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Abstract— This paper proposes a new stability analysis for the 

Reaction Torque Observer (RTOb) based robust force control 

systems in the discrete-time domain. The robust force controller is 

implemented by employing a Disturbance Observer (DOb) to 

suppress disturbances, such as friction and hysteresis, in an inner-

loop and another disturbance observer, viz RTOb, to estimate 

contact forces without using a force sensor. Since the RTOb-based 

robust force controllers are always implemented using computers 

and/or microcontrollers, this paper proposes a stability analysis in 

the discrete-time domain. It is shown that the bandwidth of the 

DOb is limited not only by the noise of velocity measurement but 

also by the waterbed effect. It is also shown that the stability of the 

robust force controller may significantly deteriorate when the 

design parameters of the RTOb are not properly tuned. For 

example, the robust force controller may have a non-minimum 

phase zero(s) as the design parameter of the identified inertia 

(torque coefficient) of the RTOb is increased (decreased). This 

may lead to poor stability and performance in force control 

applications. The proposed stability analysis conducted in the 

discrete-time domain is verified by simulations and experiments. 

Keywords—discrete-time control, disturbance observer, reaction 

force observer, robust force control, robust stability and 

performance.  

I. INTRODUCTION 

Compared to traditional industrial robotic manipulators, 
next-generation robotic systems (e.g., exoskeletons, prostheses, 
humanoids, and collaborative and medical robots) are expected 
to physically interact with unknown, dynamic and unstructured 
environments such as human beings [1 – 6]. When it comes to 
physical robot-environment interaction, it is a well-known fact 
that precise positioning is not sufficient [1, 7]. To safely perform 
physical interaction tasks, it is essential to precisely control the 
contact force between robot and environment [6 – 8]. Although 
various direct and indirect force controllers have been proposed 
in the last decades, physical robot environment interaction tasks 
still suffer from the stability and low-performance problems of 
force control systems, particularly when the robots perform 
tasks in unstructured environments [6 – 15]. 

To improve the stability and performance of physical robot-
environment interaction tasks, the RTOb-based robust force 
controller was proposed by Murakami and Ohnishi in 1993 [16]. 
Since then it has been applied to various robotic applications 
spaning from industrial and rehabilitation robotics to automotive 
and medical robotics [2 – 4, 17 – 19]. An RTOb-based robust 
force controller is synthesised by employing two DObs in an 
inner- and an outer- loop [16]. While the robustness of the force 

controller is improved by suppressing disturbances via the DOb 
in the inner-loop, the contact force between robot and 
environment is estimated using the RTOb in the outer-loop. This 
force-sensorless force control technique provides several 
benefits in practice. For example, i) contact forces can be 
directly estimated without changing the compliance of the force 
control system [7], ii) compared to a force sensor, a higher 
bandwidth of contact force estimation can be achieved using the 
RTOb [20], and iii) the force-sensorless force control technique 
not only reduces the size and mechanical complexity of force 
control systems but also enables low-cost physical robot-
environment interaction applications [19]. Nevertheless, the 
RTOb is a model-based force controller so the dynamic model 
of the motion control systems should be identified to achieve 
good stability and performance in practice [16].  

In the literature, it is generally assumed that the RTOb-based 
robust force controller is designed by using the actual inertia and 
torque coefficient values of servo systems [12, 21]. However, 
this conventional design approach could be impractical in many 
applications because we may not obtain an accurate dynamic 
model for some robotic systems such as wearable devices [12]. 
It is therefore essential to understand how the stability and 
performance of physical interaction tasks change by the design 
parameters of the robust force controller. Moreover, the 
conventional design approach does not allow us to adjust the 
stability and performance of the robust force controller by tuning 
the design parameters of the DOb and RTOb.  

Several studies have been conducted to improve the stability 
and performance of the RTOb-based robust force controller in 
the last two decades. For example, an accelerometer was 
integrated to the design of the RTOb so that the bandwidth of 
force estimation was increased in PAIDO [22]. It is shown in 
[22] that increasing the bandwidth of the RTOb improves not 
only the accuracy of force estimation but also the stability of 
contact motion. To further increase the bandwidth of force 
estimation, Kalman filter was integrated to the RTOb in [23, 24]. 
However, the robust stability and performance of the force 
controller are not considered in these studies. To understand 
how the design parameters of the DOb and RTOb affect the 
robust force controller, different stability and performance 
analyses have been proposed. For example, [25] and [26] show 
that the stability of the robust motion controller can be adjusted 
by tuning the design parameters of the DOb in the inner-loop. 
[7] shows that not only the DOb but also the RTOb can be used 
to tune the stability and performance of the robust force 
controller. Although these analyses provide good insight into the 
stability and performance of the robust force controller, they 



