TEXTURE CODER DESIGN OF MPEG-4 VIDEO BY USING INTERLEAVING SCHEDULE

Chih-Wei Hsu, Wei-Min Chao, Yung-Chi Chang, and Liang-Gee Chen

DSP/IC Design Lab, Graduate Institute of Electronics Engineering,
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
{jeromn, hydra, watchman, lgchen}@video.ee.ntu.edu.tw

ABSTRACT

For MPEG-4 texture coding, an efficient Interleaving DCT and
IDCT Schedule (IDIS) is proposed. With this scheme, DCT-Q-
1Q-IDCT coding loop can be implemented with no buffers and
least latency, which in turn makes the number of buffer for MC a
minimum of two. Also by the characteristics of IDIS, sub-
structure sharing technique is applied for DC/AC prediction with
Q and IQ to reduce hardware cost further. All the functions are
integrated to comprise the block engine for texture coding
operations in the MPEG-4 video standard. For encoding
sequence of 720x480 at 30 fps, real-time requirement can be
achieved at 54 MHz. The proposed scheduling can be further
applied to other video coding standards for a cost-effective SOC
implementation.

1. INTRODUCTION

MPEG-4 [1] targets to cover a wide range of multimedia
applications. Due to this generality, MPEG-4 itself comprises a
toolbox of coding functionalities. The selection and combination
of specific coding tools are organized in profiles, which are
separately designed for different applications, and a number of
levels, which define source and channel parameters to be
applicable. To give considerations to both flexibility of
implementation and cost effectiveness, a combination of an
embedded RISC processor and several dedicated hardware
accelerators is adopted for an MPEG-4 codec system
implementation [2][3]. While embedded RISC processor
provides more programmability, the dedicated hardware is most
suitable for video signal processing such as motion estimation
(ME) and discrete cosine transform (DCT) to reduce cost and
power consumption.

As in MPEG-1, 2, 4 and H.26x series, DCT and ME module
have become integral parts of these hybrid coding standards and
already drawn a high degree of optimization for different
implementations. Compared with ME, which requires a large
amount of data from neighboring frames, DCT, coupled with
quantization (Q), inverse quantization (IQ) and inverse discrete
cosine transform (IDCT), requires only luminance and
chrominance data of one macroblock (MB) and all these
functions can be integrated into a more specific module, block
engine (BE), which is capable to perform texture coding on a
local block level. These dedicated hardware units within BE may
be all available and optimized in component level already, but

0-7803-7304-9/02/$17.00 C2002 IEEE

‘Texture part
o H o P e o
B Block Engine
©)

Frame Memory

Fig.1. Block diagram of MPEG-4 encoder.

Motion part

1>

Video |
Source’

still require attentions when they are integrated into system level
and working with other components. For example, it may
involve overhead, such as large size of buffers, to integrate all
these dedicated components that perform different functions into
BE.

In this paper, we focus on BE that forms a dedicated module
for performing all the operations on a block basis in the MPEG-4
video standard, including DCT, Q, 1Q, IDCT, and adaptive
DC/AC prediction. We propose an efficient scheduling scheme
that can integrate all components with least buffers and can
perform adaptive DC/AC prediction with minimum hardware
cost with the aid of sub-structuring sharing technique.

This paper is organized as follows, in Sec. 2, the detailed
functionalities of BE will be introduced. The proposed schedule
and the method to implement DC/AC prediction using sub-
structure sharing will be given in more details in Sec. 3 and 4.
Sec. 5 is the evaluation for our work and Sec. 6 conclude this

paper.
2. BLOCK ENGINE

BE performs DCT, Q, 1Q, and IDCT, which compose of the
texture coding loop in MPEG-4, and where IQ and IDCT are the
embedded decoding routines as that in the decoder’s side. A
completely new coding tool in MPEG-4, the adaptive DC/AC
prediction, is also included for improving the coding efficiency
of intra MB in both I-VOP and P-VOP. The inputs to BE are
block data of intra MB or motion compensated (MC) prediction
error of inter MB. The output of IDCT module will be used to
form the reconstructed frame data and will be stored in the frame
memory and used in ME module for the next frame. The
quantized DCT coefficients after DC/AC predictions will be sent
to the VLC module in a predetermined scan order. The overall
block diagram of MPEG-4 encoder is as shown in Fig.1.

