
SOFTWARE OPTIMIZATION OF H.263 VIDEO ENCODER ON PENTIUM
PROCESSOR WITH MMX TECHNOLOGY

Pohsiang Hsu and K. J. Ray Liu

Department of Electrical and Computer Engineering
University of Maryland at College Park

College Park, Maryland, USA

ABSTRACT
A key enabling technology for the prolikration of multima
dia PC’s is the availability of fast video codeca, which are
the basic building blocks of many new multimedia applica-
tions. Since most industrial video coding standards (e.g.,
MPEG1, MPEG2, H.261, H.263, etc.) only specify the de-
coder syntax, there are a lot of moms for optimization in
a practical implementation. When considering a specific
hardware platform like the PC, the algorithmic optimiza-
tion must be considered in taudem with the architecture
of the PC. Specifically, an algorithm that is optimal in the
sense of number of operations needed may not be the fastest
implementation on the PC. This is because special instruc-
tions are available which can perform several operations at
once under special circumstances. In this work, we describe
a fast implementation of H.263 video encoder for the Pen-
tium processor with MMX technology.

1. INTRODUCTION

Recent advances in the personal computer industry have
provided the neceSSaPy computation power and storage re-
quired by many multimedia applications. These tremen-
dous technological advances have enabled the PCs to per-
form image/video compression and decompression efliciently
in software only. Some advantages of implementing the
video codec in software for the PC are the elimination of ax-
pensive hardware, the ease of upgrade through replacement
of software modules, and the wide availability of PCs.

Video coding requires tremendous amount of compu-
tations. There have been many fast algorithms proposed
in the literature to ease the computation load for various
components in a video codec. Typically these fast algo-
rithms are proposed and compared with each other by U+
ing the total number of operations as a criterion assuming
a general-purpose processor without considering the target
hardware platform. However, the comparisons cau be mis-
leadiig when we consider a software implementation on a
specific hardware platform. This is because each m i w p m
cessor has it’s own strengths and weaknesses which places
bias on certain operations. For axample, some microproces-
sors may have dedicated hardware to execute the multiply-
mumulate operation in one cycle. Then, it will be ad-
vantageous to arrange an algorithm such that the multiply-
accumulate operation occurs frequently. Thus, we see that
the design of a fast s o h e only video wdec is highly de-

pendent on the hardware platform. Each component of the
video codec must be properly selected to take maximum
advantage of the underlying hardware.

In this paper, we present a fast software implementa-
tion of a R.263 video encoder on the Intel Pentium with
MMX technology processor, which powers a vast majority
of the computers in the world. The optimization of the
encoder is performed iteratively through profiling and re-
coding to speed up the inner loops. lhditional optimiz%
tion techniques were used along with the MMX instructions
to achieve speed-up. Optimization techniques such as re-
m o d s of loop invariant computation, strength reduction,
loop jamming, loop unrolling, and table lookup were used.
Loop unrolling was used often in tight loops with MMX in-
structions to achieve speed-up through so-e pipelining.

2. MMX TECHNOLOGY

MMX technology is an extension to the Intel Architecture
whose aim is to improve the perhrmance of multimedia
and communications algorithms. With the addition of the
MMX technology comes fifty-seven new instructions, and
eight new 64bit registers. The MMX instruction set was
designed by analyzing a broad range of dimare applica-
tions in the field of multimedia and communications. In
the analysis of these applications &om cent domains,
it is found that certain common characmistics exist fw a
majority of the core time-consuming code sequences. Fkom
on these observations, it was found that a salient feature of
many multimedia algorithms was the execution of the same
set of operations on a large number of small data elements.
Therefore, the MMX technology adopted the SIMD (!3iq.de
Instruction, Multiple Data) architecture to enable exploita-
tion of the data parallelism inherent in these applications.

