
In Proceedings of the Third International Conference on Multi-Agent
Systems, 112--119, IEEE Press, 1998.

Interaction Protocols in Agentis

Mark d’Inverno
Cavendish School of Computer Science

Westminster University

London W1M 8JS, UK

dinverm@westminster.ac.uk

David Kinny
Department of Computer Science

University of Melbourne

Parkville 3052, Australia

dnk@cs.mu.oz.au

Michael Luck
Department of Computer Science

University of Warwick

CV4 7AL, UK

mikeluck@dcs.warwick.ac.uk

Abstract

Agentis is a framework for building interactive multi-
agent applications which is based upon a model of agent
interaction whose key elements are services and tasks.
Central to the operation of the system is the set of proto-
cols that permit reliable, concurrent request and provision
of services and tasks from and to agents, using an underly-
ing asynchronous point-to-point messaging infrastructure.
In this paper we focus on this aspect of the Agentis system
and provide a detailed description of these protocols, to-
gether with a formal specification in Z. The specification can
be seen as part of a more complete formal specification of
the entire system, which provides an integrated and coherent
way of describing the system at different levels. In so spec-
ifying the Agentis protocols, however, we also provide some
general guidelines which may be applied to the specification
of other protocols for agent interaction.

1 Introduction

The Agentis system is a framework for building interac-
tive application systems which is an elaboration and imple-
mentation of an approach to multi-agent system construc-
tion described previously [14, 13]. It is based upon an
agent interaction model which incorporates specific notions
of services and tasks, and employs a set of protocols to en-
sure reliable, concurrent request and provision of services
and tasks from and to agents. These protocols are layered
upon an underlying asynchronous point-to-point messaging
infrastructure: the standard one provided by dMARS [10, 3].

Services are units of work performed by Agentis agents.
The usual flow of control is that a human user of the sys-
tem requests one or more services, via a user interface pro-
cess, from an agent which is dedicated to serving that user.
Agents may also request services from and provide services
to other agents, or from other interface processes such as
database servers. Tasks are smaller units of work whose per-
formance is part of the service contract that comes into exis-
tence when an agent accepts a service request. For example,

to enable an agent to successfully complete a service, a user
may be obliged to perform one or more alternative selection
or information provision tasks.

In every Agentis system, a set of standard agents provide
predefined services for process control and monitoring, user
login and session management, and event logging. There
are also user-configurable agents that provide user-defined
services (specified in a high-level, dMARS-like, graphical
process description language). Usually, a system also con-
tains non-agent interface processes, such as user, database,
and internet interfaces which can request services from
or provide services to Agentis agents. The framework is
designed to be flexible and scalable, and to decouple the
specification of custom, application-specific behaviour from
standard functionality. This makes it easier to design, con-
figure, modify and extend application systems whose key
characteristic is that their behaviour may be specified as sets
of interactive event-driven or goal-driven processes.

The protocol set provides the ability to request, accept
or decline services and tasks, to return execution status
information and output values progressively as they become
available, and to cancel, suspend and resume services and
tasks prior to their completion. In addition, it is designed
to guarantee that protocol message collisions, e.g. service
cancellation with completion, are benign, that deadlocks do
not occur, and that other constraints are enforced, such as
the requirement that a task request only occurs in the context
of a service provision. It also allows the sending of simple
notices or queries, and includes a registration facility which
provides service descriptions, access control, and the ability
for a service provider to inform a requestor about changes in
service availability.

The motivation for and properties of the Agentis interac-
tion model, and the complete framework itself, are described
in detail elsewhere [12, 11] and are not the main focus of this
paper, which is instead concerned with describing the pro-
tocols it uses. Our aims in this paper are threefold. Firstly,
we aim to provide a definitive description of the inter-agent
communication protocols that underlie Agentis and its op-
eration. Secondly, we aim to provide a formal specification
of these protocols as part of a more complete and coherent

1

formal specification of the entire system. Typically, specifi-
cation of protocols is a distinct and separate part of system
specification, clear divided from other aspects of system
functionality. In the specification provided in this paper,
these aspects can be integrated. Thirdly, in undertaking the
previous aims, we draw out guidelines that may be applied
more generally to the specification of other protocols for
agent communication [1, 4, 6].

