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Abstract—This paper proposes an industrial robot 

calibration methodology using an artificial bee colony 

algorithm. Open loop industrial robot positions are usually 

calculated using joint angle readings and industrial robot 

forward kinematics, where feedback control systems are then 

use iteratively to improve performance. This can often be time 

consuming and risks unstable control, so the preference is to 

enable as accurate open loop control as possible. Industrial 

robot forward kinematics include Denavit–Hartenberg (DH) 

parameters. However, assembly and manufacturing 

tolerances may result in differences between actual and 

nominal DH parameters. To improve industrial robot 

positional accuracies, it is required to better estimate its DH 

parameters. A highly accurate laser tracker system provides 

the positional measurement required to perform calibration 

of the DH parameters. For this purpose, a Leica AT960-MR, 

a laser tracker which works based on interferometry 

principles, is used to provide end effector 3D position 

measurements. An artificial Bee colony algorithm is then used 

to improve the cost function associated with the forward 

kinematic error by estimating more accurate industrial robot 

DH parameters. The implementation results demonstrate that 

using calibrated industrial robot DH parameters, it is possible 

to improve the open loop positional accuracies of the robot 

compared to uncalibrated forward kinematics mean absolute 

error for test data from 75.4 𝝁𝒎  to 60.1  𝝁𝒎  (20.3% 

improvement).  
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I. INTRODUCTION 

The usage of industrial robots in different industrial 
sectors is growing with their ever-increasing degree of 
collaboration, connection simplicity, ease of run, safety, 
operational ease, and efficiency. According to the 
international federation of robotics (IFR), over 2.5 million 
industrial robots were used in 2019 [1]. However, 
manufacturing and assembly tolerances result in differences 
between the real robot parameters and its nominal values. 
Such tolerances make Denavit–Hartenberg (DH) imprecise 
and consequently result in industrial robot geometrical 
forward kinematics (FK) errors. Closed loop controllers 
working in an iterative process may be used to improve 
positional accuracies. To improve the speed of response and 
compensate for DH parameter errors, it is required to 
perform geometrical calibrations to determine DH 
parameter values.  

Kinematics is defined as the study of motion of an object 
neglecting its causes [2]. Geometrical robot FKs identifies 
the position of robot link frame relative to its original 
coordinate. Using industrial robot forward kinematics and 
current joint angle values, it is possible to determine robot 
current configurations including robot link positions and 
orientations. However, industrial robot FK depends on its 

DH parameters. Uncertainties caused by mismatch between 
real robot dimensions and its nominal values causes 
uncertainty in industrial robot FK. Hence, it is required to 
perform a geometrical calibration process to increase the 
positional accuracy of industrial robots. 

Artificial neural networks have already been used to 
calibrate industrial robot FKs. The calibration of PA10 
robot arm using neural networks with feedback data 
gathered from a Leica SMART310 [3] as well as neural 
networks for the calibration purpose of IRB1410 and a 
collaborative industrial robot using Leica AT960 and Leica 
AT960-MR have already existed in literature [4, 5]. 
Similarly, the calibration of Hyundai HH800 robot, a heavy 
duty industrial robot, using a laser tracker system [3, 6] is 
done using artificial neural network approaches. These 
approaches are non-parametric approaches to improve 
positional accuracies of industrial robot. However, 
parametric approaches to tune geometrical FKs of industrial 
robot result in the estimation of its actual physical parameter 
values. Moreover, the geometrical FKs of industrial robots 
is compact and easier to calculate as compared to black box 
models such as artificial neural networks. 

In this paper, artificial bee colony (ABC) as a powerful 
metaheuristic optimisation approach is used to estimate DH 
parameters of an industrial robot. The ABC algorithm 
imitates the foraging behavior of bees in gathering nectar 
and uses it for optimization purposes [7, 8]. The position 
feedback is provided using a precise laser tracker system, 
Leica AT960-MR, capable of performing 3D measurements 
with error less than 3𝜇𝑚/𝑚 [9]. The position readings from 
the industrial robot joint angles and its forward kinematics 
are compared with the precise 3D position measurements 
from the laser tracker. The mean absolute value of 
positioning errors is then used as the cost function for ABC 
to perform optimization. The optimization results show that 
using the calibrated DH parameters for an industrial robot it 
is possible to improve the positional accuracies from 
75.4𝜇𝑚 to 60.1𝜇𝑚 for test data (20.3% improvement). To 
have a performance comparison, another recent 
metaheuristic optimization algorithm of gravitational search 
algorithm (GSA) [10, 11] is chosen. It is observed that ABC 
algorithm slightly outperforms GSA [10, 11] for industrial 
robots calibration purposes. Therefore, the ABC algorithm 
is the suggested optimization algorithm for parametric 
industrial robot calibration purposes in this instance. 

