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Abstract

When rational, utility-maximizing agents encounter an
opportunity to collaborate on a group activity, they must
determine whether to commit to that activity. We refer to
this problem as the initial-commitment decision problem
(ICDP). This paper describes a mechanism that agents may
use to solve the ICDP. The mechanism is based on a combi-
natorial auction in which agents bid on sets of roles in the
group activity, each role comprising constituent subtasks
that must be done by the same agent. Each bid may specify
constraints on the execution times of the subtasks it covers.
This mechanism permits agents to keep most details of their
individual schedules of prior commitments private. The pa-
per reports the results of several experiments testing the
performance of the mechanism. These results demonstrate
a significant improvement in performance when constituent
subtasks are grouped into roles. They also show that as the
number of time constraints in bids increases, the probabil-
ity that there is a solution decreases, the cost of an optimal
solution (if one exists) increases, and the time required to
find an optimal solution (if one exists) decreases. The paper
also describes several strategies that agents might employ
when using this mechanism.

1. Introduction

When rational, autonomous agents encounter an oppor-
tunity to collaborate on some group activity, they must de-
cide whether to commit to doing that activity. We refer
to this problem as the initial-commitment decision problem
(ICDP). We assume the new opportunity for collaborative
action arises in context: each agent may have existing com-
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mitments to other individual and group activities. We fur-
ther assume that agents are utility-maximizers.
Horty and Pollack [4] have initiated research into how an

individual agent may evaluate new opportunities for single-
agent action in the context of existing commitments. The
initial-commitment decision problem addressed in this pa-
per is a generalization of this problem to the group context,
which introduces two significant complications. First, no
single agent has complete information about the existing
commitments of all the agents in the group: background
context is distributed. Second, the approach (i.e., choice of
method and distribution of tasks) that is best for the group
may not be best for any individual agent alone.
An agent participating in multi-agent planning incurs

significant costs, including time and computational re-
sources devoted to group decision-making processes; op-
portunity costs for commitments, not only to doing its share
of tasks in the group activity, but also to supporting the
actions of others; and costs of doing actions to which it
commits. To decide whether to join a proposed collabo-
ration, an agent needs to assess the impact of the collabo-
ration on its ability to do other work. Since the planning,
decision-making, and opportunity costs can be substantial,
it is preferable for agents to determine some upper bound
on this impact prior to committing to planning with others.
In deciding whether to commit to a new group activ-

ity, each agent must estimate two factors: (1) the poten-
tial contributions it could make to the group activity (i.e.,
the constituent subacts it could do or participate in) and
the costs of those contributions; and (2) the possibilities
for the remaining tasks to be assigned to other group mem-
bers in an individually rational manner. The first factor re-
quires that agents examine information about their individ-
ual background contexts of commitments. Because agents
may be unwilling or unable to share complete information
about their individual contexts, this factor is best computed
“locally” by individual agents. The second factor requires
a global computation that takes into account the potential
contributions of all the agents.
This paper presents a mechanism that a group of agents



can use to solve the initial-commitment decision problem.
This mechanism, which we refer to as the ICDP mecha-
nism, uses a combinatorial auction [9, 2, 7] to coordinate
the sorts of local and global computations described above.
Each potential contribution to the group activity is stated
in terms of a locally-computed bid that specifies a set of
tasks, a cost for doing those tasks, and a set of constraints
on the execution times of those tasks. The global compu-
tation determines the best combination of these bids (i.e.,
potential contributions). It is based on an existing winner-
determination algorithm for combinatorial auctions [9] that
we modified to enable it to handle time constraints.
By distributing the computational burden in this way, the

ICDP mechanism allows agents to maintain the privacy of
their existing commitments and to focus their computational
efforts on their own potential for contributing to the pro-
posed collaboration. Furthermore, being able to condition
their bids on time constraints allows agents to protect the
feasibility of their existing commitments. Finally, although
the global computation may be carried out centrally (as was
done in our empirical investigations), it may also be carried
out in a distributed fashion, with agents searching different
portions of the highly-structured search space.
Section 2 describes our representation of actions and

recipes. Section 3 briefly reviews standard combinatorial
auctions. Section 4 defines the ICDP auction mechanism.
Section 5 presents empirical results and their implications
for system design. These results demonstrate a significant
improvement in performance when constituent subtasks are
grouped into roles. They also show that as the number of
time constraints in bids increases, the probability that there
is a solution decreases, the cost of an optimal solution (if
one exists) increases, and the time required to find an opti-
mal solution (if one exists) decreases. The remaining sec-
tions discuss related work and conclusions.