157

]
0

[=]

-]

MB

Fig.2. Location of neighboring blocks.

As shown in Fig.2, adaptive DC prediction of block X
involves selection of either the quantized DC value of block C or
that of the block A. The selected prediction direction is based on
the comparison of horizontal and vertical quantized DC value
gradients. The DC prediction is given as follows [4],

QDC =dc_coeff // dc_scaler ()}
Where // represents for rounding away from zero.
if (JIQDCA-QDCgl< |QDCy-QDCcl)
QDCx=QDCc
else
QDCx=QDCy

For the adaptive AC prediction, either coefficients from the
first row or the first column of a previous coded block are used
to predict the co-sited coefficients of the current block. On the
block basis, the best direction (from among horizontal and
vertical directions) for DC coefficient prediction is also used to
select the direction for AC coefficients prediction. In addition, to
compensate for differences in the quantization parameter (QP) of
the prediction block used for AC prediction and that of the

current one, scaling of prediction coefficients becomes necessary.

Thus, these predictors are scaled by the ratio of the current QP
value and that of the predictor block. The scaling operation is
given as follows [4],
QAC;; = (QACaXQPL) // QPx i=1t07 e))
QACq=(QACjcXQPc) /1 QPx j=1to7 (3)
Where (2) and (3) are selected by the direction of prediction.

3. PROPOSED SCHEDULE
3.1 Interleaving DCT and IDCT schedule

As shown in Fig.1, the same copy of MC data will be used
separately in both point A and B for inter MB. Due to the
latency introduced when the input data go through the texture
coding loop, DCT-Q-IQ-IDCT, it makes the MC module have to
store the produced MC data or to perform the same MC
operation twice. It is preferred to use additional local buffers
instead of performing MC operation twice since this will

consume a large amount of bus bandwidth for memory accessing.

As the latency of texture coding loop increases and new block
data enters successively, it requires more buffers to store the MC
data for a number of block to compensate for the mismatch of
timing between texture and motion parts.

Based on the observation above, an efficient interleaving
DCT and IDCT schedule is proposed to make IDCT operation
start as soon as the DCT coefficients are produced and properly
processed. Thus the reconstructed data can be sent to MC
module with least latency and the buffer will be available for the
next block. As for the Madisetti’s architecture [5] we adopt, it
can perform two 1-D DCT/IDCT operations in a multiplexing
way. So only one hardware unit will be used for both DCT and

{ ocr J[pber [per [mer J| per [oer
T o o[[T [1D || 1D [1

D
Qi |Qf |Q} Q| jQ} |aQ
olololcBols

Q
DCT__ || IbCT DCT | ct || mcr | mer |
DT b [1p [T j 11D 1D T1-D [1D [1D
—) time
Fig.3. Timing diagram of IDIS.
inpat
‘Transpose

Memory

S S P
ACF_BDEG_SELECT

output

Fig.4. Architecture of DCT/IDCT.

IDCT operation and, however, a different multiplexing method
is adopted for implementing IDIS. Since IDCT operation will
follow DCT operation immediately in our schedule, the latency
introduced by the Q and IQ module at this time is ignored, so the
Madisetti’s architecture will be used to process both the second
1-D DCT and the first 1-D IDCT at the same multiplexing time
slot or vice versa. The timing diagram of IDIS is shown in Fig.3.