This paper is organized as follows: the methodology part 
is presented in Section II. Section III presents the 
experimental setup for the experiments, experimental 
results are provided in Section IV and concluding remarks 
are presented in Section V. The acknowledgement part and 
the references are provided in Sections VI and VII. 



II. METHODOLOGY 

The overall calibration methodology including 
industrial robot FK, the cost function associated with 
industrial robot FK error, and ABC algorithm which is used 
to perform the optimisation are explained in this section.  

A. Industrial Robot DH Parameters 

A serial manipulator with n number of joints has n+1 
number of links. The link attaching the robot to the base is 
link 0 and the number of links is increasing up to n. There 
exists a local coordinate associated with each joint. DH 
system uses four parameters to describe the spatial 
relationship between the successive link coordinate frames: 
joint angle 𝜃𝑖, link offset 𝑑𝑖, link length 𝑎𝑖, and link twist 𝛼𝑖 
(see Fig. 1). 

• Joint angle 𝜃𝑖 : the angle between 𝑥𝑖−1  and  𝑥𝑖  axes 
about the 𝑧𝑖−1 axis 

• Link offset 𝑑𝑖: the distance from the origin of frame (𝑖 −
1) to the 𝑥𝑖 axis along the 𝑧𝑖−1 axis 

• Link length 𝑎𝑖 : is the distance between the 𝑧𝑖−1 and 𝑧𝑖−1 
axis along the 𝑥𝑖 axis; for intersecting axis is parallel to 
𝑧𝑖−1 × 𝑧𝑖; 

• Link twist 𝛼𝑖: is the angle between the 𝑧𝑖−1 and 𝑧𝑖 axes 
about the  𝑥𝑖   axis 

B. FK Model of UR5 

Joint angle measurements using the rotary encoder 
sensors on joint shafts are used as the input to UR5 industrial 
robot FKs to express the Cartesian coordinates of robot 
within its 3D workspace. The link transformation matrix 
from the link 𝑖 -1 to the link 𝑖  using its DH parameters 
depends on the corresponding joint angle of the industrial 
robot and its D-H parameters [12, 13]. 

 𝑇𝑖
𝑖−1 = [

𝑐𝑞𝑖 −𝑐𝛼𝑖𝑠𝑞𝑖 𝑠𝛼𝑖𝑠𝑞𝑖 𝑎𝑖𝑐𝑞𝑖

𝑠𝑞𝑖 𝑐𝛼𝑖𝑐𝑞𝑖 −𝑠𝛼𝑖𝑐𝑞𝑖 𝑎𝑖𝑠𝑞𝑖

0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖

0 0 0 1

] () 

where 𝑞𝑖 ′𝑠, 𝑖 = 1, … ,6 represent the joint angle 𝑖 , 𝛼𝑖′𝑠, 𝑖 =
1, … ,6, 𝑎𝑖′𝑠, 𝑖 = 1, … ,6, and  𝑑𝑖 , 𝑖 = 1, … ,6 are other DH 

parameters of robot which present physical robot 

dimensions in terms of the angles between the links and 

distances (see Section 2-A). Furthermore, cqi, sqi, cαi,
and  𝑠𝛼𝑖 , 𝑖 = 1, . . .6 represent 𝑐𝑜𝑠(𝑞𝑖), 𝑠𝑖𝑛(𝑞𝑖), 𝑐𝑜𝑠𝛼𝑖 , and 

𝑠𝑖𝑛(𝛼𝑖), 𝑖 = 1, . . . ,6 , respectively. Overall robot 

transformation matrix in robot base coordinates is obtained 

as follows. 

 𝑇𝑒 = 𝑇6
0 = 𝑇1

0 𝑇2
1 𝑇3

2 𝑇4
3 𝑇5

4 𝑇6
5  () 

The values of 𝛼𝑖’s are given as follows. 

