
Performance of Coordinating Concurrent Hierarchical
Planning Agents Using Summary Information

Bradley J. Clement and Edmund H. Durfee

Artificial Intelligence Laboratory, University of Michigan
1101 Beal Avenue, Ann Arbor, MI 48109-2110, USA

+1-734-764-2138�
bradc, durfee � @umich.edu

Abstract. Recent research has provided methods for coordinating the individu-
ally formed concurrent hierarchical plans (CHiPs) of a group of agents in a shared
environment. A reasonable criticism of this technique is that the summary infor-
mation can grow exponentially as it is propagated up a plan hierarchy. This paper
analyzes the complexity of the coordination problem to show that in spite of
this exponential growth, coordinating CHiPs at higher levels is still exponentially
cheaper than at lower levels. In addition, this paper offers heuristics, including
“fewest threats first” (FTF) and “expand most threats first” (EMTF), that take ad-
vantage of summary information to smartly direct the search for a global plan.
Experiments show that for a particular domain these heuristics greatly improve
the search for the optimal global plan compared to a “fewest alternatives first”
(FAF) heuristic that has been successful in Hierarchical Task Network (HTN)
Planning.

1 Introduction

In a shared environment with limited resources, agents may have enough informa-
tion about the environment to individually plan courses of action but may not be able
to anticipate how the actions of others will interfere with accomplishing their goals.
Prior techniques have enabled such agents to cooperatively seek merges of individual
plans that will accomplish all of their goals if possible [7]. This is done by identifying
conflicts and adding synchronization actions to the plans to avoid conflicts. Agents can
also interleave planning and merging, such that they propose next-step extensions to
their current plans and reconcile conflicts before considering extensions for subsequent
steps. By formulating extensions in terms of constraints rather than specific actions, a
“least commitment” policy can be retained [5]. In addition, recent research has pro-
vided these agents with tools to coordinate their hierarchical plans resulting in more
flexible abstract solutions that allow the agents to choose refinements of their actions
during execution that can withstand some amount of failure and uncertainty [3]. In ad-
dition to adding ordering constraints, agents may need to eliminate choices of subplans
for accomplishing subgoals. In order to reason about abstract plans to identify and re-
solve conflicts, information about how the abstract plans must or may be refined into

This work was supported by DARPA (F30602-98-2-0142).

coordination
levels

crisper
coordination

lower cost

more
flexibility

Fig. 1. Hierarchical plan coordination at multiple levels.

lower level actions must be available. This information can be summarized from the
conditions of subplans in its potential refinements.

It was previously shown that using this strategy to find abstract solutions to the
coordination problem can improve the overall performance of coordinating and exe-
cuting plans [3]. As depicted in Figure 1, coordination is cheaper at higher levels in
the hierarchy because there are fewer plan steps to reason about. Although anecdo-
tal evidence was given to show this, in this paper we reinforce the result with a more
rigorous complexity analysis. At lower levels in the hierarchy, however, more detailed
solutions of potential greater quality can be found, but only after greater coordination
effort. Depending on how costly computation time is compared to the cost of executing
the coordinated plans, coordinating at levels in between the top and bottom could likely
result in better overall performance. On the other hand, only coordinating at the lowest
level can guarantee finding the optimal solution.

If the goal is to find the optimal solution, a reasonable criticism might be that using
summary information to reason at abstract levels will be more costly than just coordi-
nating at the lowest level of primitive actions because of the overhead of deriving and
using summary information. The experimental results given here contradict this criti-
cism and show how reasoning about plans at abstract levels can better focus the search
to much more quickly find detailed solutions at the level of primitive actions.

This paper makes the following contributions:

– complexity analysis showing that finding global plans at higher levels can be expo-
nentially less expensive than at lower levels;

– search techniques and heuristics, including Fewest Threats First (FTF) and Expand
Most Threats First (EMTF), that take advantage of summary information;

– a description of a search algorithm that uses these heuristics for coordinating con-
current hierarchical plans; and

– preliminary experiments showing how these heurisitics can greatly save computa-
tion time in finding the optimal plan compared to a Fewest Alternatives First (FAF)
heuristic [4] that has been successful in Hierarchical Task Network (HTN) Planning
[8].

In addition, of potential interest to the planning community, we prove that resolving
threats among a set of unordered STRIPS operators is NP-complete. This result is nec-
essary our complexity analysis.

5

s0
0

1 2

3

4

s3
t2t1

Fig. 2. Transports � � and � � must pick up square and triangle evacuees respectively.

