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ABSTRACT 
A key enabling technology for the prolikration of multima 
dia PC’s is the availability of fast video codeca, which are 
the basic building blocks of many new multimedia applica- 
tions. Since most industrial video coding standards (e.g., 
MPEG1, MPEG2, H.261, H.263, etc.) only specify the de- 
coder syntax, there are a lot of moms for optimization in 
a practical implementation. When considering a specific 
hardware platform like the PC, the algorithmic optimiza- 
tion must be considered in taudem with the architecture 
of the PC. Specifically, an algorithm that is optimal in the 
sense of number of operations needed may not be the fastest 
implementation on the PC. This is because special instruc- 
tions are available which can perform several operations at 
once under special circumstances. In this work, we describe 
a fast implementation of H.263 video encoder for the Pen- 
tium processor with MMX technology. 

1. INTRODUCTION 

Recent advances in the personal computer industry have 
provided the neceSSaPy computation power and storage re- 
quired by many multimedia applications. These tremen- 
dous technological advances have enabled the PCs to per- 
form image/video compression and decompression efliciently 
in software only. Some advantages of implementing the 
video codec in software for the PC are the elimination of ax- 
pensive hardware, the ease of upgrade through replacement 
of software modules, and the wide availability of PCs. 

Video coding requires tremendous amount of compu- 
tations. There have been many fast algorithms proposed 
in the literature to ease the computation load for various 
components in a video codec. Typically these fast algo- 
rithms are proposed and compared with each other by U+ 
ing the total number of operations as a criterion assuming 
a general-purpose processor without considering the target 
hardware platform. However, the comparisons cau be mis- 
leadiig when we consider a software implementation on a 
specific hardware platform. This is because each m i w p m  
cessor has it’s own strengths and weaknesses which places 
bias on certain operations. For axample, some microproces- 
sors may have dedicated hardware to execute the multiply- 
mumulate operation in one cycle. Then, it will be ad- 
vantageous to arrange an algorithm such that the multiply- 
accumulate operation occurs frequently. Thus, we see that 
the design of a fast s o h e  only video wdec is highly de- 

pendent on the hardware platform. Each component of the 
video codec must be properly selected to take maximum 
advantage of the underlying hardware. 

In this paper, we present a fast software implementa- 
tion of a R.263 video encoder on the Intel Pentium with 
MMX technology processor, which powers a vast majority 
of the computers in the world. The optimization of the 
encoder is performed iteratively through profiling and re- 
coding to speed up the inner loops. lhditional optimiz% 
tion techniques were used along with the MMX instructions 
to achieve speed-up. Optimization techniques such as re- 
m o d s  of loop invariant computation, strength reduction, 
loop jamming, loop unrolling, and table lookup were used. 
Loop unrolling was used often in tight loops with MMX in- 
structions to achieve speed-up through so-e pipelining. 

2. MMX TECHNOLOGY 

MMX technology is an extension to the Intel Architecture 
whose aim is to improve the perhrmance of multimedia 
and communications algorithms. With the addition of the 
MMX technology comes fifty-seven new instructions, and 
eight new 64bit registers. The MMX instruction set was 
designed by analyzing a broad range of dimare applica- 
tions in the field of multimedia and communications. In 
the analysis of these applications &om cent domains, 
it is found that certain common characmistics exist fw a 
majority of the core time-consuming code sequences. Fkom 
on these observations, it was found that a salient feature of 
many multimedia algorithms was the execution of the same 
set of operations on a large number of small data elements. 
Therefore, the MMX technology adopted the SIMD (!3iq.de 
Instruction, Multiple Data) architecture to enable exploita- 
tion of the data parallelism inherent in these applications. 

The new set of SIMD instructions defined by MMX 
technology performs parallel operations on multiple data 
elements packed into the 64bit register. Three new packed 
data types and the 64-bit quad-word are ddned. The 
packed data types contain several smaller fixed-point data 
elements. The three packed data types are packed byte, 
packed word, and packed doubleword. Basically, packed 
byte, word, or double word contains eight bytes, four words, 
or fwo doublewords, respectively. The data inside a MMX 
register is interpreted as one of these four new types d e  
pending on the executed instruction. New instructions in- 
troduced by the MMX technology includes packed arith- 
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metic instructions, saturating arithmetic instructions, data 
manipulation instructions, and logical instructions. 