We begin in the next section by considering what is re-
quired in the general case of such a protocol specification.
This overview provides an indication of how other specifica-
tions might be developed and serves to give structure to the
specification of the Agentis protocols, which is organised as
follows. First, the state machines that describe the protocols
are specified. Then instances of these protocols are defined,
and this leads to the specification of an Agentis agent and its
state. Finally we describe the execution of protocols, so pro-
viding an operational specification of the system.

2 Protocol Specification

The specification of interaction protocols is a non-trivial
process [5]. In this section, we briefly consider each of
the distinct elements of such a specification in general, as a
prelude to the specification of the Agentis protocols that
follow. This general discussion is, nevertheless, informed
by the Agentis protocols.

Identification Agents need a means of identifying other
agents, services and tasks, and particular instances.
Typically, this will involve the use of identifier tokens.

Reasons When a protocol interaction terminates by being
declined or cancelled, a reason must be supplied. For
example, in Agentis, when a service is declined, a rea-
son such as temporarily unavailable is supplied.

Messages Several messages may be sent within the context
of a particular protocol. Messages are divided into dif-
ferent types such as requesting, accepting, updating,
cancelling, and so on, and each of these may contain
additional type-specific content. For example, when
requesting a service, an Agentis agent must provide a
request identifier, the name of a service, and a set of in-
put data parameters. When suspending a service, only
an identifier indicating the service instance is needed.

States A protocol may be in any one of a number of states,
each of which must be defined.

Transitions A protocol may be represented as a directed
graph in which the nodes denote the states of the
protocol and the arcs, which are labelled by message
patterns consisting of types and restrictions on con-
tent, denote transitions between states. A protocol may
thus be defined as a set of pairs of transitions and mes-
sage patterns, where each transition is represented as an
(Initial,Final) state pair.

Views The protocol must be specified separately from the
point of view of both the requestor and the provider,
since asynchronous communication may lead to differ-
ent current protocol states in the different views. As
a consequence, the requestor and provider protocols
have subtle differences in their designs, such as those
considered in the specification of the Agentis registra-
tion protocol below.

Notation

The specification presented below uses the Z language [18],
which is being increasingly employed in the agent research
arena [2, 7, 15]. Z is a model-oriented formal specification
language based on set theory and first-order logic. The key
components of a Z specification are definitions of the state
space of a system and the possible operations that transform
it from one state to another.

3 The Agentis Protocol Hierarchy

The stance taken in the design of the Agentis interaction
model is that it is possible to design a single model to cover
all of the different types of agent-agent

�
interactions [12].

However, particular agents may not need to implement the
entire interface behaviour.

The protocol set used in Agentis involves four levels.

� At the registration level, a requestor agent registers
its interest in some class of services provided by a
provider agent.

� The service level is concerned with the provision of ser-
vices by a provider agent to a requestor.

� At the task level, both the requestor and the provider
perform particular tasks which they have both implic-
itly agreed to perform by the requestor making and the
provider accepting a service request.

� Finally, the notification level allows agents to notify
each other of relevant conditions or events and perform
simple queries.

These four levels of operation are the basis for the re-
mainder of the paper, providing an exemplar of how such
protocols may be specified formally within an overarching
structure for system specification, and at the same time pro-
viding a detailed description of this aspect of the Agentis
system. To save space and avoid redundancy, however, only
a limited presentation follows. In particular, we consider
only the registration and service protocols, omitting the task
level, which is similar to the service level, and the notifica-
tion level which, as a protocol, is trivial. The treatment of
the omitted protocols is analogous to those presented here.�

For ease of exposition in what follows, we use the term agent to refer
to both agents and interface processes.

3.1 Registration Level Protocols

Registration is the process by which potential service re-
questors are able to acquire information about the services
available from providers, including their identity and param-
eter type signatures. The set of services an agent provides is
typically fixed, and is divided into functional groups, known
as service classes. A registration request specifies a partic-
ular service class. If registration is successful, the requestor
is informed about services of that class and their availabil-
ity, and will be provided with updates when necessary. Reg-
istration also has an access-control function, so that the ser-
vices offered to a particular requestor may vary according to
the identity and privileges of the requestor. A requestor may
register with a provider more than once (for different service
classes), and a provider may grant concurrent registrations
to multiple requestors.

Services themselves are described by service descrip-
tors, which are data structures containing the name, class,
and availability status of a service (which may change over
time), and the type signature of its data input and output pa-
rameters.