 𝛼1 = 𝛼4 = −𝛼5 = 𝜋/2  

 𝛼2 = 𝛼3 = 𝛼6 = 0 () 

 The 3D end effector coordinates are obtained as 
follows, 

 

 
1  https://www.universal-robots.com/articles/ur/application-

installation/dh-parameters-for-calculations-of-kinematics-

and-dynamics/ (visited: 1/5/2022) 

 

Figure 1 DH parameters 

𝑥𝑟 = 𝑑4𝑠1 + 𝑎2𝑐1𝑐2 + 𝑑6𝑐5𝑠1 + 𝑎3𝑐1𝑐2𝑐3 

                 −𝑎3𝑐1𝑠2𝑠3 + 𝑑5𝑐1𝑐2𝑐3𝑠4 + 𝑑5𝑐1𝑐2𝑠3𝑐4 

                        +𝑑5𝑐1𝑠2𝑐3𝑐4 − 𝑑5𝑐1𝑠2𝑠3𝑠4 − 𝑑6𝑐1𝑐2𝑐3𝑐4𝑠5  
                    +𝑑6𝑐1𝑐2𝑠3𝑠4𝑠5 + 𝑑6𝑐1𝑠2𝑐3𝑠4𝑠5                  

+𝑑6𝑐1𝑠2𝑠3𝑐4𝑠5                           
 

𝑦𝑟 = 𝑎2𝑠1𝑐2 − 𝑑6𝑐1𝑐5 − 𝑑4𝑐1 + 𝑎3𝑠1𝑐2𝑐3 

                −𝑎3𝑠1𝑠2𝑠3 + 𝑑5𝑠1𝑐2𝑐3𝑠4 +  𝑑5𝑠1𝑐2𝑠3𝑐4 

                        +𝑑5𝑠1𝑠2𝑐3𝑐4 − 𝑑5𝑠1𝑠2𝑠3𝑠4 − 𝑑6𝑠1𝑐2𝑐3𝑐4𝑠5 

                      +𝑑6𝑠1𝑐2𝑠3𝑠4𝑠5 + 𝑑6𝑠1𝑠2𝑐3𝑠4𝑠5                     
+𝑑6𝑠1𝑠2𝑠3𝑐4𝑠5                             

 

𝑧𝑟 = 𝑑1 + 𝑎2𝑠2 + 𝑎3𝑐2𝑠3 + 𝑎3𝑠2𝑐3 

               −𝑑5𝑐2𝑐3𝑐4 − 𝑑5𝑐2𝑠3𝑠4+𝑑5𝑐2𝑠3𝑠4 

             +𝑑5𝑠2𝑐3𝑠4 + 𝑑5𝑠2𝑠3𝑐4                
      −𝑑6𝑐2𝑐3𝑠4𝑠5 − 𝑑6𝑐2𝑠3𝑐4𝑠5 

       −𝑑6𝑠2𝑐3𝑐4𝑠5 + 𝑑6𝑠2𝑠3𝑠4𝑠5 (4) 

 
Although the values of FK parameters are unknown and will 
be estimated in this paper, their numerical values according 
to the robot manufacturer are as follows1. 

 𝑑1 = 0.08916𝑚, 𝑎2 = −0.425𝑚,  

 𝑎3 = −0.392𝑚, 𝑑4 = 0.1092𝑚,  

 𝑑5 = 0.0947𝑚, 𝑑6 = 0.0823𝑚 + 𝑑 () 

where 𝑑  is the distance between the centre of the 
retroreflector and the centre of the robot end-effector (see 
Figure 2) which is approximately equal to 0.1695𝑚 . 
Furthermore, 𝑑2 = 𝑑3 = 0 , and 𝑎𝑖 = 0, 𝑖 = 1,4,5,6 . To 
conduct the calibration, the orientation of the robot is 
considered on its downward orientation with its tool centre 
point (TCP) axis-rotation vector equal to (𝜋 0 0). 

C. Artificial Bee Colony 

The Artificial Bee Colony (ABC) algorithm is based on 
the principle of foraging which is the ecology behaviour 
model to predict how bees work together to search to find 
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the best hive and maximize the colony yield [7]. The usage 
of their behaviour in ABC is summarised here. 

1) Real Bee Behavior 
The foraging model for honeybees consists of three 

different components [14]. The first component is food 
sources. The quality of a food source depends on its distance 
to the hive, its nectar taste, its energy, and ease of energy 
extraction from its nectar [8]. The duty of employed 
foragers is to extract and share the information associated 
with the food source with other hive members such as its 
direction, distance, and its quality. Unemployed foragers or 
onlookers use the information gathered by employed 
foragers and exploit the food source. Knowledge exchange 
is an important part of the ABC algorithm which occurs 
using waggle dance on the dancing area within the hive [8]. 
Each food source is assigned a probability proportional to 
its quality. Onlookers choose food sources based on their 
associated probability. Hence, there is a high probability for 
onlookers to choose food sources with higher quality.  