The packed arithmetic allows the same arithmetic o p  
erations to be applied to each individual data element of a 
packed data type in parallel. Another key feature provided 
by the MMX instructions is the ability to perform signed 
or unsigned saturating arithmetic on each data elements of 
a packed data type in parallel. In conventional fixed-point 
arithmetic, we can only obtain the correct lawer order bits 
when overflow occurs. On the other hand, saturating arith- 
metic clips the result to the largest or the smallest pos- 
sible value for the given data type when overflow occurs. 
Saturating arithmetic is found to be very usef'ul in image 
processing since it eliminates the clipping operations found 
at the end of most image processing operations. The data 
manipulation instructions provided by MMX technology are 
for conversion between the new data types. These instnrc- 
tions are very important when an algorithm requires higher 
fixed-point precision in its intermediate stages. The pack 
instructions convert a bigger packed data type to a smaller 
packed data type while the unpack instructions convert a 
smaller packed data type to a bigger packed data type. In 
addition, the unpack instruction can perform an interleaved 
merge operation which c&~l be used dc ien t  to perform in- 
sertion, transposition, and other data manipulation oper* 
tions. 

3. H.263 ENCODER IMPLEMENTATION 
DETAIL 

The major computational blocks in a H.263 video encoder 
are motion estimation, motion compensation, DCT / IDCT, 
q u a n t i z a t i o n / ~ ~ t ~ t i o n ,  entropy coding, and inter/in* 
coding. Among these functional blocks, motion estimation 
and DCT/IDCT are typically the most computational in- 
tensive portion of the encoder. To get an idea of the com- 
putational load distribution of the functional blocks from a 
typical H.263 encoder, we encoded a video sequence using 
the ITU TMN H.263 video encoder provided by Telenor to  
obtain a profile of the encoding computational load. In- 
tel's V-Tune sofkware package, which is a visual o p t i m b  
tion/pro%ng tool, was used to monitor the encoding pro- 
cess. In Fig 1, we show the distribution of CPU load ob 
tained by the profiling. Indeed, we can see that the motion 
estimation and the DCT/IDCT are the most time consum- 
ing portions where the motion estimation occupies a mi+ 
jority of the CPU power. 

H.263 uses block matching motion estimation and com- 
pensation to exploit the temporal mela t ion  between ad- 
jacent frames. Various block matching algorithms has been 
proposed in the literature and basically they mer in the 
matching criteria, search strategy, or block size. The method 
that the TMN H.263 Encoder employs is the full search 
block matching algorithm using sum of absolute diikence 
(SAD) as the matching criterion. This method guarantees 
a global m i n i u m  by exhaustively comparing all possible 
candidates in the search space. However, the complexity 
of such an search is prohibitively high as we can see from 
Fig. 
implementation. 

1 which makes it impractical for real time s o a m  

Many fast blocking matching techniques have been pro- 
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Figure 1: Distribution of CPU Load for TMN H.263 Video 
Encoder. The abbreviations ME, MC, Q/DQ, stands for 
Motion Estimation, Motion Compensation, and Quantizrtr 
tion/Dequantization, respectively. 

posed in the literature to  reduce the complexity of the mo- 
tion vector search by trading off the prediction e8iciency. 
These techniques can be divided into two categories namely 
fast matching or fast search. In fast matching, different 
matching criteria that requires fewer computations [6] than 
the sum of absolute di&rence (SAD) or the mean square 
error (MSE) are used. In fast search, the SAD or MSE cri- 
teria is typically still used but the average number of points 
searched is smaller the total number of points in the entire 
search space [5] [4] [7]. 

In our video encoder, we employed a fast search block 
matching that is based on the three step search [5]. In 
this scheme, we start our search at the center of the search 
region. h m  the starting point, we search its eight sur- 
rounding neighbors to find the best matching out of all nine 
points. If the starting point was found as the best match, 
we stop the process and declare it as the motion vector. 
Otherwise, we set the newly found best match as the new 
starting point and repeating the process over again. We 
note that the computation of the matching criteria for the 
eight neighboring points of a starting point might be need 
in the search process of future starting points due to over- 
lap. Therefore, the computed matching scores are stored so 
that they can be access instead of computed later if needed. 
Along with the searching strategy, we tried several diEerent 
matching criterions including the MSE, MAD, and the error 
variance. In terms of computational complexity, the MAD 
matching criterion required the least amount of computa- 
tion. However, the m r  variance matching criterion which 
is the variance of the difFerence between the block and its 
prediction resulted in better prediction among the three. 
We have implemented the MAD and m r  variance match- 
ing m e a "  using MMX instructions, which significantly 
improved the speed of these operations. The computation 
of the MAD matching criterion involves evaluation of the 
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following types of arithmetic operation: 