The new set of SIMD instructions defined by MMX
technology performs parallel operations on multiple data
elements packed into the 64bit register. Three new packed
data types and the 64-bit quad-word are ddned. The
packed data types contain several smaller fixed-point data
elements. The three packed data types are packed byte,
packed word, and packed doubleword. Basically, packed
byte, word, or double word contains eight bytes, four words,
or fwo doublewords, respectively. The data inside a MMX
register is interpreted as one of these four new types d e
pending on the executed instruction. New instructions in-
troduced by the MMX technology includes packed arith-

0-7803-6536-4/00/$10.00 (c) 2000 IEEE 103

http://3iq.de

metic instructions, saturating arithmetic instructions, data
manipulation instructions, and logical instructions.

The packed arithmetic allows the same arithmetic o p
erations to be applied to each individual data element of a
packed data type in parallel. Another key feature provided
by the MMX instructions is the ability to perform signed
or unsigned saturating arithmetic on each data elements of
a packed data type in parallel. In conventional fixed-point
arithmetic, we can only obtain the correct lawer order bits
when overflow occurs. On the other hand, saturating arith-
metic clips the result to the largest or the smallest pos-
sible value for the given data type when overflow occurs.
Saturating arithmetic is found to be very usef'ul in image
processing since it eliminates the clipping operations found
at the end of most image processing operations. The data
manipulation instructions provided by MMX technology are
for conversion between the new data types. These instnrc-
tions are very important when an algorithm requires higher
fixed-point precision in its intermediate stages. The pack
instructions convert a bigger packed data type to a smaller
packed data type while the unpack instructions convert a
smaller packed data type to a bigger packed data type. In
addition, the unpack instruction can perform an interleaved
merge operation which c&~l be used dc ien t to perform in-
sertion, transposition, and other data manipulation oper*
tions.

3. H.263 ENCODER IMPLEMENTATION
DETAIL

The major computational blocks in a H.263 video encoder
are motion estimation, motion compensation, DCT / IDCT,
q u a n t i z a t i o n / ~ ~ t ~ t i o n , entropy coding, and inter/in*
coding. Among these functional blocks, motion estimation
and DCT/IDCT are typically the most computational in-
tensive portion of the encoder. To get an idea of the com-
putational load distribution of the functional blocks from a
typical H.263 encoder, we encoded a video sequence using
the ITU TMN H.263 video encoder provided by Telenor to
obtain a profile of the encoding computational load. In-
tel's V-Tune sofkware package, which is a visual o p t i m b
tion/pro%ng tool, was used to monitor the encoding pro-
cess. In Fig 1, we show the distribution of CPU load ob
tained by the profiling. Indeed, we can see that the motion
estimation and the DCT/IDCT are the most time consum-
ing portions where the motion estimation occupies a mi+
jority of the CPU power.

H.263 uses block matching motion estimation and com-
pensation to exploit the temporal mela t ion between ad-
jacent frames. Various block matching algorithms has been
proposed in the literature and basically they mer in the
matching criteria, search strategy, or block size. The method
that the TMN H.263 Encoder employs is the full search
block matching algorithm using sum of absolute diikence
(SAD) as the matching criterion. This method guarantees
a global m i n i u m by exhaustively comparing all possible
candidates in the search space. However, the complexity
of such an search is prohibitively high as we can see from
Fig.
implementation.

1 which makes it impractical for real time s o a m

Many fast blocking matching techniques have been pro-

Mfb!im d TMNH289 EReodn C F U h d
80

... -

.

... -

... -

... 1 ... I
..... ... i

Figure 1: Distribution of CPU Load for TMN H.263 Video
Encoder. The abbreviations ME, MC, Q/DQ, stands for
Motion Estimation, Motion Compensation, and Quantizrtr
tion/Dequantization, respectively.

posed in the literature to reduce the complexity of the mo-
tion vector search by trading off the prediction e8iciency.
These techniques can be divided into two categories namely
fast matching or fast search. In fast matching, different
matching criteria that requires fewer computations [6] than
the sum of absolute di&rence (SAD) or the mean square
error (MSE) are used. In fast search, the SAD or MSE cri-
teria is typically still used but the average number of points
searched is smaller the total number of points in the entire
search space [5] [4] [7].