When a bee finds a food source, it memorizes its 
location, becomes an employed bee, and starts exploiting it. 
The foraging bee takes loads of nectar back to the hive and 
unloads it in a food store where all nectars are accumulated. 
The following three options are ahead of a bee after 
unloading the nectar: 

• to become an uncommitted follower  

• to communicate to other members through dancing and 
recruiting them to the food source 

• to continue to forage for food source without recruiting 
after bees 

2) Artificial Bee Colony in Summary 
Artificial Bee colony is categorized as a swarm 

intelligence algorithm which imitates the honeybee foraging 
behavior [8]. Employed bees, onlookers, and scout bees are 
the three groups of bees performing optimization. 
Pseudocode of the ABC algorithm is given as follows: 

1. initialize population as 𝑥𝑖 , 𝑖 = 1, … , 𝑆𝑁 

2. calculate the fitness associated with each member 
of population 

3. repeat the following loop: 

a. produce new set of industrial robot DH 
parameters as the solutions for the 
optimization problem using the employed 

bee using 𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝜑𝑖𝑗(𝑥𝑖𝑗 −

𝑥𝑘𝑗), 𝑘 𝜖 1, … , 𝑆𝑁, 𝑗 𝜖 1, … , 𝐷,  where 

𝜑𝑖𝑗𝜖[0, 1] is a uniform random number. 

b. calculate the fitness function associated 
with each solution 𝑓(𝑥𝑖)  as the sum of 
squared positional error (see Section III) 

c. for each solution calculate its selection 
probability value as follows. 

 𝑝𝑖 =
𝑓(𝑥𝑖)

∑ 𝑓(𝑥𝑖)𝑆𝑁
𝑖=1

 () 

d. produce the new solutions 𝑣𝑖  for the 
onlookers from the solutions 𝑥𝑖  selected 
depending on 𝑝𝑖  and evaluate them 

e. apply a greedy selection process for 
onlookers 

f. find possible abandoned food sources for 
scouts and replace them with new food 

source using 𝑥𝑖𝑗 = 𝑥𝑖,𝑚𝑖𝑛 + 𝑟𝑗(𝑥𝑖,𝑚𝑎𝑥 −

𝑥𝑖,𝑚𝑖𝑛)  where 𝑟𝑗𝜖[0, 1]  is a uniform 

random number 

g. compare the best solution in this iteration 
with overall best solution and replace if 
necessary 

h. if maximum number of iterations is 
achieved stop otherwise continue the loop 

D. Gravitational Search Algorithm 

Gravitational search algorithm (GSA) is a powerful 
optimisation algorithm chosen to perform a comparison to 
ABC [11]. This optimisation algorithm is a physics inspired 
optimization algorithm which imitates the Newtonian 
gravitational forces between objects. In this algorithm, each 
object is associated with a mass value inverse proportional 
to its fitness function such that the object with the minimum 
fitness function is associated with the higher mass value. 
Other than a mass value, each solution benefits from a 
position value which is updated using velocity and 
acceleration. The acceleration vector is updated such that 
the objects with smaller weight values are accelerated 
towards the heavier weights. During their journey objects 
with smaller weight value scan space. If during their 
scanning phase, they come up with a better solution, their 
mass values are updated, and they are assigned with a higher 
mass value.  

Each object in this algorithm benefits from several 
properties of mass, position, velocity, and accelerations. 
Solutions in 𝑑 −dimensional solution space are represented 
by object positions. 

 𝑋𝐺𝑆𝐴
𝑖 = (𝑑1

𝑖 , 𝑎2
𝑖 , 𝑎3

𝑖 , 𝑑4
𝑖 , 𝑑5

𝑖 , 𝑑6
𝑖 ), 𝑖 = 1, . . . , 𝑁 () 

The mass value corresponding to 𝑖𝑡ℎ particle at iteration 
number 𝑡 is called the non-normalized mass value and it is 
represented by 𝑚𝑖(𝑡) [13]. 

 𝑚𝐺𝑆𝐴
𝑖 (𝑡) =

𝑓(𝑋𝐺𝑆𝐴
𝑖 )−𝑓𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑓𝑏𝑒𝑠𝑡(𝑡)−𝑓𝑤𝑜𝑟𝑠𝑡(𝑡)
 () 

where 𝑓𝑤𝑜𝑟𝑠𝑡(𝑡) is the overall worst fitness function value 
and 𝑓𝑏𝑒𝑠𝑡(𝑡)  represents the overall best fitness function 

value. Therefore, 𝑚𝐺𝑆𝐴
𝑖 (𝑡) satisfies 𝑚𝐺𝑆𝐴

𝑖 (𝑡) ∈ [0, 1] with 
the mass value corresponding to the best solution being 
equal to one  and the mass value corresponding to worst 
solution being equal to zero. The parameters 𝑓𝑤𝑜𝑟𝑠𝑡(𝑡) and 
𝑓𝑏𝑒𝑠𝑡(𝑡) are updated at every iteration as follows. 