2. Actions, Act-types, Recipes and Roles

Our representation of actions, act-types and recipes fol-
lows Grosz and Kraus’ SharedPlans theory of collaborative
planning [3], but extends the representation of act-types and
recipes to include roles. The experiments described in Sec-
tion 5 show that the use of roles allows the ICDPmechanism
to scale to larger problem instances.

Actions, Act-types and Recipes in SharedPlans. Actions
are either basic or complex. A basic action is an action that
may be executed at will by an individual agent under appro-
priate conditions; a complex action is executed indirectly
using a recipe. Both basic and complex actions are classi-
fied according to their act-types. A recipe for a complex
act-type is a set of subacts and constraints such that the do-
ing of those subacts under those constraints constitutes the
doing of an action of that type. Typically, recipe constraints

Agent(Prep_Pipe) = Agent(Weld_Pipe)

 Agent(Lay_Pipe) = Agent(Load_Junk)

Agent(Dig_Ditch) = Agent(Fill_Ditch)

Prep_Pipe

Dig_Ditch

Lay_Pipe

Fill_DitchWeld_Pipe

Plant_Grass

Load_Junk
End

Begin

RECIPE:  R39 (LAY_PIPELINE)

Subacts with Precedence Constraints

ADDITIONAL CONSTRAINTS

Figure 1. Sample recipe

include precedence constraints on the execution times of the
various subacts; they may also include constraints that cer-
tain subacts be executed by the same agent or subgroup. 1

Figure 1 shows a sample recipe, REC39, that specifies
one way of doing a LAY PIPELINE action.2 Precedence
constraints are indicated by arrows in the figure (e.g., the
Weld Pipe subact must be done before the Fill Ditch
subact). Although not shown in the figure, we allow prece-
dence constraints to include offsets. Thus, the Load Junk
subact might be constrained to occur at least 20 minutes
after the Lay Pipe subact. Recipes may contain complex
subacts; recursively choosing recipes for these subacts gives
rise to a multi-level recipe hierarchy [5]. However, in this
paper, we assume that recipes are fully expanded so that
agents need to consider only basic subacts.

Adding Roles to Act-Types and Recipes. The value of
roles may be illustrated by an example, the representation
of a transaction act-type in electronic commerce. No matter
which protocol (or recipe) is used to govern the transaction,
some tasks must be done by the buyer, others by the seller.
In addition, various preconditions, postconditions and ap-
plication constraints may be succinctly stated in terms of the
buyer and seller roles (e.g., the seller must own the object
being sold prior to the start of the transaction). However,
despite the buyer and seller roles being naturally associated
with the transaction act-type, the tasks covered by each role
are determined by the protocol chosen to govern the transac-
tion. For example, in one protocol, the buyer might have to
list the objects being purchased, while in another the buyer
might have to go through a complex set of identification-
verification steps. In addition to specifying the tasks to be
covered by the act-type roles, some protocolsmay introduce

1As is standard in work on planning, act-type definitions specify pre-
conditions, application constraints and necessary effects for an action of
that type, as well as any parameters required in doing the action.

2We use teletype font for names of act-types, recipes and roles.
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Begin End

WELDER

LOADER

DIGGER
Roles:

Subacts with Precedence Constraints

Prep_Pipe

Dig_Ditch

Lay_Pipe

Fill_DitchWeld_Pipe

Load_Junk

Plant_Grass

RECIPE:  R39 (LAY_PIPELINE)
Additional Roles: GRASS_PLANTER

ACT TYPE:  LAY_PIPELINE

Figure 2. Act-type and recipe with roles

additional, protocol-specific roles. For example, one proto-
col might require an additional monitor role, responsible for
carrying out a variety of transaction-monitoring tasks.

