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Abstract. Automated negotiation and coalition formation among self-interested agents are playing an
increasingly important role in electronic commerce. Such agents cannot be coordinated by externally
imposing their strategies. Instead the interaction protocols have to be designed so that each agent is
motivated to follow the strategy that the protocol designer wants it to follow. This paper reviews six
component technologies that we have developed for making such interactions less manipulable and
more efficient in terms of the computational processes and the outcomes:

1. OCSM-contracts in marginal cost based contracting,
2. leveled commitment contracts,
3. anytime coalition structure generation with worst case guarantees,
4. trading off computation cost against optimization quality within each coalition,
5. distributing search among insincere agents, and
6. unenforced contract execution.

Each of these technologies represents a different way of battling self-interest and combinatorial
complexity simultaneously. This is a key battle when multi-agent systems move into large-scale open
settings.
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game theory, anytime algorithm, resource-bounded reasoning

1. Introduction

Automated negotiation systems with self-interested agents are becoming increas-
ingly important. One reason for this is the technology push of a growing standard-
ized communication infrastructure }Internet, WWW, NII, EDI, KQML, FIPA,
Concordia, Voyager, Odyssey, Telescript, Java, etc.}over which separately de-
signed agents belonging to different organizations can interact in an open environ-
ment in real-time and carry out transactions safely. The second reason is strong
application pull for computer support for negotiation at the operative decision-

w xmaking level 22, 10, 39 . For example, we are witnessing the advent of small
transaction electronic commerce on the Internet for purchasing goods, informa-
tion, and communication bandwidth. There is also an industrial trend toward
virtual enterprises: dynamic alliances of small, agile enterprises that together can

Žtake advantage of economies of scale when available e.g., respond to more diverse
.orders than individual agents can , but do not suffer from diseconomies of scale.
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Multi-agent technology facilitates such negotiation at the operative decision
making level. This automation can save labor time of human negotiators, but in
addition, other savings are possible because computational agents can be more
effective at finding beneficial short-term contracts than humans are in combinato-
rially and strategically complex settings. This is because computational agents can
find, enumerate, and evaluate potential deals faster than humans, and because
computational agents can be designed to act optimally on the users behalf based on
game theoretic prescriptions that are often not easily comprehended by humans.

This paper discusses multi-agent negotiation in situations where agents may have
different goals, and each agent is trying to maximize its own good without concern
for the global good. Such self-interest naturally prevails in negotiations among
independent businesses or individuals. In building computer support for negotia-
tion in such settings, the issue of self-interest has to be dealt with. In cooperatï e

w xdistributed problem sol̈ ing 7, 5 , the system designer imposes an interaction
1 Žprotocol and a strategy a mapping from history to action; a way to use the
.protocol for each agent. The main question is what social outcomes follow given

the protocol and assuming that the agents use the imposed strategies. On the other
w xhand, in multi-agent systems 30, 23, 18, 13 , the agents are provided with an

Ž .interaction protocol aka. mechanism , but each agent will choose its own strategy.
A self-interested agent will choose the best strategy for itself, which cannot be
explicitly imposed from outside. Therefore, the protocols need to be designed using
a noncooperatï e, strategic perspective: the main question is what social outcomes
follow given a protocol that guarantees that each agent’s desired local strategy is best
for that agent}and thus the agent will use it. This approach is required in designing
robust nonmanipulable multi-agent systems where the agents may be constructed
by separate designers andror may represent different real-world parties.

The rest of this paper overviews six component technologies that we have
developed for such negotiations:

1. OCSM-contracts in marginal cost based contracting,
2. leveled commitment contracts,
3. anytime coalition structure generation with worst case guarantees,
4. trading off computation cost against optimization quality within each coalition,
5. distributing search among insincere agents, and
6. unenforced contract execution.

Each of these technologies is discussed at a high level, and pointers to the detailed
technical papers on these topics are provided.

2. Technology 1: OCSM-contracts in marginal cost based contracting

A central part of automated negotiation systems is the ability to reallocate items
Ž .tasks, securities, bandwidth slices, megawatt hours of electricity, collectibles, etc.
among the agents. In many domains, significant savings can be achieved by
reallocation. However, reallocation can be difficult if agents have preferences over
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combinations of items. Some tasks are inherently synergic, and should therefore be
handled by the same agent. Some tasks have negative interactions, so it is better to

Žallocate them to different agents. In other words, an agent’s cost and even
.feasibility of handling a given task depends on what other tasks the agent will

have. Furthermore, different agents may have different resources, and this leads to
different capabilities and costs for handling tasks. This section discusses task
allocation among self-interested agents in the following model that captures the
above considerations. While we use the term ‘‘task,’’ the items to be allocated can
be anything else as well}financial securities, collectibles, resources, etc.}as long
as the following model captures the setting.2

Definition 1 Our task allocation problem is defined by a set of tasks T , a set of
T � 4 Žagents A, a cost function c : 2 ª RR j ` which states the cost that agent ii

.incurs by handling a particular subset of tasks , and the initial allocation of tasks
² ini t ini t: ini t ini t ini tamong agents T , . . . , T , where D T s T , and T l T s B for1 < A < ig A i i j

all i / j.3, 4

The original contract net and many of its later variants lacked a formal model
for making bidding and awarding decisions. More recently, we introduced such a
formal model that gives rise to a negotiation protocol that provably leads to

w xdesirable task allocations among agents 22, 24, 25 . In that model, contracting
decisions are based on marginal cost calculations, i.e., that model invokes the
concept of indï idual rationality on a per contract basis. A contract is individually

Ž .rational IR to an agent if that agent is better off with the contract than without
it.5 This implies individual rationality of sequences of contracts.

