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Abstract. We present an approach to create hyper-links between video segments that contain
objects of interest, based on video structuring, object definition, and stochastic object localization
in the video structure. Localization is formulated in the Metric Mixture model framework, which
allows for the joint probabilistic modeling of a (user-defined) set of color appearance exemplars
and their geometric transformations. Candidate object configurations are drawn from a prior dis-
tribution using importance sampling -which guides the search towards regions of the configuration
space likely to contain the correct object configuration, thus avoiding exhaustive processing- and
evaluated using Bayes’ rule. Results of linking real objects (with changes of size and pose) in
several home videos illustrate the performance of the method.
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1 Introduction

The development of non-sequential tools for content-based video browsing and retrieval has a direct
impact in digital libraries, amateur and professional content generation, and media delivery applica-
tions. The first step in this direction has been the automatic generation of video structure, which
allows for browsing functions at different levels (shots, clusters), but limited to the image level. How-
ever, the ultimate level of desired access is the object. In this view, hyper-links between video segments
that contain objects of interest constitute a valuable feature [1], [11] that effectively complements the
video structure representation. Indeed, as the number of frames in a video summary increases, users
become less motivated to interact with it. The capability of jumping backwards and forward in time
to browse video based on user-defined objects provides more focused interaction.

Schemes for video object hyper-linking have been recently proposed [1], [9], [11]. Moving object
hyper-links are generated in [1]. The work in [11] does so for depth-layered regions in stereoscopic
video. In [9], face detection algorithms were implemented [12] to generate face hyper-links. However,
real objects are not motion-consistent, and object segmentation continues to be an unsolved problem,
in spite of progress.

In this paper, we propose an approach to create video object hyper-links based on three steps: video
structuring, object definition, and stochastic object localization in the video structure. Localizing
objects is a fundamental problem in computer vision [14], [12], [10], [2]. In brief, given a discriminative
object representation, localization is a search problem in a configuration space, clearly demanding if
the latter is large or continuous [12], [2]. One distinctive feature of object localization for hyper-linking
is the fact that -in order to make it truly interactive- objects should be allowed to be defined on-the-fly,
which imposes constraints on learning and inference schemes. We formulate the solution in the recently
proposed Metric Mizture model [15], which allows for the joint probabilistic modeling of ezemplars and
their geometric transformations in a space that has no vector structure. The probabilistic formulation
is appealing as uncertainty is dealt with in a principled basis. Exemplars are object representations
that can be readily extracted from raw data; in our case, they correspond to color image templates
that define an object of interest. After defining the configuration space of our problem, we address
object localization by random sampling from the object prior distribution, [10], [13]. Candidate
configurations are drawn using importance sampling , [6], [8] -which guides the stochastic search
process towards regions of the configuration space likely to contain the true object configuration,
thus avoiding exhaustive processing- and evaluated using Bayes’ rule. To this purpose, we define an
importance function based on parametric and non-parametric object color models. We illustrate the
performance of our approach with real video objects that have variations of pose and size, extracted
from a home video database.

The paper is organized as follows. Section 2 describes the video structuring step. Section 3 presents
the object localization algorithm. Section 4 describes the hyper-link generation algorithm. Section 5
presents results. Section 6 provides some concluding remarks.

2 Video Structure Generation

A summarized video structure (Fig. 3), consisting of representative frames extracted from video,
cluster, shot, and subshot levels, is generated as described in [5]. While the number of frames depends
on shot appearance variation, the summary maintains a manageable number for object localization.
A hidden, additional set of frames is available for further search if necessary. Users specify objects
of interest directly on the representative frames or while playing the video, by drawing a bounding
box around it (Fig. 1(a)). The process can be repeated in other frames where the object appears, to
create a small set of color image templates, called exemplars in the following.
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3 Object Localization in Metric Spaces

In pattern theory terms [7], an observed image z € Z can be approximated as a template z € X
on which a continuous geometric transformation ¢ € 7 has been applied, z ~ tz. If the discrete
set X' represents an object model, X x 7 describes the object and its possible transformations. The
representation is attractive: while 7 can model global transformations, X' can represent complex
variations of shape, appearance, pose, etc.

A probabilistic formalization of this approach was developed in [4], and generalized in [15] for
non-vector exemplars. Exemplars are convenient low-level object representations (color or edge image
templates) because they can be extracted relatively easily from images, and then used to define object
models, without resorting to complex intermediate representations. However, several useful operators
to compare exemplars do not correspond to operations in a vector space. For instance, the histogram
intersection [14] between two image templates does not constitute a norm in Z2. For object tracking
purposes, the work in [15] described in a principled way how probabilistic mixture models can be
defined and learned from exemplars in a metric space.