We extend the representation of act-types and
recipes to include roles. ActTypeRoles(α) and
RecipeRoles(Rec) denote the roles associated with the
act-type α and the recipe Rec, respectively. The recipe
must specify the set of subacts covered by each act-type
role and each recipe role. We require each subact to be
covered by one and only one role. The agent filling a role is
responsible for doing all the subacts covered by that role.

Figure 2 shows roles incorporated into the example
from Figure 1. There are three act-type roles—DIGGER,
LOADER and WELDER—in the LAY PIPELINE act-type.
In addition, the recipe REC39 has been modified to sep-
arately specify the set of subacts covered by each role
(e.g., the agent filling the LOADER role must do both the
Lay Pipe and Load Junk subacts). REC39 is further
modified to include an additional, recipe-specific role that
arises from this recipe’s particular way of subdividing the
LAY PIPELINE action. The recipe specifies the respon-
sibilities of this additional role; the agent assigned to the
GRASS PLANTER recipe role is responsible for executing
the Plant Grass subact.

Roles reduce the computational burden in two ways.
First, if a particular agent finds that it is unable to do one of
the subacts covered by some role, then that agent may im-
mediately move on to considering other roles instead. Sec-
ond, instead of needing to identify agents to do each of the
subacts, the group need only identify agents to fill the vari-
ous act-type and recipe roles; if there are many fewer roles
than subacts, then there are fewer decisions to make.

A B C D
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?

$3 for {C,D}
$1 for {C}

$4 for {A,B}
or

$1 for {B}

$9 for {A,B,D}

$6 for {B,D}
or

$2 for {A}
or

$8 for {A,D}

Figure 3. A combinatorial auction

3. Combinatorial Auctions

In a combinatorial auction [9, 2, 7], there are multiple
items for sale, participants who may place bids on arbitrary
subsets of those items, and an auctioneer who must deter-
mine which awardable combination of bids maximizes rev-
enue. Figure 3 shows a combinatorial auction in which there
are four items—A, B, C, and D—for sale and the partici-
pants have made bids such as “$4 for {A, B}” and “$9 for
{A, B, D}.”
In general, let I = {I1, I2, . . . , In} be the set of n items

being auctioned and let B be the set of received bids. For
each bid b ∈ B, let Items(b) ⊆ I denote the subset of
items covered by the bid and let Amount(b) denote the
amount of the bid. A bid-set (i.e., a collection of bids) is
called disjoint if each item being auctioned is covered by
at most one bid in the set, covering if each item is covered
by at least one bid in the set, and awardable if it is both
disjoint and covering. An awardable bid-set is also called a
solution. For any disjoint bid-set BS, the revenue that BS,
if awarded, would generate for the auctioneer is:

Value(BS) =
∑

b ∈ BS

Amount(b).

The winning bid-set is an awardable bid-set that maximizes

revenue: BS∗ = argmax
BS ∈ ABS

Value(BS), whereABS is the
set of awardable bid-sets. The revenue generated by the
winning bid-set is: Value(BS∗). A winning bid-set is
also called an optimal solution.
For the auction in Figure 3, the awardable bid-sets are:

$2 for {A} + $1 for {B} + $3 for {C, D} ⇒ $6

$2 for {A} + $6 for {B, D} + $1 for {C} ⇒ $9

$4 for {A, B} + $3 for {C, D} ⇒ $7

$9 for {A, B, D} + $1 for {C} ⇒ $10

$8 for {A, D} + $1 for {B} + $1 for {C} ⇒ $10

The last two of these each yield the maximum revenue; thus
either may be chosen to be the winning bid-set.