Specifically, a contractee q accepts a contract if it gets paid more than its
marginal cost

add cont r act < cont r actMC T T s c T j T y c TŽ .Ž . Ž .q q q q q

of handling the tasks T cont r act of the contract. The marginal cost is dynamic in the
sense that it depends on the other tasks T that the contractee has.6q

Similarly, a contractor r is willing to allocate the tasks T cont r act from its current
task set T to the contractee if it has to pay the contractee less than it saves by notr
handling the tasks T cont r act itself:

r em o¨ e cont r act < cont r actMC T T s c T y c T y T .Ž .Ž . Ž .r r r r r

In the protocol, agents then suggest contracts to each other, and make their
acceptingrrejecting decisions based on these marginal cost calculations. An agent
can take on both contractor and contractee roles. It can also recontract out tasks
that it received earlier via another contract. The scheme does not assume that
agents know the tasks or cost functions of others.

With this domain independent contracting scheme, the task allocation can only
improve at each step. This corresponds to hill-climbing in the space of task
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Ž Ž ..allocations where the height-metric of the hill is social welfare yÝ c T . Theig A i i
fact that the contractor pays the contractee some amount between their marginal

Ž .costs e.g., half-way between causes the benefit from the improved task allocation
to be divided so that no agent is worse off with a contract than without it.

The scheme is an anytime algorithm: contracting can be terminated at any time,
Ž .and the worth payments received from others minus cost of handling tasks of

each agent’s solution increases monotonically. It follows that social welfare in-
creases monotonically.

Details on an asynchronous distributed implementation based on marginal costs
w x Žcan be found in 22, 24, 29 . To our knowledge, this TRACONET TRAnsportation

.COoperation NETwork system was the first implementation of the contract net
that used actual real-world marginal cost calculations as the basis of automated

w xcontracting 22, 20, 21 . Its scaling up was verified on large-scale real-world data
from five independent dispatch centers.

2.1. Con¨ergence to the globally optimal task allocation

In most contract net implementations, each contract concerns only one task, i.e.,
w xone task is moved from one agent to another against a payment 38, 34, 9 . Such an

Ž .original O contract can be understood as a particular search operator in the
global hill-climbing contracting algorithm that is used for task reallocation. When
the contracting protocol is equipped with O-contracts only, it may get stuck in a
local optimum where no contract is individually rational but the task allocation is
not globally optimal.

To solve this problem, we recently introduced several new contract types: cluster
Ž . w xC contracts 22, 20 where a set of tasks is atomically contracted from one agent

Ž .to another against a payment, swap S contracts where a pair of agents swaps a
Ž . Ž .pair of tasks and potentially a sidepayment , and multiagent M contracts where

Žmore than two agents are involved in an atomic exchange of tasks and potentially
. w xsidepayments 25, 29, 24 . Each of the four contract types avoids some of the local

optima that the other three do not:

Ž .Proposition 1 From each of the four contract types O, C, S, and M , there exist
task allocations where no IR contract with the other three contract types is possible, but

w xan IR contract with the fourth type is 25 .

Unfortunately, even if the contracting protocol is equipped with all four of the
contract types, the globally optimal task allocation may not be reached via IR
contracts}even if there were an oracle for choosing the sequence of contracts:

Proposition 2 There are instances of the task allocation problem where no IR
sequence from the initial task allocation to the optimal one exists using O-, C-, S- and

w xM-contracts 25 .
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Clearly, no subset of the contract types suffices either. Another problem is that
without an oracle, contracting may get stuck in a local optimum even if some IR
sequence leads to the global optimum because the agents may choose some other
IR sequence.

To address this shortcoming, we defined a new contract type, OCSM-contract,
which combines the characteristics of O-, C-, S-, and M-contracts into one contract
type}where the ideas of the four earlier contract types can be applied simultane-

Ž .ously atomically :

Žw x. ² : < < < <Definition 2 25, 24 An OCSM-contract is defined by a pair T, r of A = A
matrices. An element T is the set of tasks that agent i gives to agent j, and ani, j
element r is the amount that i pays to j.i, j

So OCSM contracts allow moving from a task allocation to any other task
allocation with a single contract. It could be shown that an IR sequence always
exists from any task allocation to the optimal one, if the contracting protocol
incorporates OCSM-contracts. However, a stronger claim is now made. The follow-
ing proposition states that OCSM-contracts are sufficient for reaching the globally
optimal task allocation in a finite number of contracts. The result holds for any
sequence of IR OCSM-contracts, i.e., for any hill-climbing algorithm that uses
OCSM-contracts: an oracle is not needed for choosing the sequence. This means
that from the perspectives of social-welfare maximization and of individual ratio-
nality, agents can accept IR contracts as they are offered. They need not wait for
more profitable ones, and they need not worry that a current contract may make a
more profitable future contract unprofitable. Neither do they need to accept
contracts that are not IR in anticipation of future contracts that make the
combination beneficial. Furthermore, these hill-climbing algorithms do not need to
backtrack.

Proposition 3 Let A and T be finite. If the contracting protocol allows OCSM-con-
Ž .tracts, any hill-climbing algorithm i.e., any sequence of IR contracts finds the globally

Ž . w x 7optimal task allocation in a finite number of steps without backtracking 25, 24 .

ŽProof: With OCSM-contracts there are no local optima that are not global
.optima since a global optimum can be reached from any task allocation in a single

contract. This last contract will be IR, because moving to the optimum from some
suboptimal allocation improves welfare, and this gain can be arbitrarily divided
among the contract parties. Thus, the algorithm will not run out of IR contracts
before the optimum has been reached. With finite A and T , there are only a finite
number of task allocations. Since the algorithm hillclimbs, no task allocation will
be repeated. Therefore, the optimum is reached in a finite number of contracts.
I

Proposition 3 gives a powerful tool for problem instances where the number of
possible task allocations is relatively small. On the other hand, for large problem
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instances, the number of contracts made before the optimal task allocation is
reached may be impractically large}albeit finite. For example on a large-scale
real-world distributed vehicle routing problem instance, the TRACONET contract-
ing system did not reach even a local optimum even with just O-contracts}with

w xeach of the five agents executing on its own Unix machine 22 . Another problem is
Ž < < 2 < <.that although any OCSM-contract can be represented in O A q T space, the

identification of welfare increasing contracts may be complex}especially in a
Ž < < 2 <T < < < <T <.distributed setting}because there are A y A r2 possible OCSM-con-

tracts, and the evaluation of just one contract requires each contract party to
compute the cost of handling its current tasks and the tasks allocated to it via the
contract. With such large problem instances, one cannot expect to reach the global
optimum in practice. Instead, the contracting should occur as long as there is time,
and then have a solution ready: the anytime character of this contracting scheme

w xbecomes more important. See 3 for experimental results on the anytime charac-
teristics of the different contract types.