3.3. Implementation

IDIS can be achieved by simply adding a switch circuit that
selects between the DCT and IDCT operations to the architecture.
However, considering the intermediate Q and IQ operations
between consecutive DCT and IDCT operations, latency will be
introduced to implement the pipelining and meet the
specification. Therefore, further modifications are needed. The
architecture contains a transpose memory to store the
intermediate 1-D data of the DCT/IDCT and two addressing
modes, row-by-row and column-by-column, are used alternately.
It is shown that a write operation always follows a read operation.
But with IDIS, due to the latency introduced by Q and IQ
modules as mentioned above, the first 1-D IDCT operation
cannot start and multiplex with the second 1-D DCT operation at
the same time and in this way the addressing scheme cannot
work as the original way because the data to write is not
available just after the read operation. Separate address
generation (AG) is used to cope with this timing problem. The
overall architecture of DCT/IDCT module is shown in Fig.4 and
necessary modifications are added in shadowed biocks.

In spite of these modifications, two addressing mode are still
the same and a write operation will follow a read operation after

158

Of1{2|314(5])6]|7 1213|4567 1{2]|3|4f5]|6]7
glo|w|ufi2|i3faf1s gloqiofufi2)13|14|1s 9fjoinf12)13]14]15
16(17 |18f19)20|21} 2|23 6|17 |18F19f20|21 | 22§23 7819 f20 |21 22123
|25 |26427(28 29|30} N 24425126 |27 |28]30]31 25|26 (27| 28329 | 30|31
R[5 32133 (34 13503637383 33 {34 {3536 |37 3839
40 |41 |42 fa3 f44 |45 | 4647 4) [42 4344 |45) 4647
48 |49 49 |50 | 515253 | 54|55
B
@ () ()

Fig.5. Read/write actions of transpose memory (a) write in row-
by-row mode (b) after writing into address 49, start reading in
column-by-column mode (c) after another 8 cycles, the data in
address 56 is ready and can be read immediately.

a proper delay. Since read operation is still ahead a write
operation, the 1-D data that be read out and used for the next 1-
D operation will not be overwritten mistakenly by the write
operation.

Another AG takes only minor cost. However, due to this
separate addressing scheme, further compacting the number of
total processing cycles can be carried out. During the writing
cycles of the data to the transpose memory, the data can be read
immediately as soon as it is available. Let the addressing of the
transpose memory is visualized as that of a 8x8 array and the
writing sequence is of the mode of row-by-row, {0, 1, 2, 3, 4, 5,
6,7, 8, ...}, when the 1-D data is written to the address of 49,
the reading procedure can be started right away in the addressing
mode of column-by-column,{0, 8, 16, 24, 32, 40, 48, 56, 1,
9, ...}, and after another 8 cycles the data written to address 56
is ready and at next cycle it can be read to proceed another 1-D
operation. Afterward, all the data in the transpose memory can
be read correctly since it is updated by the write operation
already. The compact read/write actions are shown in Fig.5 and
it is also valid as in another read/write working mode.

4. DC/AC PREDICTION USING SUB-STRUCTURE
SHARING TECHNIQUE

The formulas of adaptive DC/AC prediction are rewritten here
for the convenience of following explanation. It is shown in (1),
(2) and (3) that extra multiplications and divisions for DC/AC
prediction are required.

QDC =dc_coeff// dc_scaler (¢))

QACij; =(QAC;jpa XQP,) //QPx i=1to7)

QACy; = (QACHicXQPQ) // QPx j=1t07 6))
However, only DC and part of AC predictors require this pre-
processing. It means that one suite of dedicated hardware for
multiplications and divisions will only result in poor hardware
utilization. So, sub-structure sharing technique is applied for the
design of adaptive DC/AC prediction to remove this extra
hardware cost. Sub-structure sharing is to extract the same terms
in formulas for DC/AC prediction and in that of the existing Q
and IQ operations. Observing the proposed IDIS, as the block
engine process the first 1-D DCT operation, the Q module is in
an idle state, as shown in Fig.3, and is suitable and sufficient to
perform the divisions that DC/AC prediction require due to the
division-like operations that the Q module owns. The
quantization of DC coefficients in an intra MB is given as
follows,

level =dc_coef// dc_scaler “)

|~l 22x4x8 words (12 bits) for sequences in the CIF format J

LI 1 1]