𝑓𝑤𝑜𝑟𝑠𝑡(𝑡) = max {𝑓(𝑋𝐺𝑆𝐴
𝑖 (t))}𝑖=1,…,𝑁 

𝑓𝑏𝑒𝑠𝑡(𝑡) = 𝑚𝑖𝑛{𝑓(𝑋𝐺𝑆𝐴
𝑖 (t))}𝑖=1,...,𝑁 

where 𝑥𝑖
𝑗
 is the 𝑗𝑡ℎ component of the particle position and 

𝑁  is the total number of particles. Each particle mass is 

updated and normalized at 𝑡𝑡ℎ [13]. 

 𝑀𝐺𝑆𝐴
𝑖 (𝑡) =

𝑚𝐺𝑆𝐴
𝑖 (𝑡)

∑𝑁
𝑘=1 𝑚𝐺𝑆𝐴

𝑘 (𝑡)
 () 

The overall gravitational force (𝐹𝐺𝑆𝐴
𝑖 (𝑡)) acting on the 

𝑖𝑡ℎ particle is calculated using gravitational law of force. 



𝐹𝐺𝑆𝐴
𝑖 (𝑡)

= ∑

𝑗∈{1,...,𝑘𝑏}

𝑟𝑗𝐺(𝑡)
𝑀𝐺𝑆𝐴

𝑗
(𝑡)𝑀𝐺𝑆𝐴

𝑖 (𝑡)(𝑋𝐺𝑆𝐴
𝑗

(𝑡) − 𝑋𝐺𝑆𝐴
𝑖 (𝑡))

∥ 𝑋𝐺𝑆𝐴
𝑖 (𝑡) − 𝑋𝐺𝑆𝐴

𝑗
(𝑡) ∥𝑟𝑝+ 𝜀

 

where 𝑘𝑏  is the number of selected best solutions, ∥. ∥ 
represents Euclidean norm, 𝜀  is a small value added to 
prevent singularity, 𝑟𝑝 is the power value for the Euclidean 

distance between the two particles, 𝐺(𝑡) is the gravitational 
constant and 𝑟𝑗 ∈ [0, 1] is an uniform random value. The 

gravitational constant is updated at each iteration using the 
following equation. 

 𝐺(𝑡) = 𝐺0𝑒𝑥𝑝 (−𝛽
𝑡

𝑡𝑚𝑎𝑥
) () 

where 𝐺0  has a constant real value and 𝑡𝑚𝑎𝑥  is the 
maximum value of the iterations of the algorithm. 
Acceleration term for each object is calculated according to 
Newton’s second law of motion by dividing the applied 

force to 𝑖𝑡ℎ mass by its mass value. 

 𝐴𝐺𝑆𝐴
𝑖 (𝑡) =

𝐹𝐺𝑆𝐴
𝑖 (𝑡)

𝑀𝐺𝑆𝐴
𝑖 (𝑡)

=  

 ∑𝑗∈{1,...,𝑘𝑏} 𝑟𝑗𝐺(𝑡)
𝑀𝐺𝑆𝐴

𝑗
(𝑡)(𝑋𝐺𝑆𝐴

𝑗
(𝑡)−𝑋𝐺𝑆𝐴

𝑖 (𝑡))

∥𝑋𝐺𝑆𝐴
𝑖 (𝑡)−𝑋𝐺𝑆𝐴

𝑗
(𝑡)∥𝑟𝑝+𝜀

 () 

where 𝐴𝐺𝑆𝐴
𝑖 (𝑡) ∈ 𝑅𝑑 is 𝑑 −dimensional acceleration of the 

particles. The velocity value correspodning to each object is 
updated using the acceleration term and velocity vector. 

 𝑉𝐺𝑆𝐴
𝑖 (𝑡 + 1) = 𝑝𝑖   𝑉𝐺𝑆𝐴

𝑖 (𝑡) + 𝐴𝐺𝑆𝐴
𝑖 (𝑡) () 

where 𝑉𝐺𝑆𝐴
𝑖 (𝑡) ∈ 𝑅𝑑  is the 𝑑 −dimensional acceleration of 

𝑖𝑡ℎ  particles at 𝑡𝑡ℎ  iteration and 𝑝𝑖 ∈ [0, 1]  is a uniform 
random number. Finally, the position value of each particle 
is updated using the previous position value and the velocity 
vectors as follows. 

 𝑋𝐺𝑆𝐴
𝑖 (𝑡 + 1) = 𝑋𝐺𝑆𝐴

𝑖 (𝑡) + 𝑉𝐺𝑆𝐴
𝑖 (𝑡 + 1) () 

III. EXPERIMENT SETUP 

A. Hardware Setup 

The calibration test is performed on an industrial robot 
using a laser tracker. The detailed specifications of the 
industrial robot as well as the laser tracker are presented in 
this section.  