We propose to use a similar formulation for object localization. In our case, X' is defined by the
set of user-defined color image templates Z;, that model object appearance, X = {Zy,k = 1,..., K},
equipped with a distance function p. Additionally, the transformation space 7 is defined as a subspace
of the euclidean transformations that models translation and scaling, which is useful to locate targets.
Elements of the exemplar-transformation space will be denoted by the pair X = (k, ).

3.1 Formulation of the localization problem

In similar fashion to [10], [13], we formulate object localization using Bayesian theory and stochastic
simulation. Given a prior distribution on the possible object configurations, denoted by p(X), an
observed image z, and an observation likelihood p(z|X), the posterior can be expressed by Bayes’ rule
as

p(X|2) o p(z|X)p(X). (1)

There are well-known Monte Carlo discrete representations for distributions, discussed elsewhere
[8], [10]. In brief, a posterior can be approximated by a set of weighted samples (also called particles)
{(Xx® 7@y j =1,..,N}. From this approximation, inference about X can be done. In a vector
space [10], [13], moments of the posterior can be readily computed. In contrast, averages are not
defined in a space that has no vector structure. However, peaks in the posterior still provide evidence
of object location. Therefore, our approach for localization draws a set of random proposals S from
the prior, evaluates the observation likelihood at each proposal (extracting image measurements, and
in fact quantifying discrepancy between the prior from which candidates were sampled and the true
posterior), and displays the configuration that maximizes the posterior in the sample set,

X" = arg max p(z|X)p(X) (2)
X@Wes

With this formulation, the distributions and a decision rule to decide whether the object is present
have to be specified.
3.2 Modeling the observation likelihood

The observation likelihood is modeled by a metric exponential distribution [15]

1 _ z
p(2|X) = p(z|k,t) o e Aot (3)

where t4; corresponds to a transformed exemplar, Z is a normalization constant, and A is a
parameter that has to be estimated from data. It is easy to show that, assuming that ¢ and & are
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independent, the conditional likelihood on transformations p(z|t) = 3 . p(2, k[t) = > x p(k)p(z|k, 1),
i.e., it is a mixture of metric exponentials, whose centers are the transformed exemplars t4;, and
whose weights are given by the exemplar prior p(k) [15]. We further assume a quadratic form as
a reasonable noise model, when p is the distance function based on the Bhattacharyya coefficient!
[3]- In that case, the exponential parameter and the normalization constant can be approximated by
A~ % and Z « 0%, where ¢ is a “variance” parameter > that measures the spread of the metric
exponential “around” its center, and d is a measure of the “effective” dimensionality of the unknown
exemplar space.

The chosen distance, denoted by ppr, is defined by

ppr (7, th) = (1 — dpr(f(2), f(t#)))'/?, (4)

where f(t#&y) denotes a 4-D normalized histogram (color + relative position) of the transformed
exemplar, and the Bhattacharyya coefficient is defined by dpr = S.(f(2)f(th:))'/?. Except for
quantization effects, the normalized histogram is translation- and scale- invariant, unlike other repre-
sentations, like coocurrence histograms [2], which are not scale-invariant.

For tracking purposes, exemplars are clustered to reduce the model complexity of the observation
likelihood, and parameter estimation is performed from hundreds of examples [15]. However, for video
object hyper-linking, users usually specify one or a handful of exemplars, so clustering and estimation
from such small amount of data are not possible. Instead, we have estimated the parameters for several
objects of interest on training videos, and used the same parameters for all new cases (see Section 5).
Additionally, each of the user-specified exemplars is treated as a center in the Metric Mixture model.
More satisfactory solutions are currently under study.

3.3 Importance sampling from the prior

The prior distribution p(X) encodes the knowledge about object location. As stated before, exemplar
indices and geometric transformations are independent, so p(X) = p(k,t) = p(k)p(t). The most
general assumption is a uniform distribution on both exemplar index and geometric transformations
(in the latter case, over a finite interval). However, knowledge about possible locations at each
representative frame can be extracted using object features, like color or texture, and could be useful
to guide the random search. This is properly modeled through the use of importance sampling [6], [8].
This is a technique aimed at improving the efficiency of simulation methods, and useful when such
additional knowledge can be expressed by a (normalized) importance function g(X) that emphasizes
the regions of the configuration space which contain more information about p(X). The technique first
draws random samples X () from g(X) rather than from p(X), which concentrates particles in better
proposal regions, and then introduces a correction mechanism in order to keep the particle set as a
faithful representation of p(X'). Such correction takes the form of an importance ratio factor defined by
p(X = X)) /g(X = X¥), and applied in the particle weights (). The introduction of the importance
ratio guarantees that sampling from ¢g(X) has (asymptotically) null effect on the consistency of the
discrete representation of p(X) [8]. In our work, we keep the assumption of uniformity on the exemplar
index distribution, p(k) = w(k), and use importance sampling to draw samples from the geometric
transformation distribution p(t).