We begin the specification of the protocols with the prim-
itives needed for registration. First, to define services, we in-
troduce given sets for services, names of services (which are
unique to any given agent), service class names, and service
data parameters. Service classes are simply sets of services.
We also define the availability status of a service (available,
and temporarily or permanently unavailable).�

Service � SName � SClassName � DataIO �
SClass ���	� Service

AvailabilityStatus
�
 � Available � Temp Unavailable � Unavailable

ServiceDescriptor

name
 SName

class
 SClassName

avstatus
 AvailabilityStatus

dataio

� DataIO

At the start of a protocol interaction, the requestor sup-
plies a request identifier, which allows it to unambiguously
match replies to requests when multiple concurrent requests
are made. This identifier must be locally unique to the re-
questor agent, and it may not be re-used. If the registration
is successful, a registration identifier is sent by the provider
in its reply, and this is used in all subsequent messages relat-
ing to this protocol instance. It too must be locally unique to
the provider agent, and may not be re-used.�

RequestId � RegnId �
If a provider declines a request it is obliged to supply a

reason for doing so. The possible reasons include that the
requested service class is unknown, that registration is un-
supported by the provider, that registration is currently un-
available, that a shutdown is pending, that the requestor is al-
ready registered or has insufficient privileges or, finally, that
some resource is unavailable. We represent this as a type.

RDReason
�
 � RDbad class � RDunsupported � RDunavailable �
RDshutdown � RDregistered � RDprivilege �
RDresource

Support for registration is not mandatory, since agents
may provide services to unregistered requestors, and an
agent may validly decline all registration requests of a par-
ticular class or classes. In addition, once a registration has
been accepted, either the provider or the requestor agent may
cancel it. The cancel message must carry a reason, which is
either a shutdown or a cancellation acknowledgement.

RCReason
�
 � RCshutdown � RCacknowledge

With these primitives defined, we can now define the set
of messages in the registration protocol, as well as the type
of a message. The first definition below details the content
of each message, while the second details the type of each
message and is used to define the graph of the protocol. No-
tice that since both provider and requestor can send cancel
messages it is necessary to distinguish them in the formal
representation of the graph.

RMessage
�
 � RRequest � � RequestId � SClassName � �� RAccept � � RequestId � RegnId ��� seq ServiceDescriptor ��� �� RDecline � � RequestId � RDReason � �� RUpdate � � RegnId ��� seq ServiceDescriptor ��� �� RReqCancel � � RegnId � RCReason � �� RProCancel � � RegnId � RCReason � �
RMessageType
�
 � RRequest � RAccept � RDecline �

RUpdate � RReqCancel � RProCancel

The state machines for requestor and provider appear on
the right in Figure 1. The messages that label the arcs are
prefixed to denote whether they are sent or received and,
in some cases, are distinguished according to their content.
If no content restriction is specified, then all possible con-
tents are allowed. For example, in the RAccepted state, it is
illegal to receive a cancel(acknowledge) message, whereas
in the RCanReq state, a received cancel message will nor-
mally carry the reason acknowledge, but may carry the rea-
son shutdown if a message collision has occurred.

To specify the registration protocols, we describe the di-
rected graphs as sets of tuples. As stated earlier, each tuple
represents a pair of adjacent states and the message type that
labels the arc between them, with an optional content param-
eter for some message types. The states are enumerated first.

RState
�
 � RStart � RRequested � RDeclined � RAccepted �
RCancelled � RCanReq � RDone

The protocol specifications appear on the left in Figure 1.
The provider protocol is defined as a modification of the re-
questor protocol, highlighting some subtle but fundamental
differences between the two. Notice, for example, that while
it is not legal for the provider to send an update message af-
ter receiving or sending a cancel message, it is possible for
the requestor to receive an update after sending a cancel (but
not after receiving one), since the asynchronous nature of the

�������������
�! #"%$&"('*),+
!�-��� RState � RState �-��� RMessageType �/.�0(1�2 .�3(4%5 � RCReason �6���
�������������
�! #"%$&"('*),+ �7 ��� RStart � RRequested �8��� RRequest � 7%9 ���8���� RRequested � RDeclined �8��� RDecline � 7%9 ���8���� RRequested � RAccepted �8��� RAccept � 7%9 ���8���� RAccepted � RAccepted �8��� RUpdate � 7%9 ���8���� RAccepted � RCanReq �:��� RReqCancel � 7 RCshutdown

9 ���:���� RAccepted � RCancelled �8��� RProCancel � 7 RCshutdown
9 ���8���� RCanReq � RCanReq �8�8� RUpdate � 7%9 ���8���� RCanReq � RDone �8�8� RProCancel � 7%9 ���8���� RCancelled � RDone �:��� RReqCancel � 7 RCacknowledge
9 ��� 9