Fig.6. Local prediction buffer in one MB.

perform first 1-D DCT and Q in idle

generate DCT coefficients and Q, IQ in actlog
?
1. fetch the DC coefficients and send to Q 1. quantized coefficients subracted by
2. decide the prediction direction proper DC and AC predictions
3. fetch proper AC predictions and send to Q 2. 1Q module multipty AC prediction
4. store scaled AC predictions in predicti i by QP vatue and store in
buffer prediction buffer

Fig.7. Implementation of DC/AC prediction using sub-structure
sharing with Q and IQ module.

By sending proper input to Q module, i.e. three DC
coefficients for (1) and the candidates of AC predictors for (2),
(3) from neighboring blocks, and adjusting the divider of (4), i.e.
dc_scaler and QP values of current block for (1) and (2),(3),
respectively, then Q module can be configured to fulfill the
divisions that DC/AC prediction requires, which is that in (1)
and the later half of (2) and (3). All of these operations can be
done before the second 1-D DCT operation starts, in that time
DCT coefficients will be generated and then quantized and
subtracted by the proper DC and AC predictors. When
performing the IQ operation, multiplying the quantized AC
coefficients by the QP value, which is the core operation of the
IQ module and makes up the front half of (2) and (3), can be
extracted intentionally and the results can be stored in the
prediction buffer in advance. In this way, when processing the
current block, the AC predictors that is properly multiplied by
the QP value of that block can be fetched from the prediction
buffer and what left of the scaling operation is to be divided by
the QP value of the current block, and this can be done using the
Q module as mentioned previously. In this way, the QP values of
the previous blocks need not to be stored and all multiplications
and divisions required for DC/AC prediction are performed by
using sub-structure sharing with Q and IQ module.

A prediction buffer is required to store the DC coefficients
and all possible candidates of AC predictors at least for an
amount equal to the number of MB in a row of a frame. In our
design, the prediction data will be stored in external memory and
the prediction data needed for the current coding block will be
fetched at MB level, resulting in a minimum required local
buffer for DC/AC prediction, as shown in Fig.6.In the process of
DC/AC prediction, proper replacements should be carried out to
replace the data in the local prediction buffer for coding the next
block and finally some prediction data will be sent back to the
external memory. All needed procedures for implementing
DC/AC prediction is shown in Fig,7.

5. EVALUATIONS
In our proposed IDIS, no buffer is required to hold any

intermediate data except the transpose memory for DCT and
IDCT operations since all the dedicated modules that consist of

159

Tablel. Comparison results with double block scheme and

parallel processing scheme.

Double block{Parallel Proposed

pipeline [6] |processing [3] [IDIS
No. of DCT/IDCT 1 2 1
No. of Q/IQ 2 Using RISC 2
No. of Block buffer 4 26 1
in BE
Processing time unit 18 14 13
Latency 3 8
No. of Block buffer 4 12 2
for MC operation

Note: the processing time unit is counted for processing six
blocks of one MB

the loop of texture coding, including DCT/IDCT, Q and IQ
modules, are altogether working in a relay method. The output of
one module can be directly fed to another. Compared with
parallel processing scheme [3], i.e. six blocks of one MB are
processed with pipelining, it takes at least one MB size of buffer
to hold the intermediate data before it can pass the data to the
next stage, for it works at MB level. As to double block pipeline
scheme [6], the required number of buffer can be reduced to four
block buffers. It is obvious that with IDIS the number of buffer
required to integrate DCT, Q, IQ, and IDCT can be reduced
substantially to almost none, except only one block buffer which
is inherently necessary within DCT/IDCT architecture.