fall-short in explaining some dynamic responses in practice 
because they are conducted in the continuous-time domain. For 
example, continuous-time analyses cannot explain why the 
robust force controller becomes unstable as the bandwidth of the 
DOb is increased in the inner-loop [27, 28]. Since the DOb and 
RTOb are always implemented using computers and 
microcontrollers, it is essential to understand the stability and 
performance of the RTOb-based digital robust force controllers 
by conducting an analysis in the discrete-time domain [29 – 32].  

To this end, a new stability analysis is proposed for the 
RTOb-based digital robust force controllers in this paper. To 
derive the design constraints of the DOb in the inner-loop, the 
discrete Bode-Integral Theorem is employed. This theorem 
shows that the robust stability and performance of the inner-loop 
controller deteriorate due to the waterbed effect as the 
bandwidth of the digital DOb increases. To tackle this problem, 
the sampling-time of the robust force controller should be 
decreased. This, however, generally increases cost in practical 
engineering applications. The proposed stability analysis also 
shows that the design parameters of the RTOb can notably 
change the stability and performance of the robust force 
controller. As the identified inertia (torque coefficient) is 
increased (decreased) in the design of the RTOb, an open-loop 
zero moves towards the out of the unit circle. In other words, the 
robust force controller may have a non-minimum phase zero. 
This leads to a strict design constraint on the force control gain 
and may notably deteriorate the stability of the robust force 
controller. The stability and performance of the digital robust 
force controller can also be adjusted by tuning the bandwidths 
of the DOb and RTOb. While the robust force controller has a 
phase-lead controller when the bandwidth of the RTOb is larger 
than that of DOb, increasing the bandwidth of the DOb may 
result in a phase-lag compensator. The dynamic response of the 
digital robust force controller can be adjusted by tuning the 
phase- lead/lag compensator. The proposed stability analysis is 
verified by presenting simulation and experimental results. 

The rest of the paper is organised as follows. Section II briefly 

introduces the DOb and RTOb in the discrete-time domain. 

Section III introduces the RTOb-based robust force controller 

and proposes a new stability analysis. Section IV verifies the 

proposed stability analysis by simulations and experiments. 

The paper ends with conclusion in Section V. 

II. DESIGN AND IMPLEMENTATION OF THE DOB AND RTOB IN 

THE DISCRETE-TIME DOMAIN 

In this section, the design and implementation of the digital 

DOb and RTOb are briefly introduced.  

A. Disturbance Observer 

The block diagram of the digital DOb implemented by the 
Backward-Euler integration method is illustrated in Fig. 1. The 
internal and external disturbances (e.g., friction, hysteresis and 
plant uncertainties) are estimated using the nominal plant model, 
control signal and velocity measurement. The robustness of the 
servo system is simply attained by feedbacking the estimated 

disturbances as shown in Fig. 1. In this figure, mJ and
nmJ are the 

actual and nominal inertiae, respectively; K and
n

K are the 

actual and nominal thrust coefficients, respectively; c and   

are the external load and noise, respectively; ,q q and q are the 

angle, velocity and acceleration, respectively; DObg is the 

bandwidth of the DOb; I is the current of the DC motor; dis  and 

disI  are the fictitious disturbance torque and current variables, 

respectively; ZoH is the Zero order Hold; sT is the sampling-

time; t  and k st kT represent time in the continuous and discrete 

domains, respectively; s and  ssT
z e  are complex variables; ̂  

is the estimation of  ; and des is the  desired  . 

The transfer function between the exogenous inputs  desq z , 

 c z  and  z  to the output  q z can be directly derived from 

Fig. 1 as follows: 

     
 

 
     

 
   

1 1 11
S T

1

DOb s

des c

DOb s m s

g T z z
q z q z z z z z

z g T J T
  



  
  

 
     (1) 

where  
 

1
S

1 DOb s

z
z

z g T




 
and  

 
T

1

DOb s

DOb s

g T
z

z g T






 
 are 

the discrete sensitivity and complementary sensitivity transfer 

functions in which    
n nm mJ K J K   .  