Reasoning about abstract plans with conditions of lower-level subplans has also
been used to efficiently guide the search through hierarchical plan spaces (HTN plan-
ning) for single agents [9]. This technique computes the external conditions of abstract
plans, which are the preconditions required external to the abstract plans in order for
them to be executed successfully. We redefine these as external preconditions and ad-
ditionally employ external postconditions, the effects seen external to an abstract plan.
Since the coordination problem requires reasoning about the concurrent execution of
actions, we also derive summary inconditions, the intermediate, or internal, conditions
that must or may be required to hold during an abstract plan step for the execution to
be successful. We have detailed a procedure for deriving these summary conditions,
proofs of their properties, and sound and complete mechanisms for determining legal
interactions of abstract plans based on summary conditions elsewhere in [2].

1.1 A Simple Example

This example illustrates how agents can coordinate their actions using summary infor-
mation to guide the search for a global plan that resolves conflicts and optimizes the
total completion time of the agents’ plans. In a non-combative evacuation operation
(NEO) domain, transport agents are responsible for visiting certain locations along re-
stricted routes to pick up evacuees and bring them back to safety points. To avoid the
risk of oncoming danger (from a typhoon or an enemy attack), the transports need to
coordinate in order to avoid collisions along the single lane routes and must accomplish
their goals as quickly as possible.

Suppose there are two transport agents, ��� and ��� , located at safety points ��	 and ��

respectively, and they are responsible for visiting the locations 0-2 and 1-4 respectively
as shown in Figure 2. Because there is overlap in the locations they must visit, they
must synchronize their individual plans in order to avoid a collision. The hierarchical
plan of ��� at the highest level is to evacuate the locations for which it is responsible.
This decomposes into a primitive action of moving to location 0 on the ring and then
to traverse the ring. It can choose to adopt a plan to travel in one direction around the
ring without switching directions, or it can choose to switch directions once. ��� can
then choose to either go clockwise or counterclockwise and, if switching, can choose to
switch directions at any location and travel to the farthest location it needs to visit from

where it switched. Once it has visited all the locations, it continues around until it can
go to the first safety point it finds. ��� has a similar plan.

Now let us say ��� collects summary information about ��� ’s plan and attempts to
coordinate it with its plan. Looking just at the highest level, ��� can determine that if it
finishes its plan before ��� even begins execution, then there will be no conflicts since
the external postconditions of its ������� � � ��� plan reveal that none of the routes are being
traversed. ��� then tells ��� to add a plan step to the beginning of its plan to 	
� � � for ��� ’s
signal, and ��� can append a � �
��� ��� subplan to the end of its plan. However, this coordi-
nated global plan is inefficient since there is no parallel action—the length ranges from
12 to 26 steps depending on how the agents decompose their plans during execution.
If the agents wish to get more concurrency, then they must expand the top-level plans
into more detailed plans and resolve conflicts there. At a mid-level expansion where
both agents move clockwise without switching directions, the algorithm finds a solu-
tion with a length of only eight steps. Now the search algorithm can eliminate the need
to resolve threats for any global plan whose length can be no shorter than eight. To find
the optimal solution, the agents must almost completely expand their hierarchies. This
is a plan of length seven where ��� moves clockwise until it reaches location ��
 , and ���
starts out clockwise, switches at location 4, and then winds up at ��	 .

1.2 Overview

In the next section, we describe how concurrent hierarchical plans can be coordinated
using summary information. Then we explain why it is easier to compute abstract solu-
tions at higher levels than at lower levels with a complexity analysis of the coordination
algorithm. Next we show experimental results verifying that summary information can
greatly improve the search for the optimal global plan even when it exists at the lowest
level of primitive actions.

2 Top-Down Coordination of Concurrent Hierarchical Plans

Our approach to coordinating concurrent hierarchical plans (CHiPs) is to first try to co-
ordinate the plans at the top-level of the hierarchies, then consider their subplans, and
iteratively expand selected subplans until a “feasible” solution is found. A general al-
gorithm for doing this is described in [3]. Here we briefly explain the basic mechanisms
for deriving and using summary information and then describe a specific algorithm we
use to evaluate the effectiveness of coordinating using summary information. All terms
and mechanisms mentioned here are formalized in [2].

2.1 CHiPs

As described here, hierarchical plans are non-primitive plans that each have their own
sets of conditions, a set of subplans, and a set of ordering constraints over the sub-
plans. These ordering constraints can be conjunctions of temporal interval relations [1]
or point relations over endpoints of plan execution time intervals. A primitive plan is
only different in that it has an empty set of subplans. In the style of STRIPS planning

external preconditions the conditions that must be met external to the execution of an abstract
plan for any decomposition of the plan in order for the execution to succeed

external postconditions the effects of a successful execution of an abstract plan for any decom-
position of the plan that are not undone by its execution (which includes any execution of
subplans in its decomposition)

summary preconditions the external preconditions computed for an abstract plan along with
������� � ���
	�� (��
 � � or ��� �) information for each condition2

summary inconditions the internal conditions computed for an abstract plan that include any
required conditions or effects that must hold within the interval of execution for some de-
composition of the plan along with ������� � ���
	�� (��
 � � or ��� �) and � � � ��� � (������� � � or
��� � � � � � ���) information for each condition