In our video encoder, we employed a fast search block
matching that is based on the three step search [5]. In
this scheme, we start our search at the center of the search
region. h m the starting point, we search its eight sur-
rounding neighbors to find the best matching out of all nine
points. If the starting point was found as the best match,
we stop the process and declare it as the motion vector.
Otherwise, we set the newly found best match as the new
starting point and repeating the process over again. We
note that the computation of the matching criteria for the
eight neighboring points of a starting point might be need
in the search process of future starting points due to over-
lap. Therefore, the computed matching scores are stored so
that they can be access instead of computed later if needed.
Along with the searching strategy, we tried several diEerent
matching criterions including the MSE, MAD, and the error
variance. In terms of computational complexity, the MAD
matching criterion required the least amount of computa-
tion. However, the m r variance matching criterion which
is the variance of the difFerence between the block and its
prediction resulted in better prediction among the three.
We have implemented the MAD and m r variance match-
ing m e a " using MMX instructions, which significantly
improved the speed of these operations. The computation
of the MAD matching criterion involves evaluation of the

0-7803-6536-4/00/$10.00 (c) 2000 IEEE 104

following types of arithmetic operation:

where each element of z and g are eight-bit quantities. Since
the same arithmetic operation is applied to each element
independent of other elements, we can take advantage of
the inherent instruction level parallelism through MMX in-
structions. We note that the resulting dynamic range of
subtraction between two eight bits unsigned numbens is nine
bits. Therefore, if we perform full precision subtraction with
2 and y, we must work with 16-bits quantities which reduces
the p a " to four instead of eight. However, the ab-
lute difference between two &bits numbem 2 and y can be
performed in 8-bits precision using saturating arithmetic as
follows. We first compute x - 1 and y - 2 using saturating
arithmetic and then we logically OR the two difference to-
gether to form the absolute dif€erence. If 2 equals to g, then
the computation produces the corm3 result. If 2 does not
equals to y, we note that one of the two quantities 2-y and
y - E is the absolute difference while the other one will be
saturated to zero. Thus the m e c t result can be obtained
by logically OR the two differences together. Therefore,
we can perform the absolute Werence using eight-bit pre-
cision, which will allow us to work on eight elements at a
time.

In order to perform motion estimation, we must gen-
erate each candidate blocks through motion compensation
followed by computation of the matching criterion. Typ
id ly , the motion vector search is done using full integer
accuracy until the best match is found. Then, a half pixel
(i.e. 0.5) motion vector search is done centered on the best
integer motion vector. Thus, we must generate the eight
candidate half pixel blocks using bilinear interpolation at
the end of the best integer motion vector search to find
the best half pixel accurate motion vector. This process in-
volves averaging two pixels or four pixels to find the missing
pixels where special attention must be paid to ensure proper
rounding is performed. We can organize the computation
into three cases according to the motion vector. In the first
case, only the vertical component of the motion vector con-
tains a half pixel component. In the second case, only the
horizontal component of the motion vector contains a half
pixel component. In the third case, both the horizontal
and vertical components of the motion vector contain half
pixel components. For the .first case, we need to perform
averaging across adjacent rows to find the predicted value.
For the second case, we need to perform averaging across
adjacent columns to find the predicted value. For the third
case, we need to perform averaging aaoss the adjacent r m
and columns to find the predicted value.

We take advantage of the MMX technology to perform
the bilinear interpolation in the motion compensation pro-
cess. Let's consider the first case where we are averaging
across the rows to obtain the predicted value. Ideally, we
want to take advantage of the instruction level parallelism
by performing the averaging process on eight pixels on two
adjacent r m at a time. However, We first note that the
additions can not be performed on the eight elements in par-
allel because of possible overflow. Furthermore, the MMX

technology does not support parallel shiR on byte elements
(the smallest size it support is on word elements). Thus,
in a straightforward implementation, we will have to con-
vert the pixel from an eight-bit quantity to a sixteen-bit
quantity, which reduce the parallelism from eight to four.