3. Technology 2: Leveled commitment contracts

In traditional multiagent negotiation protocols among self-interested agents, once
wa contract is made, it is binding, i.e., neither party can back out 18, 22, 25, 3, 8, 13,

x33, 6, 41 . Once an agent agrees to a contract, it has to follow through with it no
matter how future events unravel. Although a contract may be profitable to an
agent when viewed ex ante, it need not be profitable when viewed after some
future events have occurred, i.e., ex post. For example, in business-to-business
electronic commerce when a company has contracted to manufacture a component
for another company, the former company may get a more profitable offer from
another party, and may want to undo the earlier contract so as to be able to handle
the latter. Similarly, a contract may have too low of an expected payoff ex ante, but
in some realizations of the future events, the same contract may be desirable when
viewed ex post. Normal full commitment contracts are unable to efficiently take
advantage of the possibilities that such}probabilistically known}future events
provide.

On the other hand, many multiagent systems consisting of cooperative agents
incorporate some form of decommitment possibility in order to allow the agents to
accommodate new events. For example, in the original contract net protocol, the
agent that had contracted out a task could send a termination message to cancel
the contract even when the contractee had already partially fulfilled the contract
w x38 . This was possible because the agents were not self-interested: the contractee
did not mind losing part of its effort without a monetary compensation. Similarly,
the role of decommitment possibilities among cooperative agents has been studied

w xin meeting scheduling using a contracting approach 35 . Again, the agents did not
require a monetary compensation for their efforts: an agent agreed to cancel a
contract merely based on the fact that some other agent wanted to decommit. In
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such   multiagent systems consisting of cooperative agents, each agent can be
trusted to use such an externally imposed strategy even though using that strategy
might not be in the agent’s self-interest.

Some research in game theory has focused on utilizing the potential provided by
probabilistically known future events by contingency contracts among self-interested
agents. The obligations of the contract are made contingent on future events.
There are games in which this method provides an expected payoff increase to both

w xparties of the contract compared to any full commitment contract 17 . Also, some
deals are enabled by contingency contracts in the sense that there is no full
commitment contract that both agents prefer over their fallback positions, but
there is a contingency contract that each agent prefers over its fallback.

There are at least three problems regarding the use of contingency contracts in
automated negotiation among self-interested agents. First, the agents might not
know the entire space of possible future events. Even if the real-world party that
the agent represents knows the possible events, programming that information into
the agent can be prohibitively complex and error-prone. Second, contingency
contracts get cumbersome as the number of relevant events to monitor from the

Žfuture increases. In the limit, all domain events changes in the domain problem,
.e.g., new tasks arriving or resources breaking down and all negotiation

events}contracts from other negotiations}can affect the value of the obligations
of the original contract, and should therefore be conditioned on. Furthermore,
these future events might not affect the value of the original contract indepen-
dently: the value of the original contract may depend on combinations of future

w xevents 29, 22, 18 . Thus, there is a potential combinatorial explosion of events to
be conditioned on. Third, verification of the unraveling of the events may not be
viable. Sometimes an event is only observable by some of the agents. The observing
agents might lie to the nonobserving agents about the event in case the event is
associated with a disadvantageous contingency to the observing agents. Thus, to be
viable, contingency contracts would require an event verification mechanism that is
not manipulable and not prohibitively complicated or costly.

We devised le¨eled commitment contracts as another instrument for taking
wadvantage of the possibilities provided by probabilistically known future events 30,

x24 . Instead of conditioning the contract on future events, a mechanism is built into
the contract that allows unilateral decommitting. This is achieved by specifying in
the contract decommitment penalties, one for each agent. If an agent wants to
decommit}i.e., to be freed from the obligations of the contract}it can do so
simply by paying the decommitment penalty to the other party. Such contracts are
called leveled commitment contracts because the decommitment penalties can be
used to choose a level of commitment. The method requires no explicit condition-
ing on future events: each agent can do its own conditioning dynamically. There-
fore, no event verification mechanism is required either.

While the leveled commitment contracting protocol has intuitive appeal and
w xseveral practical advantages 24 , it is not obvious that it is beneficial. First, the

breacher’s gain may be smaller than the breach victim’s loss. Second, agents might
decommit insincerely. A truthful agent will decommit whenever its best outside
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offer plus the decommitting penalty is better than the current contract. However, a
rational self-interested agent will be more reluctant in decommitting. It will take
into account the chance that the other party might decommit, in which case the
former agent gets freed from the contract obligations, does not have to pay a
decommitting penalty, and will collect a decommitting penalty from the other
party. Based on the same reasoning, the other contract party will be reluctant to
decommit as well. Due to such reluctant decommitting, contracts may end up being
kept even though breaking them would be best from the social welfare perspective.

w xWe analyzed this issue formally 30, 24 . A Nash equilibrium analysis was carried
Žout where both contract parties’ decommitting strategies characterized by how

.good an agent’s outside offer has to be to induce the agent to decommit were best
responses to each other. Both agents were decommitting insincerely, but neither
was motivated to change the extent of his lie given that the other did not change. It
was shown that even under such insincere decommitting, the leveled commitment
protocol outperforms the full commitment protocol. First, it enables contracts by

Žmaking them IR in settings where no full commitment contract is IR the reverse
cannot happen because leveled commitment contracts can emulate full commit-

.ment by setting the penalties high enough . Second, leveled commitment contracts
increase both contract parties’ expected payoffs over any full commitment con-
tracts.