summary postconditions the external preconditions computed for an abstract plan along with
������� � ���
	�� (��
 � � or ��� �) information for each condition2

must property of a summary condition where the condition must hold for the execution of the
plan for any decomposition

may property of a summary condition where the condition must hold for the execution of the
plan for some decomposition

always property of a summary incondition where the condition must hold throughout the execu-
tion of the plan for any decomposition

sometimes property of a summary incondition where the condition must hold at some point
during the execution of the plan for some decomposition

clobber the effects of one plan’s execution negates a condition required by another plan causing
the plan to fail

achieve the effects of one plan’s execution asserts a condition required for another plan to be
successful

undo the effects of one plan’s execution negates a condition asserted by another plan
CanAnyWay(� ��� ��� , ���������) every plan in � � � ��� can be decomposed and executed in any way

according to the ordering constraints in �!�"����� , and all executions will succeed
MightSomeWay(� � � ��� , ���������) there is some decomposition and execution of each plan in

� � � ��� according to the ordering constraints in �!�����#� such that all executions succeed

Fig. 3. A review of terminology formalized in [2].

operators [6], each of these plans has sets of preconditions and effects.1 However, since
we necessarily worry about agents performing tasks in parallel, we also associate a set
of inconditions with each plan so that threats during the execution of a task can be
represented.

An agent’s plan library is a set of CHiPs, any of which could be part of the agent’s
current plan, and each plan in the hierarchy is either a primitive plan, an � � $

plan, or
an %�& plan. An � � $

plan decomposes into a set of plans that each must be accomplished
according to specified temporal constraints. An %�& plan decomposes into a set of plans
of which only one must be accomplished. So, for the example given in Section 1.1, there
is an %�& plan that would have subplans for traveling clockwise or counterclockwise, and
there are � � $

plans for chaining primitive level movements between locations to get a
transport around the ring.

1 These are not summary conditions.

2.2 Plan Summary Information

We derive summary conditions for CHiPs by propagating the conditions from the prim-
itive level up the hierarchy. The procedure is quick (��� ��� � ��� for

�
plans in the hierar-

chy each with � conditions) because the summary conditions of a plan are derived only
from its own conditions and the summary conditions of its immediate subplans. As
mentioned in the Section 1, summary preconditions, inconditions, and postconditions
are computed for each plan to represent the external preconditions, internal conditions,
and external postconditions respectively. Modal information about whether these con-
ditions � � � � or � �	� hold and whether they must hold throughout the plan’s execution
(��� 	 �	� � or ��%
� � � � � ���) is kept to reason about whether certain plan interactions must
or may occur.

2.3 Temporal Interactions of CHiPs

In conventional planning, we often speak of clobbering and achieving preconditions of
plans [10]. With CHiPs these notions are slightly different since inconditions can clob-
ber and be clobbered. We use these concepts to determine whether a summary precon-
dition of a plan should be a summary condition of its parent. A summary precondition
is an external precondition of its subplans, and what makes the precondition external is
that it is not achieved by another subplan—it needs to be met outside the scope of the
parent plan. A summary postcondition is external because it is a net effect of the execu-
tion of the subplans. Thus, we need to also determine when a postcondition is undone
by another subplan since a postcondition is not external if it is undone.

Determining these relationships helps us derive summary information, but it also
helps identify threats across the plan hierarchies of the agents. For example, plan � of
one agent cannot clobber a condition � of plan � of another agent if there is another plan
& ordered between � and � that achieves � for � . However, if plan & only � �	� achieve �
because � is a � �	� postcondition of & , then � threatens � . Reasoning about these kinds
of interactions, we can determine that a set of temporal relations can hold among plans
no matter how they are decomposed (
 � ��� � � � �	�) or that certain relations cannot
hold for any decomposition (� � � � � ��� %
� � � �	�). As the procedure for determining
these relations is similar to propagating summary information, its complexity is also
��� ��� � ��� for

�
plans with � conditions each [2].3

2.4 Top-Down Search Algorithm

Since an agent can determine whether a set of the agents’ abstract plans
 � ��� � � � �	�
or � �
� � ��� %
� � � ��� be executed successfully under particular ordering constraints,
we can integrate this into an algorithm that smartly searches for a consistent global plan
for a group of agents. The particular algorithm we describe here is sound and complete

3 The algorithm for determining ��� � � � � � � � ��� � � looks at all pairs of plans to detect if one
must clobber another. This is not a complete algorithm because it does not consider impossi-
bilities of satisfying combinations of threatened conditions. In Section 3 we show that this is
an intractable problem.

and returns the optimal global plan if it exists. The search starts out with the top-level
plans of each agent, which together represent the global plan. The algorithm tries to
find a solution at this level and then expands the hierarchies deeper and deeper until
the optimal solution is found or the search space has been exhausted. A pseudocode
description of the algorithm is given later in this section.