3.4 Constructing the importance function

We use a parameteric color model of each exemplar to generate candidate configurations in each of the
frames on which the object is searched for. Let y represent an observed color vector for a given pixel.
Given a single foreground object, the distribution of y is a mixture, p(y|©) = Ms.mﬁi& p(0;)p(y|O;, 6;),

Lppr is a true metric in functional space, but not in exemplar space.
2a true variance for certain distance functions.
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where F' and B stand for foreground and background, p(O;) is the prior probability of pixel of color y
of belonging to object O;, and p(y|0;,8;) is the conditional pdf of observations given object O;, rep-
resented by a Gaussian mixture model (GMM) [6]. In absence of prior knowledge (p(Of) = p(Op)),

the optimal classification into foreground/background is obtained by comparing the likelihood ratio

pW|Or.0F) 11
p(y|Op,05) :
Color models are on-line estimated for each exemplar using the Expectation-Maximization (EM)

algorithm [6]. Then, for each searched image, a binary image I m is built based on pixel classification,
followed by morphological processing, in order to generate blobs whose colors match the object model.
As the background color distribution is likely to change from shot to shot (possibly rendering low values
for p(y|Op,0p)) probabilities are thresholded to ensure that the generated blobs truly correspond to
object colors. Finally, a blob image is obtained by computing the maximum of the binary images
obtained for each exemplar, I9 = VK I?. An example is shown in Fig. 1 (a) and (b), for one
exemplar.

Recall that the transformation space 7 has been chosen as a subset of the euclidean transfor-
mations, allowing for translation (o) and scaling (s), so any ¢ € T can be denoted by ¢t = (o,s).
Assuming independence and a uniform distribution for the scaling parameter, the importance func-
tion is g(t) = g(o, s) = g(o)u(s). To specify a functional form for the translation parameters g(o), we
use the binary image I9. We define g(0) as a GMM,

c
9(0) = g(o|®) = .MURSVEQ_Q: i), (5)

where ¢; denotes each of the C' connected components of I9. The parameters ¢; correspond to the
mean and 2-D covariance matrix of the pixels in each component. Furthermore, the prior distribution
p(ci), which defines the relative contribution of each blob to the mixture, is determined from two
features: the blob size, and its maximum color similarity (i.e. the minimum distance pgr) to the
exemplars that define the object model,

p(ei) = > plw)pleilwy), (6)
j€{size,color}

The distributions p(c;|wsize) and p(c;|weoror) are estimated directly from data. Finally, the prior
p(w;) is assumed uniform. Random sampling will draw more configurations from large blobs whose
color distribution match better the object’s (Fig. 1(c)).

Figure 1: (a) Frames from Girl video (the template defined in the first frame constitutes the exemplar
X1).(b) Binary image after pixel classification. (c) Importance sampling. The displayed samples are
the ones with largest posterior (Eq. 2). Only the transformed template contours are shown.

3.5 Object detection/absence

The described method outputs both the geometric transformation and the exemplar that best match
the object model for each representative frame. Object absence is decided based on thresholding of
p(2|X)p(X). The threshold is empirically determined from a set of positive and negative examples
[12].
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4 Video Hyper-Link Generation

Hyper-links are constructed based on object detection/absence for each subshot. The leaves in the
video structure that contain the object are highlighted, as shown in Fig. 3, and the subshots in which
the object was localized are displayed. Alternatively, hyper-links could be required only at higher
levels of the hierarchy (shot, cluster). In that case, the algorithm is applied until it detects an object,
and then moves to the next shot or cluster, requiring less processing in average.

5 Results

The results presented in this section correspond to the one-exemplar case (K = 1). Performance with
multiple exemplars will be reported elsewhere. The RGB space is used for computation of normalized
histograms (8 x 8 x 8 bins), and parametric models. For histograms, an additional dimension that
indicates relative position (3 bins) is used to model spatial structure.

Table 1 shows the estimated parameters for the metric exponential distribution, for three video
objects extracted from a home video database [5], and for all the distance measurements combined.
Forty hand-labeled exemplars were used for each video object. The variation in the parameters
is significant depending on the content, as objects with less variation throughout a video tend to
generate sharper observation likelihoods.

Sequence d o A
Wedding (Man) | 16.60 | 0.20 | 11.91
Wedding (Bride) | 9.05 | 0.21 | 11.57

Girl 24.06 | 0.15 | 22.22
All video objects | 14.34 | 0.16 | 18.17

Table 1: Estimated parameters. Metric exponential model.

