variance ratios of

angle, angular velocity, torque, and total variance ratio were

described. As shown in Table III, when the autoregression

number was 1 or 10, the effect of the feedback was confirmed

in most situations. On the other hand, when the autoregression

number was 5, the effect of the feedback was restricted.

Second, as shown in the result in Section IV-E, the best repro-

ducibility of the motion was observed when the autoregression

number was 5. Thus, it is considered that 5 was the appropriate

number of autoregressions in this task. In other words, when

the autoregression number was 5, the S2SM model succeeded

in generating desirable motion without the proposed feedback,

and apparently the error (Sres − Ŝ) also did not decrease.

E. Comparison between training data and the result of au-

tonomous operations

To assess the reproducibility of the training models and

the proposed feedback method, it is necessary to compare

the training data and the results of autonomous operations.

In performing this task, the movement of the first axis (θ1)

was periodical just like a sine wave. The second and third

axes (θ2 and θ3) were more constant than the first, as shown in

Fig. 9. Therefore, the amplitude and average of θ1 and τ1 were

calculated from the training data and autonomous operation

data at a paper height of 45 mm. Then, absolute differences

between the training and autonomous operation data were

compared. In this experiment, the S2SM and SM2SM models

were tested for autoregression numbers of 1, 5, and 10.

As a result, the absolute differences in the amplitudes of

θ1 and τ1 were minimum when the autoregression number

was 5. Therefore, amplitude differences in the case of five

autoregressions are shown in Fig 10. To obtain the absolute

difference in the amplitudes of θ1 shown on the left side

of Fig. 10, the amplitude difference was reduced using the

S2SM model. Moreover, to observe the absolute difference

in the amplitudes of τ1 shown on the right side of Fig. 10,

the amplitude difference was reduced with the command

feedback. Notably, in the S2SM model, estimation errors did

not accumulate because the inputs were measured responses

without any estimates. Simultaneously, the command feedback

also improved the reproducibility because the estimation errors

of the master states were approximated and measured by the

estimated errors of the slave states.

V. CONCLUSION

In this study, the characteristics of three learning methods,

S2M, S2SM, and SM2SM, and a control method with and

without feedback were examined. The S2SM model displayed

a higher probability of success in executing tasks than the

SM2SM model. In addition, the S2SM model was effective in

not only reducing errors between a neural network’s predictive

value Ŝ and the secondary robot’s response Sres but also

reproducing training data more accurately than other methods.

In summary, the S2SM model demonstrated better results than

the conventional methods, S2M and SM2SM.
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