where each element of z and g are eight-bit quantities. Since 
the same arithmetic operation is applied to each element 
independent of other elements, we can take advantage of 
the inherent instruction level parallelism through MMX in- 
structions. We note that the resulting dynamic range of 
subtraction between two eight bits unsigned numbens is nine 
bits. Therefore, if we perform full precision subtraction with 
2 and y, we must work with 16-bits quantities which reduces 
the p a "  to four instead of eight. However, the ab- 
lute difference between two &bits numbem 2 and y can be 
performed in 8-bits precision using saturating arithmetic as 
follows. We first compute x - 1 and y - 2 using saturating 
arithmetic and then we logically OR the two difference to- 
gether to form the absolute dif€erence. If 2 equals to g, then 
the computation produces the corm3 result. If 2 does not 
equals to y, we note that one of the two quantities 2-y and 
y - E is the absolute difference while the other one will be 
saturated to zero. Thus the m e c t  result can be obtained 
by logically OR the two differences together. Therefore, 
we can perform the absolute Werence using eight-bit pre- 
cision, which will allow us to work on eight elements at a 
time. 

In order to perform motion estimation, we must gen- 
erate each candidate blocks through motion compensation 
followed by computation of the matching criterion. Typ 
id ly ,  the motion vector search is done using full integer 
accuracy until the best match is found. Then, a half pixel 
(i.e. 0.5) motion vector search is done centered on the best 
integer motion vector. Thus, we must generate the eight 
candidate half pixel blocks using bilinear interpolation at 
the end of the best integer motion vector search to find 
the best half pixel accurate motion vector. This process in- 
volves averaging two pixels or four pixels to find the missing 
pixels where special attention must be paid to ensure proper 
rounding is performed. We can organize the computation 
into three cases according to the motion vector. In the first 
case, only the vertical component of the motion vector con- 
tains a half pixel component. In the second case, only the 
horizontal component of the motion vector contains a half 
pixel component. In the third case, both the horizontal 
and vertical components of the motion vector contain half 
pixel components. For the .first case, we need to perform 
averaging across adjacent rows to find the predicted value. 
For the second case, we need to perform averaging across 
adjacent columns to find the predicted value. For the third 
case, we need to perform averaging aaoss the adjacent r m  
and columns to find the predicted value. 

We take advantage of the MMX technology to perform 
the bilinear interpolation in the motion compensation pro- 
cess. Let's consider the first case where we are averaging 
across the rows to obtain the predicted value. Ideally, we 
want to take advantage of the instruction level parallelism 
by performing the averaging process on eight pixels on two 
adjacent r m  at a time. However, We first note that the 
additions can not be performed on the eight elements in par- 
allel because of possible overflow. Furthermore, the MMX 

technology does not support parallel shiR on byte elements 
(the smallest size it support is on word elements). Thus, 
in a straightforward implementation, we will have to con- 
vert the pixel from an eight-bit quantity to a sixteen-bit 
quantity, which reduce the parallelism from eight to four. 

Fortunately, there is another way to perform this oper- 
ation while preserving the parallelism to eight and achieve 
proper rounding at the same time. Let's consider the case 
of averaging Dwo integers XI and Xa to form Y. S u p  
pose we simply perform the following operations to form 
YI, Y1 = XI >> 1 + X2 >> 1, where >> indicates a right 
shift. Comparing Y and YI reveals that the following relilr 
tionship hold, Y = XI >> 1 +X2 >> 1 +Z, where Z is the 
logical OR of the least significant bit of XI and X2. Based 
on this observation, we can perform the averaging of two 
arrays of eight pixels in the following way to preserve the 
maximum parallelism of eight. First, we construct a new 
array whose element contains the logical ,OR of the least 
significant bit for the corresponding elements of the two ar- 
rays using the 64 bit logical OR and 64 bit logical AND 
instructions provided by MMX technology. In essence, this 
step generates an array 2. Next, we need to perform the 
shift operation on each byte element of the array. As we 
have pointed out, we can not perform parallel shift on byte 
elements directly. However, this can be done in two steps 
since we are working on eight bytes at a time. First, we zero 
out the least significant bit of each byte element in the two 
input arrays. Then, we simply regard the eight bytes as one 
64bit quantity and perform a 64 bit logical shift by one to 
obtain the desired result. Afterwards, the three arrays are 
added in p a l l e l  to get the final result. Similarly, the aver- 
aging process for the second case can be done in the same 
way by first transposing the block of data. Furthermore, 
the third case can be computed in a similar manner by sep- 
arating the computation between the two least significant 
bits and the rest. 