w xRecently we developed an algorithm for determining the optimal contracts 32 .
The algorithm takes as input a piecewise linear probability distribution of the
contractor’s best future outside offer and a piecewise linear probability distribution
of the contractee’s best future outside offer. It outputs the range of optimal
individually rational contract prices and the optimal penalties as a function of the
contract price, i.e., the penalties that maximize the sum of the agents’ expected
payoffs. The optimization takes into account that rational agents decommit strate-
gically in Nash equilibrium. The contract optimizer also solves for the Nash
equilibria for any given contract, i.e., it determines how good each agent’s outside
offer has to be to trigger that agent to decommit. From this, the optimizer
determines the decommitting probabilities. Using the algorithms, we provide a free

Žcontract optimizing service on the web http:rrecommerce.cs.wustl.edurcontracts.
.html as part of eMediator, our next generation electronic commerce server. We

invite the reader to try it.
Making multiple contracts sequentially introduces additional complications be-

cause a decommitment may motivate the victims to decommit from some of their
other contracts. We have studied methods of increasing the decommitment penal-

w xties over time so as to reduce such cascade effects to an efficient level 1 . One of
the key results is that infinite decommit-recommit loops cannot be avoided via any
schedule of increasing the penalties if the timing is done locally from the time the

Žcontract was made. Instead, an element of global time e.g., from the beginning of
.the entire negotiation has to be used to avoid such loops. Finally, we have

experimented with leveled commitment among agents that do lookahead into
w xfuture contracts vs. myopic agents that do not 2 .
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4. Technology 3: Anytime coalition structure generation with worst
case guarantees

Coalition formation is another key issue in multiagent systems. By forming coali-
tions, i.e., coordinating their activities within each coalition, the agents can often
reach considerable cost savings. In electronic commerce, coalition formation oc-
curs, for example, in buyers pooling together to coordinate larger orders to obtain

Ž .quantity discounts such as at www.accompany.com , in sellers potentially maintain-
ing cartel pricing, and in producers forming dynamic supply chains. As is often

w xdone 11, 43, 37, 12 , this section discusses coalition formation in characteristic
function games. In such games, each coalition S is associated with its value ¨ .S
Coalition formation includes three activities:

1. Coalition structure generation: formation of coalitions by the agents such that
agents within each coalition coordinate their activities, but agents do not
coordinate between coalitions. Precisely this means partitioning the set of
agents into exhaustive and disjoint coalitions. This partition is called a coalition

Ž .structure CS . For example, in a game with three agents, there are seven
� 4 � 4 � 4 � 4 � 4 � 4 � 4possible coalitions: 1 , 2 , 3 , 1, 2 , 2, 3 , 3, 1 , 1, 2, 3 and five possible coali-

�� 4 � 4 � 44 �� 4 � 44 �� 4 � 44 �� 4 � 44 �� 44tion structures: 1 , 2 , 3 , 1 , 2, 3 , 2 , 1, 3 , 3 , 1, 2 , 1, 2, 3 .
2. Sol̈ ing the optimization problem of each coalition. This means pooling the tasks

and resources of the agents in the coalition, and solving this joint problem. The
coalition’s objective is to maximize monetary value: money received from

Žoutside the system for accomplishing tasks minus the cost of using resources. In
some problems, not all tasks have to be handled. This can be incorporated by

.associating a cost with each omitted task.
3. Dï iding the ¨alue of the generated solution among agents. This value may be

negative because agents incur costs for using their resources.

These activities may be interleaved, and they are not independent. For example,
the coalition that an agent wants to join depends on the portion of the value that
the agent would be allocated in each potential coalition.

4.1. Coalition structure generation

Classically, coalition formation research has mostly focused on the payoff division
activity. Coalition structure generation and optimization within a coalition have not

w xpreviously received as much attention. Research has focused 11, 43 on superaddi-
tive games, i.e., games where ¨ G ¨ q ¨ for all disjoint coalitions S, T : A. InS j T S T
such games, coalition structure generation is trivial because the agents are best off
by forming the grand coalition where all agents operate together.

Superadditivity means that any pair of coalitions is best off by merging into one.
Classically it is argued that almost all games are superadditive because, at worst,
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the agents in a composite coalition can use solutions that they had when they were
in separate coalitions.

However, many games are not superadditive because there is some cost to the
coalition formation process itself. For example, there might be coordination
overhead like communication costs, or possible antitrust penalties. Similarly, solv-
ing the optimization problem of a composite coalition may be more complex than
solving the optimization problems of component coalitions. Therefore, under costly
computation, component coalitions may be better off by not forming the composite

w xcoalition 31 . Also, if time is limited, the agents may not have time to carry out the
communications and computations required to coordinate effectively within a
composite coalition, so component coalitions may be more advantageous.

In games that are not superadditive, some coalitions are best off merging while
others are not. In such settings, the social welfare maximizing coalition structure
varies, and coalition structure generation becomes highly nontrivial. The goal is to
maximize the social welfare of the agents A by finding a coalition structure

CSU s arg max V CS ,Ž .
CSg partitions of A

where

V CS s ¨ .Ž . Ý S
SgCS

Ž Ž < < < A < r2 .The problem is that the number of coalition structures is large v A , see
w x.27 , so not all coalition structures can be enumerated unless the number of agents
is extremely small}in practice about 15 or fewer. Instead, one would like to search

Ž .through a subset N ; partitions of A of coalition structures, and pick the best
coalition structure seen so far:

CSU s arg max V CS .Ž .N
CSgN

Taking an outsider’s view, the coalition structure generation process}e.g., a
negotiation}can be viewed as search in a coalition structure graph, Figure 1. Now,
how should such a graph be searched if there are too many nodes to search it
completely?

One desideratum is to be able to guarantee that the best coalition structure
found is within a worst case bound from optimal, i.e., that

V CSUŽ .
� 4k s min k where k G UV CSŽ .N

is finite, and as small as possible. Let us define n to be the smallest size of Nmin
that allows us to establish such a bound k.

Ž .We assume that each coalition’s value is nonnegative ¨ G 0 . However, if someS
coalitions’ values are negative, but each coalition’s value is bounded from below
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Figure 1. Coalition structure graph for a 4-agent game. The nodes represent coalition structures. The
arcs represent mergers of two coalition when followed downward, and splits of a coalition into two
coalitions when followed upward.