Fortunately, there is another way to perform this oper-
ation while preserving the parallelism to eight and achieve
proper rounding at the same time. Let's consider the case
of averaging Dwo integers XI and Xa to form Y. S u p
pose we simply perform the following operations to form
YI, Y1 = XI >> 1 + X2 >> 1, where >> indicates a right
shift. Comparing Y and YI reveals that the following relilr
tionship hold, Y = XI >> 1 +X2 >> 1 +Z, where Z is the
logical OR of the least significant bit of XI and X2. Based
on this observation, we can perform the averaging of two
arrays of eight pixels in the following way to preserve the
maximum parallelism of eight. First, we construct a new
array whose element contains the logical ,OR of the least
significant bit for the corresponding elements of the two ar-
rays using the 64 bit logical OR and 64 bit logical AND
instructions provided by MMX technology. In essence, this
step generates an array 2. Next, we need to perform the
shift operation on each byte element of the array. As we
have pointed out, we can not perform parallel shift on byte
elements directly. However, this can be done in two steps
since we are working on eight bytes at a time. First, we zero
out the least significant bit of each byte element in the two
input arrays. Then, we simply regard the eight bytes as one
64bit quantity and perform a 64 bit logical shift by one to
obtain the desired result. Afterwards, the three arrays are
added in p a l l e l to get the final result. Similarly, the aver-
aging process for the second case can be done in the same
way by first transposing the block of data. Furthermore,
the third case can be computed in a similar manner by sep-
arating the computation between the two least significant
bits and the rest.

The H.263 encoder uses DCT to reduce the spatial r e
dundancy of the video sequence. The DCT is popular in
image compression because it achieves good energy com-
paction and it has many fast algorithms available. For
our encoder, the direct fast 2-D DCT developed by Feig
[SI and the scaled 1-D DCT developed by Arai, Agui, and
Nakajima [9] were considered as candidates. The Feig 2-D
DCT is the most efficient algorithm proposed in the liter-
ature in terms of number of operations. It is a true 2-D
method that requires 54 multiplications, 462 additions, and
six multiplications by 1/2 which can be done by arithmetic
shats. On the other hand, the most efficient 1-D DCT
proposed in the literature is by Arai, Agui, and Nakajima.
This method requires 13 multiplications and 29 additions.
However, eight of the thirteen multiplications can be ab-
sorbed into the quantization stage and thus the 1-D DCT
can be computed with 5 multiplications and 29 additions.
Therefore, the 2-D DCT can be computed by applying this
fast 1-D DCT on the row8 and the columns using a tw
tal of 80 multiplications and 464 additions. This is the best
known approach for computing a separable 2-D scaled DCT.
Therefore, the computational complexity of the separable
approach is higher than the direct 2-D approach. However,
in terms of implementation, the 1-D DCT approach was
better suited for MMX instructions than the direct 2-D a p

0-7803-6536-4/00/$10.00 (c) 2000 IEEE 105

Table 1: Speed Comparison between H.263 TMN encuder
and our optimized H.263 encoder. The amount of time
needed to encode 100 frames on Pentium 200 MHz with
MMX is Shawn in Time 1 and on Pentium I1 400 M&
with MMX is shown in Time 2. Sequence A denotes Mise
America and sequence B denotes Carphone.

proach due to the computational flaw. The separable 2-D
DCT was implemented in assembly and taka advantage of
the MMX instructions. The capabilities to multiply 8~v-
eral elements together in parallel and multiply/accumulate
were provided by the MMX technology, which we found to
be extremely useful.