3.1. Existing Winner-Determination Algorithms

The general winner-determination (WD) problem for
combinatorial auctions is NP-complete [9, 2]. However,
Sandholm [9] and Fujishima et al. [2] have independently
presented WD algorithms that scale to problems involving
scores of items and thousands of bids. The main insight is
that bids in practice necessarily only sparsely populate the
space of possible bids; thus the search for the winning bid-
set should be restricted to the space of bid-sets composed of
actual—not possible—bids.
At the core of each algorithm is a depth-first search

through the space of disjoint bid-sets. Along each depth-
first path in the search, a disjoint bid-set is incrementally
constructed by successively appending individual bids. The
path may end in a covering (and hence awardable) bid-set,
or it may reach a dead-end with a non-covering bid-set for
which there are no compatible bids to append. Each al-
gorithm keeps track of the best (i.e., revenue maximizing)
covering bid-set found so far and thus may be used as an
anytime algorithm. Each algorithm uses an item-indexing
scheme to ensure that each disjoint bid-set is generated at
most once during the search. Sandholm organizes the re-
ceived bids into an auxiliary data structure (called a bid-
tree) to enable efficient generation of bids that are com-
patible with the current (partial) bid-set. Fujishima et al.
partition the received bids into bins, each of which corre-
sponds to a subtree of Sandholm’s bid-tree.3 In addition,
each algorithm uses the same A∗-admissible heuristic that
estimates the revenue that items not yet covered by the bid-
set might bring in; this heuristic speeds up the search by
enabling pruning of partial bid-sets that are certain not to
bring in as much revenue as the best solution found so far.
The differences between the approaches of Sandholm

and Fujishima et al. lie mostly in their proposed improve-
ments to their basic algorithms. We do not discuss these im-
provements because each sacrifices optimality in auctions
involving time constraints and, in our application (as de-
scribed below), agents use time constraints to protect the
feasibility of their existing commitments.

4. A Mechanism for the Initial-Commitment
Decision Problem

The initial-commitment decision problem (ICDP) arises
when a group of agents encounter an opportunity for col-
laborative activity. We assume that the opportunity is in the
form of a request that specifies both a time interval [E, L]
over which the action must be done and a payment P that
the group is to receive for doing the action. If the agents can

3Since the bins are coarser than Sandholm’s bid-tree, additional checks
are required to avoid redundant search.

find some way of doing the action at a cost less than P , then
they will profit from doing it.
In this section, we describe a mechanism that agents may

use to solve the ICDP. The mechanism is based on a com-
binatorial auction in which agents bid on roles in the group
activity. Having agents bid on roles, rather than subacts, re-
duces the number of items up for bid and thus enables the
mechanism to scale to problems involving larger numbers
of subacts. It also reduces the computational burden of bid
generation because an agent that finds it is unable to carry
out one of the subacts covered by some role may immedi-
ately move on to considering other roles instead.
The ICDP mechanism also allows agents to condition

their bids on various time constraints, as well as on the
choice of recipe for the group activity. Allowing time con-
straints in bids is essential in this application. It allows
agents to protect the feasibility of their private schedules of
existing commitments without having to reveal the details
of those commitments to other agents. In addition, being
able to condition their bids on the choice of recipe enables
agents to generate a wider variety of bids, thereby increas-
ing the likelihood of their finding a low-cost way of do-
ing the group activity. For example, an agent might require
only a small payment to cover a particular set of roles un-
der REC39, but might be unable to cover those same roles
under a different recipe. Were the agent unable to condition
the bid on the choice of recipe, it would be unable to place
a bid for that set of roles.
Winner determination in the ICDPmechanism is handled

by an algorithm based on Sandholm’s WD algorithm, but
modified to be able to deal with time constraints in bids, as
described below in Section 4.1.