Ž .i.e., not infinitely negative , one can normalize the coalition values by subtracting
at least min ¨ from all coalition values ¨ . This rescales the coalition values soS : A S S
that ¨ G 0 for all coalitions S. This rescaled game is strategically equivalent to theS

w xoriginal game 11 .

4.2. Minimal search to establish a bound

The following proposition establishes the minimal amount of search that is re-
quired to guarantee a solution that is within a bound from optimum:

Proposition 4 To bound k, it suffices to search the lowest two le¨els of the coalition
Ž . < <structure graph Figure 1 . With this search, the bound k s A , this bound is tight, and

< A <y1 Žthe number of nodes searched is n s 2 . No other search algorithm than the one
.that searches the bottom two le¨els can establish a bound k while searching only

< A <y1 w xn s 2 nodes or fewer 27 .

Interpreted positively, this means that}somewhat unintuitively}a worst case
bound from optimum can be guaranteed without seeing all CSs. Moreover, as the
number of agents grows, the fraction of coalition structures needed to be searched

< < < <approaches zero, i.e., n rpartitions of A ª 0 as A ª `. This is because themin
algorithm needs to see only 2 < A <y1 coalition structures while the total number of

Ž < < < A < r2 .coalition structures is v A .
Interpreted negatively, the proposition shows that exponentially many coalition

Ž .8structures in the number of agents have to be searched before a bound can be
established. This may be prohibitively complex if the number of agents is
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large}albeit significantly better than attempting to enumerate all coalition struc-
tures. Viewed as a general impossibility result, the proposition states that no
algorithm for coalition structure generation can establish a bound in general
characteristic function games without trying at least 2 < A <y1 coalition structures.9

This sheds light on earlier algorithms. Specifically, all prior coalition structure
w xgeneration algorithms for general characteristic function games 37, 12 }which we

know of}fail to establish such a bound. In other words, the coalition structure
that they find may be arbitrarily far from optimal.

4.3. Lowering the bound ¨ia further search

The following algorithm will establish a bound in the minimal amount of search,
and then rapidly reduce the bound further if there is time for more search. If the
domain happens to be superadditive, the algorithm finds the optimal coalition
structure immediately.

w xAlgorithm COALITION-STRUCTURE-SEARCH-1 27

1. Search the bottom two levels of the coalition structure graph.
2. Continue with a breadth-first search from the top of the graph as long as there

is time left, or until the entire graph has been searched.
3. Return the coalition structure that has the highest welfare among those seen so

far.

As was discussed earlier, before 2 < A <y1 nodes have been searched, no bound can
< A <y1 < <be established, and at n s 2 the bound k s A . By seeing just one additional

Ž < < .node, i.e., the top node, the bound drops in half k s A r2 . Then, to drop k to
< <about A r3, two more levels need to be searched. Roughly speaking, the divisor in

Žthe bound increases by one every time two more levels are searched the exact
w x. Ž .drop of the bound is presented in 27 . So, the anytime phase step 2 of

COALITION-STRUCTURE-SEARCH-1 has the desirable feature that the bound
drops rapidly early on, and there are overall diminishing returns to further search,
Figure 2.

4.4. Comparison to other algorithms

All previous coalition structure generation algorithms for general characteristic
w xfunction games 37, 12 }that we know of}fail to establish any worst case bound

because they search fewer than 2 ay1 coalition structures. Therefore, we compared
COALITION-STRUCTURE-SEARCH-1 to two other obvious candidates:

v Merging algorithm, i.e., breadth first search from the top of the coalition
structure graph. This algorithm cannot establish any bound before it has searched

w xthe entire graph 27 .
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Figure 2. Ratio bound k as a function of search size in a 10-agent game.

v Splitting algorithm, i.e., breadth first search from the bottom of the graph. This
is identical to COALITION-STRUCTURE-SEARCH-1 up to the point where
2 ay1 nodes have been searched, and a bound k s a has been established. After
that, the splitting algorithm reduces the worst case bound much slower than

w xCOALITION-STRUCTURE-SEARCH-1 27 .

While that comparison was based on worst case performance, a recent paper
compares the average case performance of these three algorithms experimentally

w xusing four different ways of choosing the coalition structure values 15 . All of the
algorithms performed orders of magnitude better than their worst case. While each
of the algorithms dominated the others in different settings, COALITION-
STRUCTURE-SEARCH-1 performed the most consistently across settings, and its
performance was close to that of the best out of the three algorithms in each of the
four settings.

4.5. Variants of the coalition structure generation problem

One would like to construct an anytime algorithm that establishes a lower k for
any amount of search n, compared to any other anytime algorithm. However, such
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an algorithm might not exist. It is conceivable that the search which establishes the
X Ž X .minimal k while searching n nodes n ) n does not include all nodes of the

search that establishes the minimal k while searching n nodes. This hypothesis is
supported by the fact that the curves in Figure 2 cross in the end. However, this is
not conclusive because COALITION-STRUCTURE-SEARCH-1 might not be the
optimal anytime algorithm, and because the bad cases for the splitting algorithm
might not be the worst cases.

If it turns out that no anytime algorithm is best for all n, one could use
Ž .information e.g., exact, probabilistic, or bounds about the termination time to

construct a design-to-time algorithm that establishes the lowest possible k for the
specified amount of search.

So far we have discussed algorithms that have an off-line search control policy,
i.e., the nodes to be searched have to be selected without using information
accrued from the search so far. With on-line search control, one could perhaps
establish a lower k with less search, because the search can be redirected based on
the values observed in the nodes so far. With on-line search control, it makes a

Ž .difference whether the search observes only values of coalition structures, V CS ,
or values of individual coalitions, ¨ , in those structures. The latter gives moreS
information, and in such settings, algorithms that capitalize on that information

w xcan be used 27, 26 . For example, if a value, ¨ , is known for every coalition S : A,S
Ž < A <.then the optimal coalition structure can be computed in O 3 time using dynamic

w xprogramming 27 .
ŽNone of these variants anytime vs. design-to-time, and off-line vs. on-line search

.control would affect the result that searching the bottom two levels of the
coalition structure graph is the unique minimal way to establish a worst case
bound, and that the bound is tight. However, the results on searching further might
vary in these different settings.