The H.263 encoder uses DCT to reduce the spatial r e  
dundancy of the video sequence. The DCT is popular in 
image compression because it achieves good energy com- 
paction and it has many fast algorithms available. For 
our encoder, the direct fast 2-D DCT developed by Feig 
[SI and the scaled 1-D DCT developed by Arai, Agui, and 
Nakajima [9] were considered as candidates. The Feig 2-D 
DCT is the most efficient algorithm proposed in the liter- 
ature in terms of number of operations. It is a true 2-D 
method that requires 54 multiplications, 462 additions, and 
six multiplications by 1/2 which can be done by arithmetic 
shats. On the other hand, the most efficient 1-D DCT 
proposed in the literature is by Arai, Agui, and Nakajima. 
This method requires 13 multiplications and 29 additions. 
However, eight of the thirteen multiplications can be ab- 
sorbed into the quantization stage and thus the 1-D DCT 
can be computed with 5 multiplications and 29 additions. 
Therefore, the 2-D DCT can be computed by applying this 
fast 1-D DCT on the row8 and the columns using a tw 
tal of 80 multiplications and 464 additions. This is the best 
known approach for computing a separable 2-D scaled DCT. 
Therefore, the computational complexity of the separable 
approach is higher than the direct 2-D approach. However, 
in terms of implementation, the 1-D DCT approach was 
better suited for MMX instructions than the direct 2-D a p  
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Table 1: Speed Comparison between H.263 TMN encuder 
and our optimized H.263 encoder. The amount of time 
needed to encode 100 frames on Pentium 200 MHz with 
MMX is Shawn in Time 1 and on Pentium I1 400 M& 
with MMX is shown in Time 2. Sequence A denotes Mise 
America and sequence B denotes Carphone. 

proach due to the computational flaw. The separable 2-D 
DCT was implemented in assembly and taka advantage of 
the MMX instructions. The capabilities to multiply 8~v- 
eral elements together in parallel and multiply/accumulate 
were provided by the MMX technology, which we found to 
be extremely useful. 

We compared the speed of our optimized implementa- 
tion of a H.263 encoder against the TMN H.263 encoder. 
Bbr comparison, both encoders were used to  compress 100 
frames of two test sequences and the total time needed wag 
recorded. The hardware platforms used were a Pentium 
200 MHz with MMX and a Pentium II 400 MHz computer 
and the results are summhed in lbble 3. As we cas see, 
the TMN encoder compresses only two frames per second 
on the Pentium 200 MHz. Mowover, the number of frames 
compressed per second will be significantly lmvered on real 
communications applications due to the fact that the CPU 
power have to be distributed among many processes instead 
of just on the video encoder. On the other hand, our o p  
timized encodes compresses about 23 frames per second on 
the same platform, which is about 10 times faster the TMN 
encoder. The distribution of the CPU load for our opti- 
mized H.263 encoder is shown in Fig. 2. 

As we can see, the optimized encoder is fast enough 
so that the CPU cm be s h e d  with d e r  prooesses and 
we still can obtain good & m e  rate. The drawback of our 
optimized encoder is lawered compression efEciency. This is 
because we traded compression efliiciency with computation 
complexity. 

4. CONCLUSION 

In this paper, we considered the problem of software opti- 
mization of video codecs on the Pentium with MMX plat- 
form. We described an actual implementation of a fast 
H.263 video encoder utilizing the MMX technology. The 
H.263 video encoder is composed of several difbrent compe 
nents. The optimization is done by selecting fast algorithms 
for each component that takes advantage of the underlying 
hardware platform. We compared the speed-up with the 
H.263 standard TMN video encoder and found that the 
speed up is about tenfold at the expense of compression 
efficiency. 
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Figure 2: Distxibution of CPU Load for our Optimized 
H.263 Video Encoder. The abbreviations ME, MC, Q/D& + Scaling, stands for Motion Estimation, Motion Compen- 
sation, and Quantization/Dequantization plus Scaling for 
IDCT/DCT, respectively. 
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