Let {Rec1, . . . , Recc} be the c recipes available for do-
ing the group action. The ICDP mechanism involves c sep-
arate auctions, one for each recipe the group might use.
In our implementation, bids that are conditioned on the

choice of recipe are split into multiple, recipe-specific bids;
thus we henceforth assume that each bid pertains to a sin-
gle recipe. For example, a sample bid pertaining to recipe
REC39 (from Figure 2) is shown below:

Roles {WELDER, GRASS_PLANTER}
Amount $300
GlobalConstraints [3:30 p.m., 7:30 p.m.]
SubactConstraints {Prep_Pipe < 4:00 p.m.}

In this bid, the bidder proposes to do the WELDER act-
type role and the GRASS PLANTER recipe role for a pay-
ment of $300 under the conditions that the LAY PIPELINE
group activity be done between 3:30 p.m. and 7:30 p.m. and
the Prep Pipe subact (one of the subacts covered by the
WELDER role) be done before 4:00 p.m.
We define the density of a bid’s constraints (DBC) as

follows. Let R be the set of roles in the bid and S be the set
of subacts covered by the roles inR. The bid may constrain



the execution time of any subact covered by the bid (i.e., any
subact in S) by providing lower or upper bounds; thus the
bid may include up to 2|S| constraints. The DBC is defined
to be k

2|S| , where k is the number of actual constraints in
the bid. For example, the DBC for the sample bid above is
1
6 because the bid contains a single subact execution-time
constraint where it could have contained up to six—two for
each of the three subacts covered by the bid (see Figure 2).
In Section 5, the density of bid constraints will be shown
to have a dramatic impact on the performance of the ICDP
mechanism.
For the auction corresponding to recipe Rec i, let

Ii = ActTypeRoles(α) ∪ RecipeRoles(Reci)
be the set of roles (i.e., items) being auctioned. Let B i be
the set of bids received. For each bid b ∈ Bi, let:

Roles(b) ⊆ Ii be the subset of roles covered by the bid,

Amount(b) be the amount of the bid,
GlobalConstraints(b) be the bidder’s constraints on the
starting and ending times for the group activity, and

SubactConstraints(b) be the bidder’s constraints on the
execution times of the subacts covered by the bid.

Disjoint and covering bid-sets are defined as in a standard
combinatorial auction; the awardable bid-sets, however, are
defined differently. A bid-set BS is called awardable (with
respect to recipeRec) if, in addition to its being disjoint and
covering, there exists a set of execution times for the subacts
in Rec that satisfy all of Rec’s precedence constraints and
all the time constraints from the bids in BS.
The cost of an awardable bid-set is given by:

Cost(BS) =
∑

b ∈ BS

Amount(b).

The winning bid-set for the auction corresponding to recipe

Reci is given by: BS∗
i = argmin

BS ∈ ABSi

Cost(BS),

where ABSi is the set of awardable bid-sets. The
associated cost is: Cost(BS∗

i ). Over all the auc-
tions, the winning bid-set/recipe pair is an element of
{(BS∗

1 , Rec1), . . . , (BS∗
c , Recc)} with the minimum cost.

4.1. The Modified WD Algorithm

To determine the winner of a combinatorial auction in-
volving bids that include time constraints, we modified
Sandholm’s basic winner-determination (WD) algorithm
(described in Section 3.1).4 The modifications included
adding a consistency check to the bid-set construction pro-
cess and minimizing cost rather than maximizing revenue.
The modified WD algorithm follows each depth-first path
until: (1) the cost of the current bid-set is greater than that
of the best bid-set found so far, (2) the current bid-set is

4We chose Sandholm’s algorithm because his bid-tree structure ensures
non-redundant search.

found to be inconsistent, (3) the current bid-set is not cov-
ering, but there are no compatible bids to append, or (4)
the current bid-set is awardable. In the first three cases, the
current-bid set is pruned; in the last case, the current bid-set
becomes the best found so far.

Consistency Check. The precedence constraints from the
recipe determine a partial order among the recipe’s subacts
(e.g., as shown in Figure 2). Therefore, each constraint im-
posed by a bid, although directly constraining the execution
time of only one subact, may indirectly constrain the execu-
tion times of numerous subacts that are precedence-related
to the directly constrained subact. For example, a bid’s con-
straint that the Weld Pipe subact (from Figure 2) must
occur after 2 p.m. indirectly constrains the Fill Ditch
and Plant Grass subacts.
During the bid-set construction process, our algorithm

maintains a greatest lower bound (GLB) and a least upper
bound (LUB) for the execution time of each subact based
on the recipe’s precedence constraints and constraints from
the current bid-set. Whenever a new bid is appended to the
current bid-set, the effects of each new constraint on these
GLBs and LUBs are propagated through the partial order
network. After incorporating the new constraints, it is only
necessary to check that each GLB is no greater than its cor-
responding LUB. If so, the constraints from the extended
bid-set are consistent with the precedence constraints from
the recipe; otherwise, the search must backtrack.