Recv: RCancel
(shutdown)

Send: RCancel
(shutdown)

Recv: RAccept

Recv: RDecline

RCanReqRAccepted

Recv: RUpdateRecv: RUpdate

(acknowledge)
Send: RCancel

Recv: RCancel

Send: RRequest
RStart

RDoneRCancelledRDeclined

RRequested

��;�"(�<>=@?,�A"%$B"('*),+

�,��� RState � RState �C��� RMessageType �D.�0(1�2 .�3(4%5 � RCReason �6���
��;�"(�<>=@?,�A"%$B"('*),+ � �����A�E���A�!�
 #"F$&"('*),+�G7 ��� RCanReq � RCanReq �:�8� RUpdate � 7%9 ���:���� RCanReq � RDone �8�8� RProCancel � 7%9 ���8���� RCancelled � RDone �:��� RReqCancel � 7 RCacknowledge

9 ��� 9H7 ��� RCanReq � RDone �:�8� RProCancel � 7 RCacknowledge
9 ���:���� RCancelled � RDone �:��� RReqCancel � 7%9 ��� 9

Send: RCancel
(shutdown)

Recv: RCancel
(shutdown)

Send: RAccept

Send: RDecline

RAccepted RCanReqRStart
Recv: RRequest

Send: RCancel

Send: RUpdate

Recv: RCancel

(acknowledge)

RRequested

RDeclined RDoneRCancelled

Figure 1. Registration Requestor and Provider Protocols

underlying message system may lead to message collisions.
The protocols are designed to ensure that all collisions that
may legally occur are benign.

Furthermore, the protocols are also designed to ensure an
important safety property: termination. One aspect of this is
that both requestor and provider can safely assume that once
their view of an instance of the protocol has reached a termi-
nal state, no further messages associated with that instance
will be received, and thus it may safely be deleted. This ex-
plains, for example, why the canceller must wait for an ac-
knowledgement, since otherwise an update or cancel from
the other might arrive after the instance had been deleted,
causing a spurious protocol error even though the protocol
had not actually been violated. Another aspect is to ensure
that termination cannot be infinitely delayed, which is ad-
dressed by a timeout mechanism discussed in Section 4.2.

3.2 Service Level Protocols

As a further example, we formalise the service level pro-
tocols. Once a requestor has registered with a provider I it
may request one or more services, perhaps concurrently. Re-
questors are required to identify the service and to supply
values for all mandatory input parameters. Requesting a ser-
vice may affect the availability of that service and of others,
both to the requestor agent and to other agents. Any such ef-
fects are notified to agents registered with the provider agent
via the update facility of the registration level.
J

As mentioned previously, service providers may accept requests from
unregistered agents. In this case, descriptions of the services that will be
requested must be built into the requestor agent.

The service level protocols are somewhat more complex
than those of the registration level, as a result of the greater
functionality provided. A service provider may return ex-
ecution status information and output values progressively:
at acceptanceK , during execution (via update messages), and
at completion. Prior to completion, the status of the service
is said to be interim, while at completion it is final. The re-
questor may suspend, resume or cancel the service instance.
Note that the provider may not cancel, however the same ef-
fect may be achieved by completing with a failure status.

The formal description below is similar to that above and
is presented with little elaboration, as the meaning should be
readily apparent. The task and notification level protocols
may be similarly specified. We first introduce service iden-
tifiers, and service parameters which need to be supplied by
the requestor when making a request.�

ServId � SParam �
If a service is declined a reason must be provided.

SDReason
�
 � Sbad service � SDunavailable � SDnot registered �
SDtry later � SDalready active � SDshutdown �
SDbad params � SDprivilege � SDresource

Service instance statuses are defined as follows.
SStatus
�
 � Spending � Sactive � Ssuspended � Ssusreq �

Sfailed � Ssucceeded � Sshutdown � Scancelled

Sinterim � Sfinal
!� SStatus

Sinterim � 7 Spending � Sactive � Ssuspended � Ssusreq
9

Sfinal � 7 Ssucceeded � Sfailed � Sshutdown
9

L
This allows requestor and provider to negotiate the terms of the service

agreement, and the optimization of message traffic for brief services [12].