A state of the search is a partially elaborated global plan that we represent as a set of
� � $

plans (one for each agent), a set of temporal constraints, and a set of blocked plans.
The subplans of the � � $

plans are the leaves of the partially expanded hierarchies of
the agents. The set of temporal constraints includes synchronization constraints added
during the search in addition to those dictated by the agents’ individual hierarchical
plans. Blocked subplans keep track of pruned %�& subplans.

While one agent can be responsible for coordinating the plans of all agents in the
system, the agents can use the summary information to determine which subsets of
agents have locally conflicting plans and designate a coordinator for each localized
group. In addition, the decisions made during the search could be made decentrally.
The agents can negotiate over ordering constraints imposed, choices subplans to accom-
plish higher level plans, and which decompositions to explore first. While the algorithm
described here does not comment specific negotiation techniques, it does provide the
mechanics for identifying the choices over which the agents can negotiate.

The operators of the search are expanding non-primitive plans, blocking %�& sub-
plans, and adding temporal constraints on pairs of plans. When the agents expand one
of their plans, it is replaced by its subplans, and the ordering information is updated in
the global plan. ��& plans are only replaced by a subplan when all other subplans are
blocked. Blocking an %�& subplan can be effective in resolving a constraint in which the
other %�& subplans are not involved. This can lead to least commitment abstract solu-
tions that leave the agents flexibility in selecting among the multiple applicable remain-
ing subplans. The agents can take another approach by selecting subplans (effectively
blocking the others) to investigate choices that are given greater preference or are more
likely to resolve conflicts.

In the pseudocode below, the coordinating agent collects summary information
about the other agents’ plans as it decomposes them. The � � � � � keeps track of ex-
panded search states. If the
 � ��� � � � �	� relation holds for the search state, the Dom-
inates function determines if the current solutions are better for every agent than the
solution represented by the current search state and keeps it if the solution is not dom-
inated. If � �
� � ��� %
� � � �	� is false, then the search space represented by the current
search state can be pruned; otherwise, the operators mentioned above are applied to
generate new search states. Nondeterministic “Choose” functions determine how these
operators are applied. Our implementation uses heuristics specified in Section 2.5 to
determine what choices are made. When a plan is expanded or selected, the ordering
constraints for that plan must be updated for the subplans that replace it. The Update-
Order function accomplishes this.

Hierarchical Plan Coordination Algorithm

� � � ��� = �
for each agent ���

� � = get summary information for top-level plan of � �

� � � ��� = � � � ����� �
� � �

end for�
 �
 � =
�
(� � � ��� , � , �) ���� �
 � � ����� = �

loop
if �
 �
 � == �

return ��� ��
 � � �����
end if
(� ��� ��� , �!�"�!�#� , � � ��	�� � �) = Pop(�
 �
 �)
if CanAnyWay(����� � � ��� � � � � � , � ��� ��� , �!�"����� , � � �#	�� ���)��� ��
 � � ��� = (� � � ��� , ��������� , � � �#	�� ���)

if Dominates(�"� ��
 � � �!��� , ��� ��
 � � ���) == false��� �
 � � ����� = ��� ��
 � � �!����� � ��� ��
 � � �!� �
end if

end if
if MightSomeWay(����� � � ��� � � � � � , � � � ��� , ��������� , � � �#	�� ���)� � ��� � � ��� = Choose(

�
expand, select, block, constrain �)

if � � ��� � � ��� == expand
� � � � = ChooseAndPlan(� ��� ���)
if Exists(� � � �)

� � � �	� �

� � � � ��� = get summary information for
subplans of � ��� �

� � � ��� = � � � ����� � � � �	� �

� � � � ��� - � � � �
UpdateOrder(��������� , � � � � , � � � �	� �

� � � � ��� , � ��� ��� ���������)

end if
end if
if � � ��� � � ��� == select

� � � � = ChooseOrPlan(� � � ���)
if Exists(� � � �)

� � � �	� �

� � � � ��� = get summary information for
subplans of � ��� �

for each �
�� � � � ��
 � � � �	� �

� � � � ���
�
� ��� � �#	�� ��� = � � �#	�� ����� � � � �	� �

� � ��� ��� -

� �

� � ��� � ��
� � � ��� ��� = � � � ����� � �

� � � � � � - � ��� �
�
� � ��������� = �!�"�����
UpdateOrder(�
� � �!�"����� , � � � � ,

� �

� � � � � � , �)
InsertStateInQueue(�
 �
 � , �
� � � � � ��� , �
� � �!�"����� ,�
� ��� � �#	�� ���)

end for
end if

end if
if � � ��� � � ��� == block

� � � � = ChooseOrPlan(� � � ���)
if Exists(� � � �)

� � � �	� �

� � � � ��� = get summary information for
subplans of � ��� �

for each �
�� � � � ��
 � � � �	� �

� � � � ��� where �
�� � � � � �
 � � �#	�� ���
�
� ��� � �#	�� ��� = � � �#	�� ����� �

� � ��� �
�
� � ��������� = �!�"�����
if ��� �

� � ��� ����
 � ��� ��� �

� � � � ��� , �

� � ��� ��� �
 � � �#	�� ���

�
� � � � � ��� = � � � ����� � �

� � � � � � � - � � � �
UpdateOrder(�
� � �!�����#� , � ��� � ,

� �

� � ��� � � � , �)
else�
� � � � � ��� = � � � ���
end if

InsertStateInQueue(�
 �
 � , �
� � � � � ��� , �
� � �!�"����� ,�
� ��� � �#	�� ���)
end for

end if
end if
if � � ��� � � ��� == constrain

� � � � = ChoosePlan(� � � ���)
� � � � � = ChoosePlan(� � � ��� -

�
� ��� � �)	��!��� � � � ��� � = ChooseConstraint(

�
Start, End ������

, � , � , � , � ��� �
Start, End �)�
� � �!�"����� = �!�����#� ��	������ � � � ��� �

if Consistent(� � � ���������)
InsertStateInQueue(�
 �
 � , � � � ��� , � � � ��������� , � � �#	�� ���)

end if
end if

end if
end loop

Adding temporal constraints should only generate new search nodes when the or-
dering is consistent with the other global and local constraints. In essence, this operator
performs the work of merging non-hierarchical plans since it is used to find a syn-
chronization of the individual agents’ plans that are one level deep. In the pseudocode
above, the ChooseConstraint function nondeterministically investigates all orderings
(represented by point algebra constraints over the “Start” and “End” points of action in-
tervals), and inconsistent ordering constaints are pruned. However, in our implementa-
tion, we only investigate legal ordering constraints that resolve threats that are identified
by algorithms determining must/may achieves and clobbers relations among CHiPs. In
our experiments, we separated the search for synchronizations from the expansion and
selection of subplans. An outer search was used to explore the space of plans at differ-
ent levels of abstraction. For each state in the outer search, an inner search explores the
space of plan merges by resolving threats with ordering constraints.

The soundness and completeness of the coordination algorithm depends on the
soundness and completeness of identifying solutions and the complete exploration of
the search space. Each search state is tested by the
 � ��� � � � �	� procedure to deter-
mine whether it is a solution. The
 � ��� � � � �	� procedure is shown to be sound and
complete in [2]. Although the algorithm for determining � � �
� � ��� %
� � � �	� is only
complete for a total ordering of CHiPs, it is used to prune invalid branches in the search
space, so it is enough that it is sound [2]. In order to explore the search space completely,
the coordinator would need to consider all synchronizations of all possible decompo-
sitions of each of the agents’ top-level plans. We assume that the plan hierarchy of
each agent is finite in its decomposition, so when the coordinator nondeterministically
expands abstract plans, eventually all abstract plans will be replaced with primitive de-
compositions. Likewise, eventually all %�& plans will be replaced with subplan choices,
and since new search states are generated and added to the queue for each subplan of
an %�& plan, all possible decompositions of the agents’ top-level plans are explored. The
Choose function for selecting operators nondeterministically explores any synchroniza-
tion of the expanded plans in conjunction with the ChooseConstraint function, so the
search is complete.

2.5 Heuristics Using Summary Information

As discussed in [3], summary information is valuable for finding coordinated plans at
abstract levels. However, this information can also be valuable in directing the search to
avoid branches in the search space that lead to inconsistent or suboptimal global plans.
Inconsistent global plans can be pruned away at the abstract level by doing a quick
check to see if � � � � ��� %
� � � �	� is false. In terms of the number of states expanded
during the search, employing this technique will always do at least as well as not us-
ing it. Another strategy that is employed is to first expand plans involved in the most
threats. For the sake of completeness, the order of plan expansions does not matter as
long as they are all expanded at some point when the search trail cannot be pruned.
But, employing the “expand on most threats first” (EMTF) heuristic aims at driving the
search down through the hierarchy to find the subplan(s) causing conflicts with others
so that they can be resolved more quickly. This is similar to a most-constrained variable
heuristic often employed in constraint satisfaction problems. Another heuristic used in
parallel in our experiments is “fewest threats first” (FTF). Here the search orders nodes
in the outer search queue by ascending numbers of threats to resolve. By trying to re-
solve the threats of global plans with fewer conflicts, it is hoped that solutions can be
found more quickly. So, EMTF is a heurisitic ordering plans to expand, and FTF orders
subplan choices and, thus, search states to investigate. In addition, in trying to find op-
timal solutions in the style of a branch-and-bound search, we use the cost of abstract
solutions to prune away branches of the search space whose minimum cost is greater
than the maximum cost of the current best solution. This technique can be used without
summary information, but then only solutions at the primitive level can be used to prune
the search space. Again, pruning abstract plans can only help improve the search. We
report experimental results in Section 4 that show that these techniques and heuristics
can greatly improve coordination performance.