Fig. 2(b-e) illustrates the video object localization results obtained in several clips captured with
a moving hand-held camera, when drawing 300 random samples from the prior. The range for the
scale parameter was [0.5, 2]. The methodology has correctly detected the specified objects, in presence
of partial occlusion and change of size and pose. Similar results have been obtained on other video
objects and sequences in our database. As a byproduct, the method could be used to initialize an
stochastic tracker [8], [10] for further video analysis. For comparison, Fig. 2(a) shows the best ten
results obtained with exhaustive search, with translation quantized by a factor of 4 in each direction,
and scaling quantized to 10 levels (13200 configurations). The computational complexity is dependent
on object size. After color model estimation, it takes approx. 0.5 s. to process 300 samples per QSIF
image, on a Pentium IIT, 600 MHz PC. This figure could be significantly improved by multi-resolution
processing, and code optimization.

We are currently testing the performance of the method in a larger database (both in terms of
number of video objects and total number of frames) using recall-precision measurements. Most object
localization methods have been designed for specific object classes [12], or tested in controlled image
databases [2]. We are not aware of any study of performance evaluation of arbitrary object localization
algorithms in realistic environments.

The obtained results are encouraging. However, object localization based on one or a few ex-
amples in unrestricted scenes is a very hard problem. Our approach is limited by two factors: the
discrimination that can be obtained with color histograms (as can be seen in the Man sequence), and
the quality of the importance function. Several issues are currently under study, including the use of
illumination-invariant color models and additional features, and the definition of a decision mechanism
based on probability models of positive and negative detections.
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Figure 2: Object localization by (a) exhaustive search, and (b-g) importance sampling (only the best
configuration is shown). (b) Girl. (c) Bride. (d) Man. (e) Maid of Honor, (f) Dancer, (g) Boy. A
single exemplar is specified in the first frame.
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Figure 3: Video tree structure (sequence, cluster, shot and subshot nodes) and object hyper-links
(highlighted images).

6 Concluding Remarks

We have presented a principled methodology to create video object hyper-links based on a probabilistic
formulation of object localization, a process of random search in a product configuration space of
exemplars and geometric transformations that considerably reduces computational complexity, while
keeping good localization features. Results of good quality for object-based video browsing in real
home videos have been obtained.

Acknowledgements. The video sequences used in this study belong to the Eastman Kodak
Home Video Database(©).

References

[1] P. Bouthemy, Y. Dufournaud, R. Fablet, R. Mohr, S. Peleg, and A. Zomet, “Video Hyper-links Creation
for Content-Based Browsing and Navigation,” in Proc. Workshop on CBMI, Toulouse, October 1999.

[2] P. Chang and J. Krumm, “Object Recognition with Color Coocurrence Histograms,” in Proc. IEEE CVPR,
Fort Collins, CO, June 1999.

[3] D. Comaniciu, V. Ramesh, and P. Meer, “Real-Time Tracking of Non-Rigid Objects using Mean Shift,”
in Proc. IEEE CVPR., Hilton Head Island, S.C., June 2000.

[4] B. Frey and N. Jojic, “Learning graphical models of images, videos and their spatial transformations,” in
Proc. UAI 2000.

[5] D. Gatica-Perez, M.-T. Sun, and A. Loui, “Consumer Video Structuring by Probabilistic Merging of Video
Segments,” in Proc. IEEE ICME, Tokyo, Aug. 2001.

[6] A. Gelman, J. B. Carlin, H. S. Stern and D. B. Rubin, Bayesian Data Analysis. Chapman and Hall, 1995.
[7] U. Grenander, Lectures in Pattern Theory. Springer, 1981.

[8] M. Isard, and A. Blake, “ICondensation: unifying low-level and high-level tracking in a stochastic frame-
work,” in Proc. ECCV, 1998.

[9] W.Y. Ma and H.J. Zhang, “An Indexing and Browsing System for Home Video,” in Proc. EUSIPCO.
Patras, 2000.

[10] J. MacCormick and A. Blake, “A probabilistic contour discriminant for object localisation,” in Proc.
IEEE ICCYV, pp. 390-395, Bombay, Jan. 1998.

[11] K. Ntalianis, A. Doulamis, N. Doulamis, and S. Kollias, “Non-Sequential Video Structuring Based on
Video Object Linking,” in Proc. IEEE ICIP, Thessaloniki, October 2001.



IDIAP-RR 02-20 9

[12] H. Rowley, S. Baluja, and T. Kanade, “Human Face Detection in Visual Scenes,” TR-CMU-CS-95-158R,
Nov. 1995.

[13] J. Sullivan, A. Blake, M. Isard and J. MacCormick, “Object Localization by Bayesian Correlation,” in
Proc. IEEE Int. Conf. Computer Vision, pp. 1068-1075, 1999.

[14] M.J. Swain and D. Ballard, “Color Indexing,” Int. J. of Comp. Vis., Vol. 7, pp. 11-32, 1991.

[15] K. Toyama and A. Blake, “Probabilistic Tracking in a Metric Space,” in Proc. IEEE ICCV, Vancouver,
Jul. 2001.