M,���������A�!�! #"%$&"('*),+
(�,��� SState � SState �-��� SMessageType �/.�0F1�2 .�3(4%5 � SStatus �6���
M,���������A�!�! #"%$&"('*),+ �7 ��� SStart � SRequested �8�N� SRequest � 7%9 ���:���� SRequested � SDeclined �:�O� SDecline � 7%9 ���:���� SRequested � SAccepted �8�N� SAccept � 7 s
 Sinterim

9 ���8���� SAccepted � SAccepted �8��� SUpdate � 7%9 ���:���� SAccepted � SAccepted �8��� SSuspend � 7%9 ���8���� SAccepted � SAccepted �8��� SResume � 7%9 ���:���� SAccepted � SComplete �:��� SComplete � 7 s
 Sfinal
9 ���8���� SComplete � SDone �:��� SClose � 7%9 ���:���� SRequested � SDone �:��� SAccept � 7 s
 Sfinal

9 ���:���� SAccepted � SCanReq �:��� SCancel � 7%9 ���8���� SCanReq � SCanReq �:��� SUpdate � 7%9 ���8���� SCanReq � SComplete �:��� SComplete � 7 s
 Sfinal
9 ���8���� SCanReq � SCancelled �:�O� SComplete � 7 Scancelled
9 �O�8���� SCancelled � SDone �8��� SClose � 7%9 ��� 9

Recv: SUpdate

SAccepted

SComplete

SDone

SRequested

SDeclined

SCanReq

SCancelled

Recv: SUpdate

SStart
Send: SCancel

Send: SSuspend

Send: SResume

Recv: SDecline

Send: SClose Send: SCloseRecv: SAccept
(final)

Recv: SComplete
(final)

SComplete
Recv:

(cancelled)
Recv: SComplete

(final)

Send: SRequest Recv: SAccept

(interim)

M,;�"(�<>=@?,�A"%$&"P'*)Q+

�C��� SState � SState �P�� SMessageType �D.�0(1�2 .�3(4%5 � SStatus �6���
M,;�"(�<>=@?,�A"%$&"P'*)Q+ � M,���A�E���A�!�
 #"F$&"('*),+�G7 ��� SCanReq � SCanReq �8��� SUpdate � 7%9 ���:���� SCanReq � SComplete �:��� SComplete � 7 s
 Sfinal

9 ��� 9H7 ��� SComplete � SComplete �8��� SSuspend � 7%9 ���:���� SComplete � SComplete �:��� SResume � 7%9 ���8���� SComplete � SCancelled �:�O� SCancel � 7%9 ��� 9

SAccepted

Send: SDecline

Send: SUpdate Recv: SSuspend

SRequested

SDeclined SComplete

SDone

SCanReq

SCancelled

Recv: SCancel

Recv: SSuspend

Recv: SRequest
SStart

Recv: SClose

Recv: SResume

Recv: SResume

Recv: SCloseSend: SAccept
(final)

Send: Scomplete
(final) (cancelled)

SComplete

Send: SAccept

(interim)

Recv: SCancel

Send:

Figure 2. Service Requestor and Provider Protocols

The set of messages associated with the service level pro-
tocols and the corresponding message types are defined in
the same mannner as for the registration level.

SMessage
�
 � SRequest � � RequestId � SName �R� SParam � �� SAccept � � RequestId � ServId � SStatus �&� SParam � �� SDecline � � ServId � SDReason � �� SUpdate � � ServId � SStatus �S� SParam � �� SSuspend � � ServId � �� SResume � � ServId � �� SComplete � � ServId � SStatus �S� SParam � �� SCancel � � ServId � �� SClose � � ServId � �
SMessageType
�
 � SRequest � SAccept � SDecline �

SUpdate � SSuspend � SResume �
SComplete � SCancel � SClose

The protocol states are enumerated as follows.

SState
�
 � SStart � SRequested � SDeclined � SAccepted �
SComplete � SDone � SCanReq � SCancelled

The service requestor and service provider protocol specifi-
cations appear on the left in Figure 2, and the corresponding
state machines on the right.

4 Protocol Instances

At run-time, an Agentis agent may be involved in sev-
eral protocol instances as either a requestor or a provider.
In order to record the state of every instance of a protocol
in which the agent is engaged, the agent must record all the
information given by the content of the protocol. In this sec-
tion, we provide details of what is needed for the general
case of specifying protocol instances, and then consider the
different possible modes of such a protocol instance, which
may be either requested (initial), current or finished. Finally,
we show how the general case may be instantiated for a par-
ticular protocol by using the registration level as an example.