Minimizing Cost. Although moving frommaximizing rev-
enue to minimizing cost requires only minor changes to
the algorithm, it significantly impacts the performance of
the algorithm because it enables high-cost bid-sets to be
pruned without requiring the sort of heuristic described in
Section 3.1. If the cost of the current bid-set ever exceeds
the cost of the best bid-set found so far, then the current
bid-set may be pruned immediately.5

5. Experiments

In this section, we report studies of our modified WD
algorithm. The first experiment quantifies the performance
improvement that arises from using roles to bundle subacts.
The remaining experiments clarify the tradeoffs that arise
from allowing bids to include time constraints on the group
activity. The inclusion of time constraints results in fewer
consistent bid combinations and thus tends to increase the
cost of an optimal solution (i.e., a least-cost awardable bid-
set); in extreme cases, time constraints might result in there
being no solution at all. We also examine how the number
of bids affects the relationship between the time constraints
in bids and the likelihood of their yielding a solution.

5In this paper, we do not explore the additional computational benefits
that arise from using a heuristic like the one described in Section 3.1.
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In each experiment, the group action was constrained to
occur within the time interval [0, 100]. Recipes were gen-
erated randomly such that in each recipe: (1) the number
of precedence constraints was the same as the number of
subacts, and (2) subacts were assigned to roles with equal
probability. The bid-generation process was simulated by
randomly generating bids according to various parameters
(described in each experiment). The cost of a bid was
randomly generated such that the cost-per-subact was uni-
formly distributed between 10 and 20.

Experiment 1. The goal of this experiment was to de-
termine the improvement in performance generated by
bundling subacts into roles. The number of subacts was
fixed at 40; the number of roles covering those subacts was
6, 8 or 10 (data collected for each case). Because winner de-
termination in combinatorial auctions is exponential in the
number of items being auctioned [9], we expected the per-
formance to improve as the number of roles decreased (i.e.,
as the number of subacts covered by each role increased).
The results of this experiment are plotted in Figure 4. Each
point in the plot shows the time (averaged over 40 runs) 6

required to reach a solution of a particular relative cost,
where the relative cost of a solution is defined as follows:
Cost (Solution)/Cost(Optimal Solution). Thus, the relative
cost of the optimal solution is 1 (at the far right of the hori-
zontal axis), whereas that of suboptimal solutions is greater
than 1. There were 50 bids in each run, each bid covering 1
or 2 roles (uniformly distributed). Bids did not contain time
constraints in this experiment.
The results clearly indicate a substantial improvement in

performance as the number of roles covering the subacts
decreases. If roles were not used, the number of biddable
items would be the same as the number of subacts (i.e., 40),
resulting in much poorer performance.
The results of this experiment also indicate that solu-

6In one of the runs with 10 roles, there was no solution. For that case,
the results were averaged over the remaining 39 runs.
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Figure 5. Varying the number of bids and the
density of bid constraints

tions with low relative costs are typically found within a
relatively short period of time. For the initial-commitment
decision problem, such near-optimal solutions may suffice.
Once agents commit to the group activity based on a near-
optimal solution, they may use this solution as a baseline
while continuing to search for lower-cost solutions [8].