We define block time as the time for 64 inputs to be a basic
unit for evaluation. Only 13 time units are required for
processing six blocks of one MB in IDIS, as shown in Fig.3. The
parallel processing scheme takes 14 time units although it can
achieve higher throughput at the cost of using separate DCT and
IDCT modules. The double block scheme requires 18 time units.
With IDIS, the input block data can go through the texture
coding loop with least latency, which is one time unit of latency
and it takes two buffers working in ping-pong mode for MC
operation in our design. The latency is 3 and 8 time units for
double block pipeline and parallel processing scheme
respectively and the number of buffers required for MC
operation is 4 and 12, respectively. Compared with double block
pipeline and parallel processing scheme, the proposed IDIS is
more cost-effective and efficient in viewpoint of both the
hardware usage and time unit required. The detailed comparison
result is listed in table 1. With the compaction effort for IDIS,
the required cycles for processing one block can be reduced from
165 to 144 and therefore it takes 935 cycles for one MB. For
sequence of 720x480 at 30fps, our design can meet the real-time
requirement while working at 5S4MHz.

With proposed IDIS, the hardware cost for DC/AC
prediction is reduced a lot by using sub-structure sharing with Q
and IQ module to perform the multiplications and divisions
required for it. Besides, the buffer to store the previous QP
values is eliminated and a minimum local buffer is achieved by
applying DMA to exchange prediction data. Fig.8 is the
comparison of sub-structure sharing method with our previous
version of hardwired implementation. The gate count of our BE
is listed in table.2.

A Previous version
D Proposed version with sub-structure sharing

9048 912
1= 7835

| |
| External |
I memory !

logic (gate counts)
Fig.8. Comparison of DC/AC implementation.

memory size (bits)

Table2. Gate count of BE at 54 MHz.

Modules Gate Counts
DCT/IDCT 16,511
Q 5,000
1Q 3,403
DC/AC prediction 2,133
Control 2,227
Total 29,274/

6. CONCLUSION

In this paper, IDIS for MPEG-4 video texture coding is proposed.
With IDIS, a cost-effective BE to perform DCT-Q-1IQ-IDCT
coding loop and DC/AC prediction is implemented. Compared
with previous work, the coding loop after optimization contains
no buffers and least latency, which in turn makes the number of
buffer for MC a minimum of two. By the characteristics of IDIS,
we apply sub-structure sharing technique for DC/AC prediction
with Q and IQ to reduce hardware cost further. Our BE meets the
real-time requirement for encoding sequences of 720x480 at
30fps with only 29,274 gates while working at 54MHz.

REFERENCE

[1] ISO/IEC 14496-2:1999/Amd.1:2000, “Coding of Audio
Visual Objects — Part 2: Visual, Amendment 1: Visual
Extensions,” Maui, Dec. 1999.

[2] H.-J. Stolberg, M.Berekovic, P.Pirsch, H. Runge, H. Moller
and J. Kneip, “The M-PIRE MPEG-4 CODEC DSP and its
Macroblock Engine,” Proc. IEEE Int. Symp. Cir. Syst.
(ISCAS), May 2000.

[3] M.Takahashi et al, “A Scalable MPEG-4 Video Codec
Architecture for IMT-2000 Multimedia Applications,” Proc.
IEEE Int. Symp. Cir. Syst. (ISCAS), May 2000.

[4] ISO/IEC JTC1/SC29/WG11, N3908, “MPEG-4 Video
Verification Model version 18.0,” Pisa, Jan. 2001.

[5] A. Madisetti and A.N. Willson, “A 100 MHz 2-D
8x8DCT/IDCT processor for HDTV applications,” IEEE
Trans. Cir. Syst. Video Technol., Vol.5, No.2, pp. 158-165,
Apr.1995.

[6] YKATAYAMA, TKITSUKI, Y.00I, “A Block
Processing Unit in a Single-Chip MPEG-2 Video Encoder
LSL” Journal of VLSI Signal Processing 22, pp.59-64,
1999.

160

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