5. Technology 4: Trading off computation cost against optimization quality within
each coalition

Under unlimited and costless computation, each coalition would solve its optimiza-
tion problem exactly, which would define the value, ¨ , of that coalition. However,S
in many practical domains it is too complex from a combinatorial viewpoint to
solve the problem exactly. Instead, only an approximate solution can be found. In
such settings, self-interested agents would want to strike the optimal tradeoff
between solution quality and the cost of the associated computation.

w xWe address this issue 31 by adopting a specific model of bounded rationality
where each agent has to pay for the computational resources that it uses for
deliberation. A fixed computation cost c G 0 per computation time unit iscom p

Ž .assumed. The domain cost associated with coalition S is denoted by c r G 0,S S
Ž .i.e., it depends on decreases with the allocated computation resources r , FigureS

3 left. For example, in a vehicle routing problem, the domain cost is the sum of the
10 Ž .lengths of the routes of the coalition’s vehicles. The functions c r can beS S

w xviewed as performance profiles 4, 42 of the problem solving algorithm. They are
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Figure 3. Example experiment from a vehicle routing domain with agents 1, 2, and 3. Left: perfor-
mance profiles, i.e., solution cost as a function of allocated computation resources. The curves become
flat when the algorithm has reached a local optimum. Right: bounded-rational coalition value as a
function of computation unit cost. The value of each coalition is negative because the cost is positive.
The curves become flat at a computation unit cost c that is so high that it is not worthwhile to takec o m p

Žany iterative refinement steps: the initial solutions are used their computation requirements are
.assumed negligible .

used to decide how much time to allocate to each computation. With this model of
bounded rationality, the value of a coalition with bounded-rational agents can be

Ždefined. Each coalition minimizes the sum of solution cost i.e., domain cost, which
. Ždecreases as more computation is allocated and computation cost which increases

.as more computation is allocated :

w x¨ c s y min c r q c ? r . 1Ž . Ž .S com p S S com p S
rS

This coalition value decreases as the computation time unit cost c increases,com p
Figure 3 right. Intuitively, as the unit cost of computation increases, agents need to
pay more for the computation or they have to use less computation and acquire
worse solutions accordingly. Our model also incorporates a second form of bounded
rationality: the base algorithm may be incomplete, i.e., it might never find the
optimal solution. If the base algorithm is complete, the bounded-rational value of a

Ž Ž . R.coalition when c s 0 equals the rational value ¨ 0 s ¨ . In all, thecom p S S
bounded-rational value of a coalition is determined by three factors:

v ŽThe domain problem: tasks and resources of the agents e.g., trucks and delivery
.orders in a vehicle routing problem . Among rational agents this is the only

determining factor.
v The execution architecture on which the problem solving algorithm is run.

Specifically, the architecture determines the unit cost of computation, c .com p
v The problem sol̈ ing algorithm. Once the coalition formation game begins, the

algorithm’s performance profiles are considered fixed. This model incorporates
the possibility that agents design different algorithms for different possible
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allocations of computation resources. We make no assumptions as to how
effectively the algorithm uses the execution architecture. This is realistic because
in practice it is often hard to construct algorithms that use the architecture
optimally. For example, Russell and Subramanian have devised algorithms that
are optimal for the architecture in simple settings, but in more complex settings

w xthey had to resort to an asymptotic criterion of optimality 19 .

From our model of bounded rationality, the social welfare maximizing coalition
structure can be determined. Similarly, the stability of the coalition structure can
be determined: can the payoff be divided so that no group of agents gets higher
payoff by moving out of the coalition structure by forming their own coalition? To
avoid studying coalition games on a case by case basis, we have theoretically shown
classes of performance profiles for which the welfare maximizing coalition struc-

w xture and its stability can be determined directly without using Eq. 1 and enumer-
w xating all possible coalition structures 31 .

We have also experimented with our model of bounded rationality in a real-world
vehicle routing problem. The main findings were the following. First, computa-
tional cost often does away with superadditivity, so it is no longer the case that
every pair of coalitions is best off merging}which would imply optimality of the
grand coalition. This is because the optimization problem of the composite coali-
tion is significantly harder than the optimization problems of the component
coalitions. Second, stability of the coalition structure is very sensitive to the
problem instance, and varies in practice. Third, the coalition structure that our
normative theory of bounded rational agents prescribes is closer to what human

Žagents would choose based on domain specific considerations such as adjacency of
.the dispatch centers and combinability of their loads than is the classical norma-

w xtive prescription for agents whose rationality is unlimited 31 .
This work on coalition formation under costly optimization within each coalition

can be tied together with the nonexhaustive search for a welfare maximizing
Ž .coalition structure Section 4 . The coalition structure generation algorithm can be

used to search for a coalition structure, and only afterwards would the coalitions in
the chosen coalition structure actually attack their optimization problems. If the
performance profiles include uncertainty, this separation of coalition structure
generation and optimization does not work, e.g., because an agent may want to
redecide its membership if its original coalition receives a worse optimization
solution than expected. Recently, we have also studied coalition formation in

w xconjunction with belief revision among bounded rational agents 40 .

6. Technology 5: Distributing search among insincere agents

This section discusses a method of distributing any given search algorithm among
self-interested agents. Distribution of search may be desirable because the search
can be done more efficiently in parallel, and the agents will share the burden of
computation. The method assumes that each agent has the information required to
search the part of the space allocated to it.
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As an example, this method can be used to distribute the algorithm COALI-
TION-STRUCTURE-SEARCH-1. Self-interested agents prefer greater personal
payoffs, so they will search for coalition structures that maximize personal payoffs,
ignoring the ratio bound, k. The following algorithm can be used to motivate
self-interested agents to exactly follow the socially desirable search. The random-
izations in that algorithm can be done without a trusted third party by using a

w xdistributed nonmanipulable protocol for randomly permuting the agents 43 .