We compared the speed of our optimized implementa-
tion of a H.263 encoder against the TMN H.263 encoder.
Bbr comparison, both encoders were used to compress 100
frames of two test sequences and the total time needed wag
recorded. The hardware platforms used were a Pentium
200 MHz with MMX and a Pentium II 400 MHz computer
and the results are summhed in lbble 3. As we cas see,
the TMN encoder compresses only two frames per second
on the Pentium 200 MHz. Mowover, the number of frames
compressed per second will be significantly lmvered on real
communications applications due to the fact that the CPU
power have to be distributed among many processes instead
of just on the video encoder. On the other hand, our o p
timized encodes compresses about 23 frames per second on
the same platform, which is about 10 times faster the TMN
encoder. The distribution of the CPU load for our opti-
mized H.263 encoder is shown in Fig. 2.

As we can see, the optimized encoder is fast enough
so that the CPU cm be s h e d with d e r prooesses and
we still can obtain good & m e rate. The drawback of our
optimized encoder is lawered compression efEciency. This is
because we traded compression efliiciency with computation
complexity.

4. CONCLUSION

In this paper, we considered the problem of software opti-
mization of video codecs on the Pentium with MMX plat-
form. We described an actual implementation of a fast
H.263 video encoder utilizing the MMX technology. The
H.263 video encoder is composed of several difbrent compe
nents. The optimization is done by selecting fast algorithms
for each component that takes advantage of the underlying
hardware platform. We compared the speed-up with the
H.263 standard TMN video encoder and found that the
speed up is about tenfold at the expense of compression
efficiency.

g-..

s-.

...

..................................

...... (0 -

..... s -.

00 1 a 4 5 0

Figure 2: Distxibution of CPU Load for our Optimized
H.263 Video Encoder. The abbreviations ME, MC, Q/D& + Scaling, stands for Motion Estimation, Motion Compen-
sation, and Quantization/Dequantization plus Scaling for
IDCT/DCT, respectively.

6. REFERENCES

[l] Wenor Research. H.263 encoder/decoder tmnl.5 ver.
1.7. ftp://bon&. nta. no/pub/tmn, 1996.

[2] Intel Corporation, The Complete Guide to M M X T M
Technology, McGraw Hill, 1997.

131 V. Allan, R Jones, and R Lee, S. Allan, "Software
Pipelining," ACM Computing Surveys, Sept. 1995.

[4] L. Liu and E. Fkig, "A Block-based Gradient Descent
Search Algorithm for Block Motion Estimation," IEEE
lhans. on Circuit and System for Video Technology,
vol. 6, pp. 419-422, Aug. 1996.

[5] R. Li, B. Zeng and M. L. Liou, "A New ThrwStep
Search Algorithm for Block Motion Estimation," IEEE
lhns. on Cimuit and Systems for Video Tedmology,
vol. 4, pp. 438-442, Aug. 1994.

[6] X. Lee and Y. Zhang, "A F'ast Hierarchical Motion-
Compensation Scheme for Video Coding Using Block
Feature Matching," IEEE !hns. on Circuit and Sys-
t e m for Video Technology, vol. 6, pp. 627-634, Dec.
1996.

[fl J. Chalidabhongse and C. Kuo, "F'ast Motion Vector Es-
timation Using Multiresolution-SpatieTemporal Corre
lations," IEEE I l trms. on Circuit and Systems for Video

[8] E. Ekig and E. Lmser, "Discrete Cosine 'Ikansform Algo-
rithms for Image Data Compression," Pmceedings Elec-
h n i c Imaging '90 East, pp. 84-87, 1990.

[9] Y. Arai, T. Agui and M. Nakajima, "A Fad DCT-SQ
Scheme for Images," Zhns. of the IEICE, vol. 71, pp.
1095-1097, Nov. 1988.

!lkhnology, v01. 7, pp. 477-488, 1997.

0-7803-6536-4/00/$10.00 (c) 2000 IEEE 106

ftp://bon