3 Complexity

In [3], anecdotal evidence was given to show that coordinating at higher levels of ab-
straction is less costly because there are fewer plan steps. But, even though there are
fewer plans at higher levels, those plans have greater numbers of summary conditions to
reason about because they are collected from the much greater set of plans below. Here
we argue that even in the worst case where summary conditions increase exponentially
up the hierarchy, finding solutions at abstract levels is expected to be exponentially
cheaper than at lower levels.

The procedure for deriving summary conditions works by basically propagating the
conditions from the primitives up the hierarchy to the most abstract plans. Because
the conditions of any non-primitive plan depend only on those of its immediate sub-
plans, deriving summary conditions can be done quickly. In [2], it was reported that
the complexity of this is ��� � � � % � � ��� � � � for

�
non-primitive plans with � conditions

in each plan’s summary pre-, in-, and postconditions. This, however, does not tell us
how the complexity grows as a result of summary conditions accumulating in greater
and greater sets as they are propagated up the hierarchy. If ��� is the greatest number
of literals in any plan’s pre-, in-, and postconditions, then the complexity is ��� ��� ��� � � .

Here, the worst case is when all plans are � � $
plans, and the conditions of each plan are

completely different than those of any other plan. In this way, the maximum number
of conditions are propagated up the hierarchy and all of the expanded plans must be
synchronized to avoid conflicts. Consider a global hierarchy with

�
total plans,

�
sub-

plans for each non-primitive plan, and depth
$
.4 At each level, the procedure tests each

condition in each summary condition set of the
�

subplans of each plan at that level
to see if they are achieved/clobbered/undone by any other subplan attempting to assert
that condition. Thus, a constant number of operations must be performed when com-
paring each condition in each subplan with every other condition in every other subplan
resulting in � � � � � � � operations for each plan with

�
subplans each having ��� � � sum-

mary conditions. So, as shown in Figure 4, at the next-to-bottom depth level
$�� � , each

of the
�������

plans has
�

primitive subplans each with ��� � � � conditions. Thus, ��� � � ��� � �
operations are performed for each of the

�	���
�
plans for a total of ��� ��������� � ��� � � op-

erations for that level. At level
$�� � , there are

�	��� �
plans, and the number of con-

ditions that must be compared among their subplans at level
$
� � additionally in-

cludes those propagated from the primitive level for a total of
������ �

�� � conditions.

Thus, � � ����� � � � � ����� � ��� � ��� operations are performed at level
$�� � . This generalizes

to ����� ���������� � � � � � ����� � �
� ��� � ��� operations for the entire hierarchy. We can reduce this to
��� � � ��� � � ���
������ � � ��� � � ���
� ��� � � � ��� � � , and since

��� ��� ��� � , the complexity can be
simply stated as ��� ��� ��� � � .

In this worst case, the number of summary conditions for an abstract plan grows
exponentially as you go up the hierarchy as shown in the second column of Figure
4. At the primitive level

$
, each plan has only
�� � � � � ��� � conditions, and there are

����� � ��� � ��� � ��� � summary conditions for each plan at level
$�� � and ��� � � ��� � . There

are at most
 � � � , or � � ��� ��� � , summary conditions at the root of the hierarchy—this is
the total number of pre-, in-, and postconditions in the hierarchy. One might argue that
in such cases deriving summary information only increases computation. But, actually,
exponential computation time is saved when decisions based on summary information
can be made at abstract levels because the complexity from exponential growth in the
number of plans down the hierarchy outweighs the complexity of conditions growing
exponentially up the hierarchy. This is because, as will be shown, the only known al-
gorithms for synchronizing plan steps to avoid conflicts are exponential with respect to
the number of plans expanded in the hierarchy, which also grows exponentially with the
depth. This exponential growth down the hierarchy outweighs the exponential growth
of summary conditions in plans up the hierarchy. So the improvements made using
summary information can yield exponential savings while only incurring a small poly-
nomial overhead in deriving and using summary information.

Let’s make this more clear. At the
�
th depth level in the hierarchy, each of the

��� � � � plans has ��� ����� � ��� ��� summary conditions in the worst case. As described in
[2], the algorithm to check whether a particular ordering of

�
plan steps (each with

� summary conditions) results in all plans executing successfully is similar to deriv-
ing their collective summary information and has a complexity of ��� ��� � � � . Check-
ing such a synchronization for the plans at any level

�
in a plan hierarchy is, thus,

��� � � � � � ��� � � ��� � ��� ��� � � � ��� � � . So, since
�

drops out, the complexity of doing this check

4 We consider the root at depth level 0 and the leaves at level � .

1 2 b

1 2 b

…

...…

… …..