1) Laser tracker 
The calibration test is performed using a laser tracker 
system. The laser tracker system used in this experiment is 
a Leica absolute tracker AT960-MR from Hexagon 
metrology GMBH, Wetzlar which is a widely used 
measurement device in industry to inspect critical distances, 
locations and surfaces [9] (see Figure 2).To perform 
distance measurement, it is required to mount the laser 
target on the industrial robot. A precision Leica 1.5” red ring 
reflector detectable through the laser tracker is used for this 
purpose. The connectivity of the laser tracker is provided by 
Wifi connectivity to a windows 10 PC and data are collected 
through Spatial Analyzer® software. The operation 
frequency of the laser tracker is 10Hz, its maximum 
measurement distance is 60 m, and its precision is 3𝜇𝑚/𝑚. 
The distance between the laser tracker and the robot base 
coordinate is 2.8m. The environmental working condition 
for the laser tracker is IP54 which guarantees ingress 
protection against dust and other contaminants. The laser 

tracker benefits from a wide operating temperature range of 
-15 to 45 degrees Celsius. The laser used in this system is 
laser class II.  

B. Industrial robot 

The industrial robot used in this experiment is a 
collaborative one which means that it can work within a 
close proximity to human without extra safety measures. 
This collaborative robot is named UR5 and is manufactured 
by universal robots®. It is capable of handling up to 5Kg of  

 

(a) 

 

(b) 

Figure 2 Laser tracker: a) camera b) controller 

 

load with maximum no-load angular velocity of 180°/𝑠𝑒𝑐. 
The connectivity of UR5 to PC is provided through Wifi 
connectivity and the software used to gather data is ROS 
Melodic operating under Linux 18.04 operating system. 
Joint angle values, angular velocities, and joint efforts in 
terms of motor currents are gathered from the industrial 
robot. The sample time for the data transfer from robot to 
PC slightly varies but its mean value is equal to 8𝑚𝑠𝑒𝑐 . 
Overall, 38 waypoints are programmed for the robot, and it 
travels them linearly in 600 sec. It is required to resample 
position data from the robot to match laser tracker frequency 
(10Hz). 

1) Data Resampling and Synchronization 
As the data recording start time and sample time of the laser 
tracker and the industrial robot are different, it is required to 
shift and resample data from UR5 to synchronize them with 
the laser tracker data. The points at which the linear 
velocities of the robot are less than 2mm/sec are extracted.  

2) Cost Function to be Optimized 
The cost function used to estimate robot DH parameters 
include mean absolute position error associated with its FK 
constructed upon the DH parameters given by intelligent 
optimization algorithms either ABC or GSA. The 
parameters suggested by either GSA [11] or ABC are used 
to find the industrial robot coordinate within 3D workspace 
out of its joint angle values. The industrial robot positions 
in laser tracker coordinate are calculated using an 
appropriate transformation matrix as follows,  

 [𝑥𝑟𝑙 𝑦𝑟𝑙 𝑧𝑟𝑙]𝑇 = 𝑇𝑟𝑟𝑙[𝑥𝑟𝑟 𝑦𝑟𝑟 𝑧𝑟𝑟 1]𝑇 () 

where 𝑥𝑟𝑙, 𝑦𝑟𝑙 , and 𝑧𝑟𝑙 are the robot end-effector positions 
using laser tracker in laser tracker coordinate, 𝑇𝑟𝑟𝑙  is the 
transformation matrix from the robot base coordinate 



system to the coordinate system of the laser tracker. The 
transformation matrix 𝑇𝑟𝑟𝑙  can be easily calculated using a 
least squares algorithm. Using the calculated transformation 
matrix 𝑇𝑟𝑟𝑙 , the end effector positions in laser tracker 
coordinates are calculated as follows. 

 

Figure 3 UR5 with retroreflector mounted on it as the target for 

laser tracker 

 

 [

𝑥′𝑟𝑙

𝑦′𝑟𝑙

𝑧′𝑟𝑙

] = 𝑇𝑟𝑟𝑙 [

𝑥𝑟𝑟

𝑦𝑟𝑟
𝑧𝑟𝑟

1

] () 

where 𝑥′𝑟𝑙 , 𝑦′𝑟𝑙 , and 𝑧′𝑟𝑙  represent the robot end effector 
position in x, y, and z axis using robot joint encoders in laser 
tracker coordinates. The position errors (𝑒𝑟) is calculated as 
follows. 