Equation (1) shows that a phase-lead/lag compensator is 

synthesised in the inner-loop of the DOb-based robust motion 

control system. The phase margin of the digital controller 

improves as   is increased (i.e., the nominal inertia/thrust 

coefficient is increased/decreased). However, the phase margin 

of the inner-loop is limited by the stability constraint of the 

digital robust motion controller. As shown in Eq. (1), the inner-

loop controller exhibits oscillatory response when 1 DOb sg T  

and becomes unstable when 2 DOb sg T . To improve the 

bandwidth of disturbance estimation and phase margin in the 

inner-loop, the sampling-time of the digital robust motion 

controller should be decreased.  

Equation 1 also shows that as   and DObg  are increased, 

while the sensitivity function becomes smaller at low 
frequencies the complementary sensitivity function gets larger 
values at higher frequencies. In other words, the robustness 

 

Fig. 1: Block diagram of the digital DOb implemented by the Backward-Euler 

Integration method.  
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against disturbances is improved at low-frequencies but the 
digital motion controller becomes more sensitive to noise. 
Therefore, the design parameters of the DOb are limited by the 
noise and stability constraints of the digital motion controller.   

Another constraint on the design parameters of the DOb can 

be obtained by applying the discrete Bode Integral Theorem to 

the inner-loop as follows: 

           ln S e 2 ln 1 lim L 0sj T

s
z

d T z






 
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where  L
1

DOb sg T
z

z





is the open-loop transfer function of the 

digital robust motion controller illustrated in Fig. 1 [33 – 36].  
Equation (2) shows that the DOb-based digital robust motion 

controller suffers from the waterbed effect. To satisfy Eq. (2), 
the peak of the sensitivity function increases at high frequencies 

as it is decreased by using the higher values of   and/or 
DObg to 

suppress disturbances at low frequencies. In other words, the 
design parameters of the DOb are constrained by the waterbed 
effect. Violating this design constraint may lead to severe 
stability and performance issues in practice. To tune the digital 
DOb-based robust motion controller, a design tool can be 
developed using Eq. (2), e.g., [29, 30]. 

B. Reaction Torque Observer 

The block diagram of the digital RTOb implemented by the 
Backward-Euler integration method is illustrated in Fig. 2. In 
this figure, Jmi and Kτi are the identified inertia and torque 
coefficient, respectively; and τdi is the identified disturbances 
due to the internal dynamics of the servo system such as gravity 
and friction. The other parameters are same as defined earlier.  

As shown in Fig. 2, the contact force c can be similarly 

estimated by using the identified inertia, torque coefficient and 
internal dynamics in the design of the observer.  Since the RTOb 
is a model-based controller, the mismatch between the actual 
and identified plant models directly contributes to the error of 
contact force estimation as shown in Eqs. (3) and (4). 
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    (4)  

where d represents a fictitious disturbance variable that 

includes unknown and/or unmodelled disturbances of the servo 

system, and 
id represents the identified d  that is used in the 

design of the RTOb as shown in Fig. 2 [8, 12]. 

III. ANALYSIS OF THE REACTION TORQUE OBSERVER-BASED 

ROBUST FORCE CONTROLLER 

This section briefly introduces the RTOb-based digital 
robust force controller and proposes a new stability analysis in 
the discrete-time domain.  

A. RTOb-based Robust Force Controller: 

The block diagram of the RTOb-based digital robust force 

controller is illustrated in Fig. 3. In this figure, C represents the 

force control gain, envK and envD represent the environmental 

dynamics (i.e., the stiffness and damping of the environment, 

respectively), and ref represents the force reference. The other 

parameters are same as defined earlier. 

As shown Fig. 3, the robust force controller is synthesised 
using two observers in the inner- and outer- loop. In general, the 

robust force controller is synthesised by using DOb RTObg g and 

assuming that 
n im m mJ J J   and 

n i
K K K    . Let us show 

how this conventional design approach may lead to severe 
stability and performance problems in practice.  

B. Stability Analysis for the Robust Force Controller: 

The open-loop transfer function of the RTOb-based digital 

robust force controller can be derived from Fig. 3 as follows: 
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Fig. 2: Block diagram of the digital RTOb implemented by the Backward-
Euler Integration method.  
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Fig. 3: Block diagram of the RTOb-based digital robust force controller 
implemented by the Backward-Euler Integration method.  
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where    
i im mJ K J K     , 0  envK m , 02  envD m , 

2

0 1   n and    sinc sin  n s n s n sT T T .  