…………...…..…...

d

d-1

d-2

2

1

0

level

O(bd-1b2c'2)
= O(bd+1c'2)

O(bd-2b2(bc')2)
= O(bd+2c'2)

O(b2b2(bd-3c')2)
= O(b2d-2c'2)

O(bb2(bd-2c')2)
= O(b2d-1c'2)

O(b2(bd-1c')2)
= O(b2dc'2)

O(1)

#operations to
derive summ. info.

O(bd!)

O(bd-1!)

O(bd-2!)

O(b2!)

O(b!)

1

solution
space

3c'bd

3c'+b3c'
= O(bc')

bd-1

O(b2c')bd-2

O(bd-2c')b2

O(bd-1c')b

O(bdc')1

#conds /
plan

#plans

1 2 b…

……....

………

O(b2dc'2)

O(b2(d-1)(bc')2)
= O(b2dc'2)

O(b2(d-2)(b2c')2)
= O(b2dc'2)

O(b4(b(d-2)c')2)
= O(b2dc'2)

O(b2(b(d-1)c')2)
= O(b2dc'2)

O(1)

#test operations /
solution candidate

Fig. 4. The table gives the number of plans and summary conditions for each plan at some level of
expansion of a global plan hierarchy (with branching factor �) where each plan has 	 � conditions
in each set of pre-, in-, and postconditions. The number of operations to derive summary infor-
mation for all of the plans at a particular depth level is the product of the number of plans at that
level, the square of the number of subplans per plan, and the square of the number of conditions
per subplan. The number of operations to check if a candidate expansion under particular order-
ing constraints is a solution is on the order of the square of the product of the number of plans
and the number of summary conditions per plan at that level of expansion. The solution space is
the number of temporal orderings of the expanded plans (approximated by the factorial).

is independent of the depth level. In Figure 4, this is shown in the fifth column of the
table where the number of operations is the same at each level. But, there is a huge
space of

��� � ��� � � � ��� � sequential orderings5 of the
�

plans at level
�

to potentially
check to find a valid synchronization.6 Thus, the search space grows doubly exponen-
tially down the hierarchy despite the worst case when the number of conditions grows
exponentially up the hierarchy. This argument assumes that finding a valid synchroniza-
tion is intractable for larger numbers of plan steps, so we show that it is actually NP-
complete. We reduce HAMILTONIAN PATH to the THREAT RESOLUTION problem
for STRIPS planning and claim that a similar reduction can be done for our problem
that allows concurrent execution.

Theorem THREAT RESOLUTION is NP-complete. This is the problem of determin-
ing whether there is a set of ordering constraints that can be added to a partial order

5 There are more for other orderings allowing for concurrent execution.
6 This is why Georgeff[7] chose to cluster multiple operators into “critical regions” and synchro-

nize the (fewer) regions since there would be many fewer interleavings to check. By exploiting
the hierarchical structure of plans, we use the “clusters” predefined in the hierarchy to this kind
of advantage without needing to cluster from the bottom up.

STRIPS plan such that no operator’s preconditions are threatened by another operator’s
effects.

Proof If there is a set of ordering constraints that will resolve all threats, then there is
at least one corresponding total order where there are no threats. Thus, the problem is
in NP since orderings of operators can be chosen non-deterministically, and threats can
be identified in polynomial time.

Given a directed graph � � ������� � with nodes � � � � � ���	��������
��
� and edges
� � ��� � �����	��� � � ��� (a set of ordered pairs of nodes), HAMILTONIAN PATH is the
problem that asks if there is a path that visits each node exactly once. We build an in-
stance of THREAT RESOLUTION (a partial order plan) by creating an operator for
each node � � . The only precondition of the operator is

� � � � , representing the accessi-
bility of the node. There is a postcondition

� ��� � for each edge ��� � � � � ����� � , and a
postcondition

� � � � for all other nodes for which there is no edge from � � . All operators
are unordered and the initial state and goal state is empty.

If there is a Hamiltonian path for the graph, then the operators for the nodes can be
ordered the same as the nodes in the path because the accessibility preconditions of each
operator will be satisfied by the previous operator. If there is no Hamiltonian path for
the graph, then there is no consistent ordering of the operators. We know this because
there is a one-to-one mapping from an ordering of nodes to an ordering of operators. If
the ordering of the nodes is such that there is no edge from one to a succeeding node,
then the accessibility precondition of the corresponding operator will be clobbered. In
addition, for any walk through the graph, there eventually will be an unvisited node
for which there is no edge from the last node visited. In this case, the unvisited node
will be clobbered because its accessibility precondition will not be met. Thus, THREAT
RESOLUTION is NP-hard, and since it was shown to be in NP, it is NP-complete. �

In order to show that resolving threats among CHiPs is also NP-complete, we only
need to add inconditions to each operator that prevent concurrent action. This can be
done by adding

� � � � for � � and
� ��� � for every other � � ��� to the inconditions of

the operator corresponding to � � for each � � ��� . This ensures that the only temporal
relations that can hold between any pair of operators are

� �	� %�& � , ��� ����& , � ��� ��� , or� � � � ��� , and the one-to-one mapping from paths in the graph to sequences of operators
is preserved.