Algorithm Distributed search for self-interested agents

1. Deciding what part of the coalition structure graph to search. This can be
decided in advance, or dictated by a central authority or randomly chosen agent,
or be decided using some form of negotiation.

2. Partitioning the search space among agents. Each agent is assigned some part
of the coalition structure graph to search. The enforcement mechanism in step 4
will motivate the agents to search exactly what they are assigned, no matter how
unfairly the assignment is done. One way of achieving ex ante fairness is to
randomly allocate the set search space portions to the agents. In this way, each
agent searches equally on an expected value basis, although ex post, some may
search more than others. Another option is to distribute the space equally
among agents, or have some agents pay others to compensate for unequal
amounts of search.

3. Actual search. Each agent searches its part of the search space, and tells the
Ž .others which CS maximized V CS in its search space.

4. Enforcement. Two agents, i and j, will be selected at random. Agent i will
re-search the search space of j to verify that j has performed its search. Agent j

Ž .gets caught of mis-searching or misrepresenting if i finds a better CS in j’s
Žspace than j reported or i sees that the CS that j reported does not belong to

.j’s space at all . If j gets caught, it has to pay a penalty P. To motivate i to
conduct this additional search, we make i the claimant of P. There is no pure

Žstrategy Nash equilibrium in this protocol. If i searches and the penalty is high
enough, then j is motivated to search sincerely. But then i is not motivated to

.search since it cannot receive P. Instead, there may be a mixed strategy
Bayes]Nash equilibrium where i and j search truthfully with some probabilities.
By increasing P, the probability that j searches can be made close to one. The
probability that i searches goes close to zero, which minimizes enforcement
overhead.

5. Additional search. The previous steps can be repeated if more time to search
remains. For example, the agents could first do step 1 of COALITION-STRUC-
TURE-SEARCH-1. Then, they could repeatedly search more and more as time
allows.

6. Payoff division. Many alternative methods for payoff division among agents
Ž .could be used here. The only concern is that the division of V CS may affect

what CS an agent wants to report as a result of its search, since different CSs
may give the agent different payoffs}depending on the payoff division scheme.
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Ž .However, by making P high enough compared to the V CS values, this
consideration can be made negligible compared to the risk of getting caught.

The method above is applicable in settings without a trusted third party. If a
trusted third party exists, that party can be the one that conducts the re-search.
This has the advantage that the re-searching party is not attempting to avoid
search, but will conduct the re-search sincerely independent of the others’ strate-
gies. In such a mechanism, every agent’s best response is to search sincerely if P is
high enough.

7. Technology 6: Unenforced contract execution

After negotiation, the deals need to be executed. In conventional commerce, deals
are usually enforced by law. For example, if a car dealership does not deliver the
automobile after the customer has paid for it, the customer can resort to litigation.
However, such enforced protocols are problematic in electronic commerce, e.g.,
over the Internet. First, adequate laws for electronic commerce may be lacking, or

Ž .the transacting agents human or computational may be governed by different
laws, e.g., they may be sited in different countries. Also, the laws might not be
strictly enforced, or enforcing them}e.g., by litigation}might be impractically
expensive. We would like the agents’ electronic commerce transactions to work
properly independent of such fluctuations in enforcement. Secondly, an electronic
commerce party may vanish at any point in time, e.g., by logging out. Thus, the laws
cannot be enforced unless the vanished agent represented some real-world party
and the connection between the agent and the accountable real-world party can be
traced.

Current electronic commerce technology is based on such enforced transactions.
The problems of traceability and trust are being tackled, for example, by establish-
ing trusted third parties like banks, credit card companies, and escrow intermedi-
aries for electronic commerce, as well as by attempting to build cybercommunities
of trust. The developing infrastructure for electronic commerce among computa-
tional agents is also following the approach of enforced traceable transactions. For
example, Telescript technology strives to strictly and accountably tie each computa-
tional agent to the real-world party that it represents.

Instead, we present a method that allows transactions to be carried out without
enforcement. This enables transactions in settings where the parties cannot iden-
tify each other, or where litigation is not viable. From the perspective of computa-
tional agents, it allows the agents to be more autonomous because they do not have
to be strictly tied to the real-world parties that they represent. In cases where this
type of unenforced exchange is possible, it is preferable to the strictly enforced

Žmode of exchange due to savings in enforcement costs e.g., litigation costs, or
.operation costs of trusted third party intermediaries and insensitivity to enforce-

ment uncertainty.
The fulfillment of a mutual contract can be viewed as one agent delivering and

the other agent paying, in money or some commodity. We propose a method for
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carrying out such an exchange without enforcement. The exchange is managed so
that for both agents}supplier and demander}at any point in the exchange, the
future gains from carrying out the rest of the exchange are larger than the gains
from terminating the exchange prematurely by vanishing. For example, vanishing
may be beneficial to a demander agent if the supplier agent has delivered much
more than what the demander has yet paid for.

By intelligently splitting the exchange into smaller chunks, the agents can avoid
situations where at least one of them is motivated to vanish. In other words, each
agent only delivers a portion of its deliverables at a time. At the next step, the
agents deliver some more, etc. The method is most suitable for settings where
dividing the goods into chunks is relatively inexpensive, such as is often the case for
example with information goods and computational services. We will call a se-
quence of deliveries and payments safe if neither agent is motivated to vanish at
any point in the exchange. Specifically, the exchange is safe if it can be carried to
completion according to a game theoretic solution concept called subgame perfect
Nash equilibrium.

Some chunkings allow safe exchange while others do not. We devised algorithms
w xthat find a safe chunking if one exists for any given exchange 24, 28 . The

sequence of delivering the chunks matters as well: some sequences are safe while
others are not. The obvious candidate algorithms for sequencing fail to guarantee
safety of the sequence. We devised a nontrivial sequencing algorithm that provably
finds a safe sequence if one exists, and always terminates in quadratic time in the
number of chunks. The algorithm works for settings where agents value each chunk
independently. If the chunks are interdependent in value, the sequencing cannot
be done in polynomial time in general, but dynamic programming can be used to
carry out the sequencing significantly faster than by trying all sequences.