Equation (5) shows that the open-loop transfer function of 
the digital robust force controller has an integrator which 
removes the steady-state error in force regulation. The open-
loop transfer function has also a phase-lead/lag compensator 
which can be tuned by the bandwidths of the DOb and RTOb. 

A phase-lead compensator is synthesised using DOb RTObg g .  

Equation (5) also shows that  RTObL z  has the third order 

transfer function  z which significantly changes the stability 

and performance of the robust force controller when the control 

parameters, e.g., and  , and environmental dynamics change. 

The poles of  z  move towards the outside of the unit circle as 

 DOb sg T  is increased. Since this may lead to a severe stability 

problem in practice,  and DObg should have an upper bound. 

To relax the constraint on these design parameters, the sampling 
time of the robust force controller should be decreased. This is 
consistent with the robust stability and performance constraints 
of the inner-loop controller described in Section II. The zeros 

of the transfer function  z move towards the outside of the 

unit circle as  0e sinc
  sT

n sT  increases, e.g., as the identified 

inertia (torque coefficient) is increased (decreased) in the 
design of the digital RTOb. In other words, the digital robust 
force controller has a non-minimum phase zero(s). The non-
minimum phase zeros directly limit the bandwidth of the robust 
force controller, leading to poor performance. As the force 
control gain increases, the stability of the robust force controller 
deteriorates. To achieve good stability, smaller values of  and 

sT should be used in the design of the RTOb-based digital 

robust force controller. 

IV. SIMULATIONS AND EXPERIMENTS 

 This section verifies the proposed stability analysis by 
simulations and experiments. Let us start with the design 
constraints in the inner-loop. Fig. 4 illustrates the frequency 
responses of the inner-loop’s sensitivity and complementary 
sensitivity transfer functions. This figure shows that as  and 

DObg are increased, the sensitivity function gets smaller at low-

frequencies. In other words, the robustness against disturbances 
is improved. However, the waterbed effect is observed and the 
peaks of the sensitivity and complementary sensitivity functions 
increase to hold the constraint given in Eq. (2). Since the robust 
stability and performance deteriorate due to the waterbed effect, 

 and DObg cannot be freely increased in the DOb synthesis.  

Let us now consider the stability of the RTOb-based digital 
robust force controller. Figure 5 illustrates the root-loci of the 

robust force controller with respect to C
when different design 

parameters are employed in the DOb and RTOb synthesis. It is 
clear from this figure that the stability of the robust force 
controller deteriorates when i) DOb and RTOb are tuned using 
a higher value of   (i.e., 1  ), and ii) the phase-lag controllers 

are employed by using 1   and DOb RFObg g in the inner- and 

outer- loop, respectively. Although the actual values of the 
inertia and torque coefficient are used in the RTOb synthesis, 
the digital robust force controller can suffer from non-minimum 
phase zeros. To improve the stability of the robust force 
controller,  should be decreased and the digital robust force 

controller should be synthesised using the phase-lead controllers 
in the inner- and outer- loop as illustrated in Fig. 5.  

Last, let us experimentally verify the proposed stability 
analysis. The force control experiments were conducted for 
different values of the design parameter . As is increased, 

the robust force controller cannot meet the design constraints 
proposed in the paper. Therefore, the stability of the digital 
robust force controller deteriorated as shown in Fig. 6. 

V. CONCLUSION 

 In this paper, a new stability analysis has been proposed for 
the RTOb-based digital robust force controllers in the discrete-
time domain. The proposed stability analysis enables us to 
explain unexpected dynamic behaviours observed in practice, 

e.g., poor stability for higher values of DObg and
imJ . Moreover, 

it provides useful design tools to implement high-performance 

 
Fig. 4: Frequency responses of S(z) and T(z). 

 

 
Fig. 5: Root loci of the digital robust force controller. a)  α = 0.5, δ = 1, gDOb 

= 1000 and gRFOb = 100, b) α = 2, δ = 0.1, gDOb = 100 and gRFOb = 1000. 
 



robust force controllers, e.g., i) the phase-lead/lag compensators 
in the inner- and outer- loop, and ii) minimum-phase robust 
force controller design by tuning . Further studies should be 

conducted to obtain more practical design tools for the RTOb-
based digital robust force controller. 
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1x10-3 and the different values of α.  

 

https://link.springer.com/book/10.1007/978-3-319-32552-1
https://link.springer.com/book/10.1007/978-3-319-32552-1