4.1 Generic Protocol Instances

To define an instance of a protocol, we need to introduce
several new components:
� the protocol type,
� the view of the agent as a provider or requestor (which

can be determined by inspecting the protocol type),
� the provider identifier (which is optional since it is not

defined until acceptance),

� the current state of the protocol,

� the identifier of the agent with whom the protocol in-
teraction is taking place,

� the status value associated with the request (which may
be a list of service descriptors or the status of an indi-
vidual service or task), and

� a reference to the resource the protocol is concerned
with (which is either a service class, a service or a task).

Each of these is specified formally below. Firstly, if pro-
tocol information is maintained locally, then the protocol of
which it is an instance must be recorded.

Protocol
�
 � rr � � �����A�E�T���
�! #"%$&"P'*)Q+ � �� rp � � ��;�"(A<*=@?Q��"%$&"('*),+ � �� sr � � MQ�����������
�! #"%$&"('*),+ � �� sp � � M,;�"(A<*=U?,��"%$&"('*),+ � �
However, in this specification protocols have been de-

fined as global rather than local data structures, so an agent
need only record the type of the protocol from which the in-
stance is generated.

ProtocolType
�
 � RR � RP � SR � SP

The remaining components are straightforward.

View
�
 � Req � Pro

ProvideId
�
 � regnid � � RegnId � ��� servid � � ServId � �
State
�
 � regstate � � RState � �,� servstate � � SState � ��
AgentId �

Status
�
 � regstatus � � seqServiceDescriptor � �,� servstatus � � SStatus � �
Resource
�
 � class � � SClassName � �,� service � � SName � �

It is now possible to define a protocol instance.

ProtocolInstance

type
 ProtocolType

view
 View

requestid
 RequestId

provideid
P.A0(1�2 .�3F4F5 � ProvideId �
state
 State

who
 AgentId

status
 Status

resourcename
 Resource

4.2 Modes of Protocols Instances

From the perspective of an agent, a protocol instance may
be in one of three modes (sets of states): requested, current
or finished. When an agent sends a request, it instantiates the
protocol in the requested state. When this is received by the
provider, it does likewise. In this mode, the provider identi-
fier is not defined. The finished mode consists of the termi-
nal states of the protocol; declined, done, timedout and vi-
olated. The latter two states exist to guarantee termination

and guard against implementation errors; the protocols are
augmented by adding an edge with a timeout condition from
every state in which an agent can only receive a message
to the timedout state, and an edge for every possible illegal
message to the violated state. Once a protocol instance is in
the finished mode, it may be deleted. If a protocol instance
is neither in the requested or finished mode, it is current.

The requested mode is defined below as InitInstance. It is
straightforward to similarly specify the current and finished
modes.

InitInstance

ProtocolInstance

V 3FW%X8Y*3(X!W ProvideId

state Z 7 regstate RRequested � servstate SRequested
9

5 Agentis Agents

Now that a detailed picture of the Agentis protocols has
been painted, we can proceed to consider the structure of in-
dividual agents.

A general Agentis agent is defined by a list of components
as follows: the set of services it can provide (which may be
empty); the set of service classes, with each service belong-
ing to at least one service class; a unique name for each of its
services; and a unique name for each of its classes. Similar
data structures for tasks and notices are also needed.

Although agents can, in principle, be involved in any pro-
tocol, a particular agent may only be able to access a lim-
ited number or type of protocols. For example, it may be
restricted to being a service provider. In addition, an agent
may only be able to communicate with a set of contactable
agents. Further requirements for individual systems may
also hold, but are not discussed here.

AgentisAgent

services

� Service

serviceclasses
(� SClass

servicename
 Service [\ SName

serviceclassname
 SClass [\ SClassName

protocols
(� ProtocolType

agents

� AgentId

services]_^ serviceclasses

dom servicename � services

dom serviceclassname � serviceclasses

An agent’s runtime state is now completely defined by the
AgentisAgent schema and its set of protocol instances.

AgentisState

AgentisAgent

Rinstances � Sinstances

� ProtocolInstance

6 Protocol Execution

To complete the specification, we turn to a consideration
of the execution of the protocols. We first define an auxil-
iary relation, rel, which holds between a received message
and a protocol instance if the message can be validly associ-
ated with the protocol instance, on the basis of the the mes-
sage type, its sender, and the contained requestor or provider
identifier. Only the signature is provided here.

rel
!�-� Message � ProtocolInstance �
Now we can specify the actual communication between

agents. In this paper we limit our consideration to the receipt
of messages as opposed to sending them, which is a more
complex matter. We also do not consider here details of the
handling of protocol violations and timeouts.