Experiment 2. The goal of the second experiment was to
show how the likelihood of a given set of bids yielding a
solution depends both on the number of bids received and
the number of constraints in each bid. In this experiment,
each recipe contained 40 subacts covered by 10 roles. Each
data point corresponds to 40 runs in which both the num-
ber of bids (NB) and the density of bid constraints (DBC)
were fixed. A DBC value of 0 represents that the bid con-
tained no subact-execution time constraints; a value of 1
represents that the bid constrained—with both lower and
upper bounds—the execution time of each subact covered
by that bid’s roles.7 Each data point indicates the number
of runs (out of 40) that yielded a solution. The results are
plotted in Figure 5. They clearly show that the likelihood of
the bids yielding a solution falls off sharply as the density
of bid constraints increases. The results also indicate how
many bids would be required to ensure a certain likelihood
of finding a solution for a given density of bid constraints.
Although these results do not directly apply to settings in
which agents are focused on minimizing their own expected
costs, they do provide guidance for agent design. Even in

7Time constraints in bids were determined as follows. First, in a ran-
dom order, execution times consistent with the recipe’s precedence con-
straints were selected for the subacts covered by the bid; for each subact S,
a time point Ts was randomly chosen, uniformly distributed between the
subact’s GLB and LUB, and the effects of this assignment were propagated
through the partial-order network of precedence constraints (as described
in Section 4.1). Second, for each subact S, time constraints (simulating in-
teractions with the agent’s schedule of existing commitments) of the form
T ime(S) ≤ Ts + 10 and T ime(S) ≥ Ts − 10 were generated. Each
time constraint was included in the bid with probability equal to the DBC.



such settings, agents will want to identify solutions that are
individually rational. These results indicate that the fewer
constraints they place on their bids, the fewer bids they will
need to submit, as a group, to find a solution.

Experiment 3. The goal of the third experiment was to
determine how the density of bid constraints affects the cost
of an optimal solution, the time required to find an optimal
solution, and the time required to exhaust the search space
(which is necessary to determine optimality).
The parameters were chosen such that solutions were

generated in at least 90% of the runs for each DBC value.
The number of subacts was 30, the number of roles was 8,
the number of bids was 75, and the number of roles covered
by each bid ranged from 1 to 3 (uniformly distributed).
The results of the experiment are shown in Figure 6. Plot

(a) shows that the cost of an optimal solution rises as the
density of bid constraints rises; plot (b) shows that the time
required to find an optimal solution or to exhaust the search
space decreases as the density of bid constraints rises. In
both cases, the reason is that the presence of bid constraints
effectively shrinks the pool of awardable bid-sets. An opti-
mal solution in the absence of constraints might become an
inconsistent, and hence non-awardable bid-set in the pres-
ence of constraints.

Implications of the Results. The results of these exper-
iments suggest possible strategies that agents might em-
ploy when using the ICDP mechanism. For example,
suppose the individual contexts of the agents were such
that each agent could choose between making minimally-
constrained, higher-cost bids or maximally-constrained,
lower-cost bids. This would be the case if adding con-
straints could ensure that low-cost methods could be used
to do various tasks. In early iterations of the ICDP mech-
anism, agents might be encouraged to generate maximally-
constrained, lower-cost bids that could be examined quickly
to determine whether they yielded a solution of sufficiently
low cost. If not, agents could generate additional bids in-
volving fewer constraints, thereby enlarging the pool of
awardable bid-sets. As the pool of awardable bid-sets
grows, the time to carry out an exhaustive search grows.
However, the results of the first experiment (Figure 4) show
that the modified WD algorithm tends to find near-optimal
solutions very quickly; exhausting the search space tends to
provide only a minimal reduction in solution cost. Thus,
at each iteration, the modified WD algorithm could be run
until a solution is found with cost below some threshold or
until some time limit is reached.

6. Related Work

In Collins et al. [1], a Customer agent selects a recipe
and issues a call for bids from a set of Supplier agents.
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Figure 6. Plots from Experiment 3

Each bid is on a set of tasks, and specifies not only a price
for doing that set of tasks, but also a price for each task
if awarded separately. Bids may constrain task execution
times. The Customer agent uses a generalized simulated-
annealing search with heuristics based on cost, risk, feasi-
bility and task-coverage. The primary differences between
their work and ours are as follows. First, they do not bundle
tasks into roles and thus lose the corresponding computa-
tional advantage. Second, they allow the Customer agent
to use pieces of bids to construct awardable bid-sets; thus, a
bid on n items might be split into any one of 2n pieces. Fur-
thermore, the cost of any piece covering fewer than n items
is based on summing the individual costs of the correspond-
ing subacts and thus ignores any sub-additivity or super-
additivity relationships existing among them. (One of the
main purposes of a combinatorial auction is to take advan-
tage of such relationships.) Finally, because their heuristic
is based on a combination of risk, cost, feasibility and task-
coverage, their algorithm may explore vast regions of the
search space involving infeasible “solutions”, whereas we



restrict our search to the space of feasible bid-sets.