𝑒𝑟 = √(𝑥′𝑟𝑙 − 𝑥𝑟𝑙)2 + (𝑦′𝑟𝑙 − 𝑦𝑟𝑙)2 + (𝑧′𝑟𝑙 − 𝑧𝑟𝑙)
2 

The overall mean absolute value of position error for all 
measured points associated with each of these industrial 
robot FKs need to be calculated using (11). Finally, the cost 
function obtained as the mean value over all measured 
points is optimised using either ABC and GSA optimisation 
algorithms. 

IV. EXPERIMENTAL RESULTS 

Joint angle values gathered from the UR5 and 3D 
position data for the UR5 end effector are gathered from the 
laser tracker. The data sample measurements with linear 
velocities less than 2mm/sec are used for quasi-static 
calibration. Totally 209 data samples are studied from 
which 70% is used for train and the rest is the test data. The 
total population number (Np) for ABC is equal to 150 and 
its total iteration number is equal to 300. The parameters 
chosen for the GSA are as follows. 

𝑟𝑝 = 1, 𝜀 = 2.22 × 10−16, 𝛽 = 20  

𝑘𝑏 = 2, 𝑡𝑚𝑎𝑥 = 200, 𝑁 = 150 

The mean absolute value of measurement error for the 
uncalibrated FK, FK calibrated with GSA, and FK 
calibrated with ABC are presented in Table 2. While the 
mean absolute error (MAE) value of positions for FK 
calibrated using ABC for the train data is 55.2 𝜇𝑚, the MAE 
value of positions for uncalibrated FK is equal to 70.2𝜇𝑚. 

Hence, using the calibration algorithm in this paper which 
benefits from ABC, it is possible to improve the 
uncalibrated positional accuracies for 21.4%. The 
optimization results are validated by using the test data 
which shows the generalization capabilities of the proposed 
calibration algorithm which benefits from ABC algorithm. 
It is observed that for the test data MAE decreases from 75.4 
𝜇𝑚 to 60.1 𝜇𝑚 which is 20.3% improvement. It is further 
observed that ABC algorithm slightly outperforms 

 

Figure 4 Optimization trend for ABC and GSA 

 

Figure 5 Results of calibrations in x-axis 

 

Figure 6 Results of calibrations in y-axis 

 

Table 1 Calibration performance of the optimization algorithms 

Optimization 
method 

MAE (train) MAE (test) 

ABC 55.2 𝜇𝑚 60.1 𝜇𝑚 

GSA 56.0 𝜇𝑚 60.9 𝜇𝑚 

Uncalibrated 70.2 𝜇𝑚 75.4 𝜇𝑚 
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Table 2 Calibration results for ABC algorithm 

Performan
ce indexes 

Calibrated (𝜇𝑚) Uncalibrated (𝜇𝑚) 

 
 
M
A
E 

 train
 

test 

o
v

erall 

train
 

test 

o
v

erall 

X 62.0 64.7 63.4 95.9 90.3 94.6 

Y 53.2 56.7 54.4 64.0 77.5 68.0 

Z 50.4 58.9 52.8 50.7 58.4 53.3 

3D 55.2 60.1 56.9 70.2 75.4 71.9 

𝜎𝑖 X 74.5 80.0 76.5 125.5 117.8 124.3 

Y 75.3 73.9 75.8 94.3 105.1 99.2 

Z 64.2 74.2 67.8 64.2 73.5 67.6 

3D 71.5 76.1 73.5 97.9 100.6 99.8 

 

GSA for calibration purpose of industrial robot FK. The 
results of calibration in each dimension are presented in 
Table 1. As can be seen from the table, the calibration error 
along x dimension is slightly better than other dimensions. 
Figures 4-6 illustrate the positions obtained after calibration 
using ABC, and GSA. As can be seen from these figures, 
using ABC algorithm for calibration, industrial robot 
positions are closer to the laser tracker measurements as 
compared to uncalibrated positions and positions using FK 
calibrated with GSA. Figure 8 illustrates the UR5 end-
effector positions in x-y and x-z plane for the test data. As 
can be seen from the figure, the end-effector positions using 
the proposed calibration algorithm are closer to the positions 
measured using the laser tracker.  

V. CONCLUSIONS 

One of the major sources of open loop error in industrial 
robot FK is the robot dimension error. In this paper using 
laser tracker 3D position measurements, more accurate DH 
parameters for industrial robot are estimated. The algorithm 
used for this estimation is ABC algorithm which is a 
powerful optimization algorithm. The laser tracker used in 
this experiment is a high precision non-contact metrology 
equipment one. Using the optimization algorithm of ABC 
for calibration purposes, it is possible to decrease the 
industrial robot positioning error from MAE 75.4 𝜇𝑚  to 
60.1 𝜇𝑚  which is a 20.3% improvement. It is further 
observed that FK calibrated with ABC slightly outperform 
the one calibrated with GSA. As a future work, motivated 
by the high performance of the calibration algorithm 
investigated in this paper, it will be used to calibrate other 
industrial robots. More intelligent optimization algorithms 
for robot moving at higher speed will be investigated in 
future research as well. 