There are only � � $
plans in this worst case. In the case that there are %�& plans, by

similar argument, being able to prune branches at higher levels based on summary in-
formation will greatly improve the search despite the overhead of deriving and using
summary conditions. Obviously, the computational savings of using summary infor-
mation will be even greater when there are conditions common to plans on the same
level, and the number of summary conditions does not grow exponentially up the hier-
archy. Still, surely there are cases where none of the details of the plan hierarchy can
be ignored, and summary information would incur unnecessary overhead, but when the
size of problem instances are scaled, dealing with these details will likely be infeasible
anyway.

4 Experiments

The experiments described here used the coordination algorithm described in Section
2.4 with all of the stated heuristics. It was compared to another top-down search al-
gorithm that did not use summary information but used a FAF (“fewest alternatives
first”) heuristic [4] to decide the order in which %�& subplans are investigated. This sim-
ply means we chose to expand the %�& subplan that had the fewest number of subplan
choices. Since no summary information was used, threats could only be resolved at
primitive levels. The FAF heuristic has been shown to be effective in the HTN planning
domain to get large improvements in search time [8], and a similar approach to ours
shows how heuristics using external conditions can be used to get exponential improve-
ments over FAF [9]. We show here that summary information can also be used to gain
significant improvements over FAF. Certainly, a comparison of our approach with that
in [9] could help shed light on the benefits and disadvantages of varying amounts of
summary information. This is a future consideration of this work.

The problems were hand-crafted from the NEO domain, described in the example
in the Introduction. Agents had plans to either visit their specified locations by travel-
ing in one direction only or switching directions at some location. These choices expand
into choices to begin traveling clockwise or counterclockwise. For the branch where the
agent switches directions, it can choose to change directions at any location it is speci-
fied to visit. Primitive actions are to move between adjacent locations without running
into another agent. Optimality is measured as the total completions time where each
move has a uniform time cost. We chose problems with four, six, and eight locations;
with two and three agents; and with no, some, and complete overlap in the locations the
agents visited. Results of the experiments are given in Figure 5.

For problems with only four locations and two agents, both algorithms found the
optimal solution quickly. For more complex algorithms, the heuristics using summary
information appear to make great improvements over FAF, which could only solve six
of the 21 problems within memory constraints. These results are by no means conclu-
sive, but they do show promise for search based on summary information. For most of
these problems, coordinating at the primitive level was intractable. In most cases, the
algorithm using summary information was able to find an abstract solution quickly.

5 Conclusions and Future Work

We have shown that summary information can can find solutions at higher levels ex-
ponentially more quickly than at lower levels; and we have identified heuristics and
search techniques that can take advantage of summary information in finding coor-
dinated plans. In addition, we have characterized a coordination algorithm that takes
advantage of these search techniques and experimentally shown how it can make large
improvements over an FAF heuristic in finding optimal coordinated plans. More work
is needed to show that these results translate to different domains, and future consider-
ations include comparing this approach to other planning heuristics that capitalize on
domain knowledge in order to better understand the relationship between plan struc-
ture and search performance. We expect the benefits of using summary information to

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Problems

C
P

U
 T

im
e

FAF

Summary Information

Fig. 5. CPU time measurements comparing summary information heuristics to FAF for finding
optimal solutions. FAF only solved problems 1-5 and 7; others were killed when the search queue
was too large to fit in memory.

also apply to hierarchical planning and wish to compare these techniques with current
heuristics for concurrent hierarchical planning.

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11):832–843, November 1983.

2. B. Clement and E. Durfee. Theory for coordinating concurrent hierarchical planning agents.
In Proc. AAAI, 1999.

3. B. Clement and E. Durfee. Top-down search for coordinating the hierarchical plans of mul-
tiple agents. In Proc. Intl. Conf. Autonomous Agents, 1999.

4. K. Currie and A. Tate. O-plan: The open planning architecture. Artificial Intelligence, 52:49–
86, 1991.

5. E. Ephrati and J. Rosenschein. Divide and conquer in multi-agent planning. In Proc. AAAI,
pages 375–380, July 1994.

6. R. E. Fikes and Nilsson N. J. Strips: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189–208, 1971.

7. M. P. Georgeff. Communication and interaction in multiagent planning. In Proc. AAAI,
pages 125–129, 1983.

8. R. Tsuneto, J. Hendler, and D. Nau. Space-size minimizationin refinement planning. In Proc.
Fourth European Conference on Planning, 1997.

9. R. Tsuneto, J. Hendler, and D. Nau. Analyzing external conditions to improve the efficiency
of htn planning. In Proc. AAAI, pages 913–920, 1998.

10. D. Weld. An introduction to least commitment planning. AI Magazine, 15(4):27–61, 1994.