Walsh and Wellman [10], Kutanoglu and Wu [6], and
Fujishima et al. [2] present market-oriented solutions to a
range of combinatorial problems. Each approach involves
iterative auctions. Walsh andWellman [10] present a decen-
tralized, asynchronous protocol for allocating and schedul-
ing tasks. In their approach, each good (representing either
a physical resource or a service provided by some agent) is
auctioned in a separate (M+1)st-price auction. A separate
agent is dedicated to the production of each single unit of a
good. Auctions are run until they reach “quiescence” and
conditions are given under which quiescence necessarily
yields a valid solution. To handle time, they form (a subset
of) the cross product of the discrete time line with the set of
goods (resulting in a proliferation of goods, and hence auc-
tions) and introduce special “bundling arbitrageur” agents
responsible for procuring goods over various time intervals.
Our approach handles time constraints without such an ad-
verse computational impact.

Kutanoglu and Wu [6] use the iterative-auction approach
(but only a single auction) to solve a distributed resource-
scheduling problem in which a set of jobs must be per-
formed, each consisting of a set of operations, each op-
eration requiring a particular machine for some duration.
They associate an agent with each job and the set of bid-
dable items is the set of discrete machine/time-slot pairs,
each pair having an associated price. For each auction it-
eration, each agent generates a single bid; the auctioneer
examines the bids and then updates the prices in an attempt
to reduce resource conflicts. The procedure stops when the
auctioneer finds that all of the bids are compatible. The pri-
mary differences between our work and that of Kutanoglu
and Wu are: (1) they map agents to jobs in a one-to-one
fashion and use the auction to find sets of machine/time-
slot pairs to satisfy the needs of each job, whereas we use
an auction to find a mapping from agents to jobs; and (2)
their biddable items are machine/time-slot pairs, of which
there are very many, whereas our biddable items are roles,
of which there are comparatively few.

Fujishima et al. [2] present a “Virtual Simultaneous Auc-
tion” as an alternative to their winner-determination algo-
rithm for a combinatorial auction (described earlier in Sec-
tion 3.1). For each original bid, they create a virtual bidder
that tries to secure the items in that bid. “The simultane-
ous auction is repeated . . . until either an optimal allocation
is found or a pre-set time deadline is reached.” The virtual
bidders follow a simple strategy of incrementing their bids
if their previous bids were insufficient to acquire the de-
sired goods. Their experimental results showed that this ap-
proach was competitive with their basic algorithm, although
not quite as fast.

7. Conclusions

In this paper, we have presented a mechanism based on
a combinatorial auction that a group of agents may use to
solve the initial-commitment decision problem. To make
the ICDP mechanism computationally feasible for a larger
class of problems, we stipulated that agents bid on roles
(i.e., recipe-specific bundles of subacts). To enable agents
to tailor their bids to their schedules of existing commit-
ments, the ICDP mechanism allows agents to condition
their bids on various time constraints, requiring a modified
combinatorial-auction winner-determination algorithm
The ICDP mechanism distributes the computational bur-

den by making individual agents responsible for generating
bids and using a global computation to find an optimal com-
bination of bids.
In the future, we plan to focus on the bid-generation

process required by the ICDP mechanism. Horty and Pol-
lack [4] have initiated research into how an individual agent
may evaluate new opportunities for single-agent action in
the context of existing commitments. Generating bids for
the ICDP mechanism requires similar sorts of reasoning.
We also plan to explore distributing the global winner-
determination computation in the ICDP mechanism.
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