6.1 Receiving Messages

Whenever a message is received, the message is an input,
and the agent does not change (though its state might).

ReceiveMessage

in `a
 Messageb
AgentisAgent

AgentisState

There are then two possible instantiations of this general
case: either the message is legitimate and the agent can re-
spond by updating its state accordingly or the message is il-
legitimate and must not change the agent’s state. In the latter
case an error should be reported.

ReceiveMessageSuccess

ReceiveMessagec
AgentisState

ReceiveMessageFail

ReceiveMessageb
AgentisState

report dA
 Report

On receipt of a message, two further scenarios may arise
depending on whether or not the message is associated with
an existing protocol instance of the same protocol type.

Messages Associated with an Existing Protocol

The general schema for the scenario with an associated mes-
sage is specified below, followed by considerations of vari-
ous sub-cases. Note that, due to the uniqueness constraints
imposed upon identifiers, a message can be be associated
with at most one protocol instance. We assume that the
agent has access to both service and registration protocols
as provider and requestor, and that it can communicate with
the sender of the input message.

AssociatedInstance

ReceiveMessage

in `�Ze� ran regnmsg �>fg�Oh i
 Rinstances i rel � in `j� i ���
in `�Ze� ran servmsg ��fk�Oh i
 Sinstances i rel � in `%� i ���

Let us assume that the associated protocol instance is Pi,
that the message type is M, and that the graph of the as-
sociated protocol instance is G. There are then three cases
(which we do not specify in full).

1. lnm8o Pi p current qBrsm:o G q�tuo M q#v!v�wyx
The message does not move the protocol to a legal
state. For example, consider Figure 1, protocol in-
stance which is in the RAccepted state. If it receives
a RDecline message associated with this instance then
there is no next state defined. In this case there is a pro-
tocol violation.

2. lnm8o Pi p current qBrsm:o G q�tuo M q#v!v�wkz
The message type moves the protocol instance to a
unique new state. For example, if the same protocol
instance is in the RRequested state and receives a RDe-
cline message, there is only one possible arc to traverse:
the one which moves the protocol instance to the RDe-
clined state.

3. lnm8o Pi p current qBrsm:o G q�tuo M q#v!v|{}z
The message type moves the protocol instance to more
than one state. In this case, the agent needs to con-
sider the content of the message in order to determine
the appropriate transition to take. For example, given
a SAccept message in the SRequested state, the next
state could be either SDone or SAccepted, depending on
whether the status is final or interim.

Messages Unrelated to an Existing Protocol

Alternatively, a message may not be associated with an ex-
isting protocol instance – it is either illegal or a new request.
The general schema is given below, with further relevant
predicates following, rather than a complete specification
of the operation. The MessageSender function returns the
identifier of the agent who sent the message.

NoAssociatedInstance

ReceiveMessage

in `�Ze� ran regnmsg �>f�~e�Oh i
 Rinstances i rel � in `j� i ���
in `�Ze� ran servmsg ��f}~���h i
 Sinstances i rel � in `j� i ���7

RP � RR � SP � SR
9] protocols

MessageSender in `aZ agents

If the message is a registration or service request, it starts
a new instance of the corresponding protocol in the initial
state. Otherwise, it is necessarily illegal.

ReceiveRegistrationRequest

NoAssociatedInstance

ReceiveMessageSuccess

in `aZ ran regnmsg

regnmsg � � in `|Z ran RRequest

Rinstances � Rinstances � H 7 �O� i
 InitInstance �
i � view � Pro � i � requestid � Requestid in `��
i � who � MessageSender in `(� 9

ReceiveServiceRequest

NoAssociatedInstance

ReceiveMessageSuccess

in `aZ ran servmsg

servmsg � � in `aZ ran SRequest

Sinstances � Sinstances � H 7 �O� i
 InitInstance �
i � view � Pro � i � requestid � Requestid in `��
i � who � MessageSender in `(� 9

ReceiveIllegalNonRequest

NoAssociatedInstance

ReceiveMessageFail

in `aZ ran regnmsg � regnmsg � � in `��Z ran RRequest

in `aZ ran servmsg � servmsg � � in `��Z ran SRequest

report d%� Illegal Non Request Message

7 Summary and Conclusions

In this paper we have presented key elements of the Agen-
tis agent interaction model by describing the Agentis proto-
cols. These have been specified formally using the Z speci-
fication language, which is widely used for system descrip-
tion and specification, both in academia and in industry, and
which provides an effective way of reconciling descriptions
of both the system and the protocols in a single coherent
whole. The paper also illuminates the specification of other
protocols by providing a clear structure for their organisa-
tion. Indeed, the structure of the specification is described
in general terms before the specification itself.