VI. ACKNOWLEDGEMENT 

This work is funded and supported by the Engineering 
and Physical Sciences Re-search Council (EPSRC) under 
grant number: EP/T023805/1— High-accuracy robotic 
system for precise object manipulation (HARISOM).  

VII. REFERENCES 

[1] F. Compagnucci, A. Gentili, E. Valentini, and M. Gallegati, 
"Robotization and labour dislocation in the manufacturing sectors of 
OECD countries: a panel VAR approach," Applied Economics, vol. 
51, no. 57, pp. 6127-6138, 2019. 

[2] K. Russell, J. Q. Shen, and R. S. Sodhi, Kinematics and Dynamics 
of Mechanical Systems: Implementation in MATLAB® and 
SimMechanics®. CRC Press, 2018. 

[3] S. Aoyagi, A. Kohama, Y. Nakata, Y. Hayano, and M. Suzuki, 
"Improvement of robot accuracy by calibrating kinematic model 
using a laser tracking system-compensation of non-geometric errors 
using neural networks and selection of optimal measuring points 
using genetic algorithm," in 2010 IEEE/RSJ International 
conference on intelligent robots and systems, 2010: IEEE, pp. 5660-
5665.  

[4] M. Bai, M. Zhang, H. Zhang, M. Li, J. Zhao, and Z. Chen, 
"Calibration Method Based on Models and Least-Squares Support 
Vector Regression Enhancing Robot Position Accuracy," IEEE 
Access, vol. 9, pp. 136060-136070, 2021. 

[5] Q. K. Duong, T. T. Trang, and T. L. Pham, "Robot Control Using 
Alternative Trajectories Based on Inverse Errors in the Workspace," 
Journal of Robotics, vol. 2021, 2021. 

[6] H.-N. Nguyen, J. Zhou, and H.-J. Kang, "A calibration method for 
enhancing robot accuracy through integration of an extended 
Kalman filter algorithm and an artificial neural network," 
Neurocomputing, vol. 151, pp. 996-1005, 2015. 

[7] D. Karaboga and B. Basturk, "On the performance of artificial bee 
colony (ABC) algorithm," Applied soft computing, vol. 8, no. 1, pp. 
687-697, 2008. 

[8] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, "A 
comprehensive survey: artificial bee colony (ABC) algorithm and 
applications," Artificial Intelligence Review, vol. 42, no. 1, pp. 21-
57, 2014. 

[9] S. Kyle, "Operational features of the Leica laser tracker," 1999. 

[10] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: a 
gravitational search algorithm," Information sciences, vol. 179, no. 
13, pp. 2232-2248, 2009. 

[11] E. Rashedi, E. Rashedi, and H. Nezamabadi-Pour, "A 
comprehensive survey on gravitational search algorithm," Swarm 
and evolutionary computation, vol. 41, pp. 141-158, 2018. 

[12] K. Kufieta, "Force estimation in robotic manipulators: Modeling, 
simulation and experiments," Department of Engineering 
Cybernetics NTNU Norwegian University of Science and 
Technology, 2014. 

[13] J.-D. Sun, G.-Z. Cao, W.-B. Li, Y.-X. Liang, and S.-D. Huang, 
"Analytical inverse kinematic solution using the DH method for a 6-
DOF robot," in 2017 14th international conference on ubiquitous 
robots and ambient intelligence (URAI), 2017: IEEE, pp. 714-716.  

[14] V. Tereshko and A. Loengarov, "Collective decision making in 
honey-bee foraging dynamics," Computing and Information 
Systems, vol. 9, no. 3, p. 1, 2005. 

 

Figure 7 Results of calibrations in z-axis 

Figure 8 a) validation results on x-y plane b) validation 

results on x-z plane 
 

      

      

     

    

     

 

    

   

    

   

 
 
 
  
  
 
  
  
 
  
  
 
 

             

            

   

   
      

      

      

      

         

                  

                   

     

    

     

    

     

 

 
 
 
  
  
 
  
  
 
  
  
 
 

             

            

   

             

       

      

       

         

                  

                   

    

   

    

   

    

   

 
 
 
  
  
 
  
  
 
  
  
 
 

             

            

   

                

      

      

         