8. Conclusions

Multiagent systems consisting of self-interested agents are becoming ubiquitous;
automated negotiation and coalition formation are playing an increasingly impor-
tant role in electronic commerce. Such agents cannot be coordinated by externally
imposing the agent’s strategies. Instead the interaction protocols have to be
designed so that each agent is motivated to follow the strategies that the protocol
designer wants it to follow.

This paper reviewed six component technologies that we have developed for
making such interactions less manipulable and more efficient in terms of the
computational processes and the outcomes:

1. Marginal cost based contracting and OCSM-contracts. Marginal cost based
contracting is an anytime reallocation scheme where every agent’s utility im-
proves monotonically over time, and agents and goodsrtasks can arrive dynami-
cally. The combinatorial contract types avoid local optima in the search for
desirable allocations.
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2. Leveled commitment contracts. Backtracking is a well-known method for avoid-
ing local optima and accommodating new events in single agent settings. In
multiagent systems consisting of self-interested agents, backtracking is difficult
to implement. Leveled commitment contracts are a backtracking scheme for
such negotiation settings, with provably desirable properties despite strategic
breaching.

3. Anytime coalition structure generation with worst case guarantees. The scheme
finds coalition structures that are provably within a bound from optimum in the
minimal search time, and then improves the bound further via additional search.
The intuitive approach of starting coalition negotiations from all agents operat-
ing individually, and then negotiating mergers, is highly inefficient from a worst
case perspective. Instead, the negotiation should start from all agents in a grand
coalition, and then trying all splits of the grand coalition into exactly two
coalitions. After that, it is desirable to move to the stage where agents operate
separately, and begin to negotiate mergers.

4. Trading off computation cost against optimization quality within each coalition.
This technique uses a quantitative model of bounded rationality to normatively
prescribe which coalitions should form, and how the value should be divided
among the agents. In general, as computerized agents become more common in
electronic commerce, theories of how to optimally use each agent’s limited
computational resources will become crucial.

5. Distributing search among insincere agents. This is a general method for
implementing parallelization among self-interested parties that otherwise might
avoid some of the search effort that they are assigned. This technique could be
used for solving key combinatorial problems in electronic commerce, such as
coalition structure generation, and winner determination in combinatorial auc-

w xtions 26 .
6. Unenforced contract execution. By splitting an exchange into chunks and by

appropriately sequencing the chunks, divisible goods can be exchanged safely
without enforcement under certain conditions. This disintermediates electronic
commerce because the exchange will not rely on a third party escrow company.

In microeconomics and game theory, substantial knowledge exists of impossibil-
ity results and of constructive possibility demonstrations of interaction protocols

w xand strategies for self-interested agents 16, 14 . However, the computational
limitations of the agents deserve more attention. It is clear that such limitations
have fundamental impact on what strategies agents want to use, and therefore also

Ž .on what protocols are desirable, and what is im possible. This is one area where
microeconomics and computer science fruitfully blend.

In the future, systems will increasingly be designed, built, and operated in a
distributed manner. A larger number of systems will be used by multiple real-world
parties. The problem of coordinating these parties and avoiding manipulation
cannot be tackled by technological or economic methods alone. Instead, the
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successful solutions are likely to emerge from a deep understanding and careful
hybridization of both.
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Notes

1. Here a protocol does not mean a low level communication protocol, but a negotiation protocol that
Ž .determines the possible valid, legal actions that agents can take at different points of the

interaction. The sealed-bid first-price auction is an example protocol, where each bidder is free to
submit one bid for the item, which is awarded to the highest bidder at the price of his bid.

2. In settings such as securities reallocation where the items have positive value to each agent}unlike
in task reallocation}the cost functions take on negative values.

w x3. This definition generalizes what are called ‘‘Task Oriented Domains’’ 18 . Specifically we allow
Ž .asymmetric cost functions among agents e.g., due to different resources . We also allow for the

possibility that some agent may be unable to handle some sets of tasks. This is represented by a cost
of infinity.

4. Although a static version of the problem is discussed, the contracting scheme works even if tasks
Ž .and resources resources affect the cost functions are added and removed dynamically.

w x5. This differs from payoff maximizing agents of game theory 16 . Such an agent may reject an IR
contract, e.g., if it believes that it could be better off by waiting for a more beneficial contract that

Ž .cannot be accepted if the former contract is accepted e.g., due to limited resources . Similarly, such
an agent may accept a non-IR contract in anticipation of a synergic later contract that will make the
combination beneficial. Our approach is more practical because each contract can be made by

Ž .evaluating just a single contract each contract party evaluating one new task set instead of doing
exponential lookahead in the tree of possible future contracts. Our deviation from game theory
comes at the cost of not being able to normatively guarantee that a self-interested agent is best off

Ž .by following the strategy of accepting any IR contracts that we propose.
6. Sometimes computing the value of the cost function for even a single task set is hard. For example,

if the tasks are cities for a traveling salesman to visit, the computation is NN PP-complete. Therefore,
the marginal costs cannot actually be computed by subtracting two cost function values from each

w xother in practice. Instead they have to be approximated 22, 24, 29 .
Ž .7. If the cost functions, c ? , have certain types of special structure, it can be guaranteed that thei

w xglobal optimum is reached even with less powerful contract types 25 .
8. However, this search is linear in the number of possible coalitions.
9. In restricted domains where the ¨ values have special structure, it may be possible to establish aS

bound k with less search. Shehory and Kraus have analyzed coalition structure generation in one
w xsuch setting 36 . However, the bound that they compute is not a bound from optimum, but from a
Ž .benchmark best that is achievable given a preset limit on the size of coalitions , which itself may be

arbitrarily far from optimum.
10. In games where the agents receive revenue from outside}e.g., for handling tasks}this revenue

Ž .can be incorporated into c r by subtracting the coalition members’ revenues from the coalition’sS S
domain cost.
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