Our aim is to contribute to bringing together the different
strands of research and development in multi-agent systems
by taking a commercially developed system and providing
it with a firm, formal foundation that lends itself to further
analysis and investigation. Ideally, we aim to arrive at a sit-
uation in which these feed off each other, with application
being informed by formal analysis and vice versa.

The immediate next stage in the development of this
work is to take advantage of the wealth of tool support for
Z for both animation [8] and proof [16]. The specification
presented here has been checked for type correctness using
the fuzz package [17]. We are also specifying the protocols
using CSP [9] in order to prove critical safety and liveness
properties of the Agentis system.

References

[1] J. A. Campbell and M. P. D’Inverno. Knowledge interchange
protocols. In Decentralized AI: Proceedings of the First
European Workshop on Modelling Autonomous Agents in a
Multi-Agent World, pages 63–80. Elsevier, 1990.

[2] I. D. Craig. The Formal Specification of Advanced AI Archi-
tectures. Ellis Horwood, 1991.

[3] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A for-
mal specification of dMARS. In Intelligent Agents IV: Pro-
ceedings of the Fourth International Workshop on Agent
Theories, Architectures, and Languages (ATAL-97). LNAI
1365. Springer, 1997.

[4] T. Finin and R. Fritzson. KQML — a language and protocol
for knowledge and information exchange. In Proceedings of
the Thirteenth International Workshop on Distributed Artifi-
cial Intelligence, Lake Quinalt, WA, 1994.

[5] M. Fisher and M. Wooldridge. Specifying and executing
protocols for cooperative action. In Proceedings of the
Second International Working Conference on Cooperating
Knowledge-Based Systems (CKBS-94). Springer, 1994.

[6] Foundation for Intelligent Physical Agents. FIPA 97 Specifi-
cation Part 2: Agent Communication Language, November
1997. Version 1.0.

[7] R. Goodwin. A formal specification of agent properties.
Journal of Logic and Computation, 5(6), 1995.

[8] M. A. Hewitt, C. M. O’Halloran, and C. T. Sennet. Experi-
ences with PiZA, an animator for Z. In 10th International
Conference of Z Users (ZUM’97). Springer, 1997.

[9] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall, 1986.

[10] D. Kinny. The Distributed Multi-Agent Reasoning System
Architecture and Language Specification. Australian Artifi-
cial Intelligence Institute, Melbourne, Australia, 1993.

[11] D. Kinny. Agentis – a framework for commercial multi-
agent system development. Technical Report 83, Australian
Artificial Intelligence Institute, Melbourne, Australia, 1998.

[12] D. Kinny. The Agentis agent interaction model. In Intelligent
Agents V: Proceedings of the Fifth International Workshop
on Agent Theories, Architectures, and Languages (ATAL-
98), Paris, 1998.

[13] D. Kinny and M. Georgeff. Modelling and design of multi-
agent systems. In Intelligent Agents III: Proceedings of
the Third International Workshop on Agent Theories, Archi-
tectures, and Languages (ATAL-96). LNAI 1193. Springer,
1996.

[14] D. Kinny, M. Georgeff, and A. Rao. A methodology and
modelling technique for systems of BDI agents. In Agents
Breaking Away: Proceedings of the Seventh European Work-
shop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW ’96). LNAI 1038. Springer, 1996.

[15] M. Luck and M. d’Inverno. A formal framework for agency
and autonomy. In Proceedings of the First International
Conference on Multi-Agent Systems, pages 254–260. AAAI
Press / MIT Press, 1995.

[16] M. Saaltink. The Z/EVES system. In 10th International
Conference of Z Users (ZUM’97). Springer, 1997.

[17] J. M. Spivey. The f UZZ Manual. Computing Science Con-
sultancy, 2 Willow Close, Garsington, Oxford OX9 9AN,
UK, 2nd edition, 1992.

[18] J. M. Spivey. The Z Notation. Prentice Hall, Hemel Hemp-
stead, 2nd edition, 1992.

