STUDY OF A SERVER-LESS ARCHITECTURE
FOR VIDEO-ON-DEMAND APPLICATIONS

Jack Y. B. Lee and Raymond W. T. Leung

Department of Information Engineering
The Chinese University of Hong Kong

ABSTRACT

Video-on-demand (VoD) systems have traditionally been built
around the client-server architecture, where a video server stores
compressed video for delivery to clients connected by a network.
As the system scales up, the server will need to be upgraded and
this can become very expensive when the system scales beyond
thousands of users, In this study, we investigate a radically
different architecture where the bottleneck - video server, is
eliminated altogether. Specifically, this server-less architecture
relies on the client machines for distributed data storage and
delivery. A client initiating a new streaming session will first
locate other clients where the requested stream is stored, and
then requests delivery of the stream directly from those clients
instead of from a central server. This fully distributed
architecture is inherently scalable as the storage and delivery
capacity grows with the number of clients in the system.

L. INTRODUCTION

Current video-on-demand (VoD) systems are commonly
designed around the client-server architecture. Under this
architecture, a client sends a request to the video server for a
video title and then the server transmits video data to the client
for playback. As the number of user increases, the server will
eventually reach its capacity limit. To further increase the system
capacity, one can add more servers to share the load.

Nevertheless, the cost of video servers are still substantial,
as video servers typically require high-end server hardware with
high /O bandwidth, large memory capacity, as well as storage
capacity. Moreover, the distribution network will also need to be
upgraded with more bandwidth to carry the vast amount of video
traffic to the users. Given the high cost of long-distance
backbone networks, it is no wonder why metropolitan-scale VoD
services are still uncommen in practice.

In this study, we take a radically different approach to
building scalable VoD systems. In particular, we turn our
attention to an often-neglected element in a2 VoD system — the
client-side device or commonly called the set-top box (STB).

Developments of STB have continued for many years and
current STBs not only are low cost, but also are relatively
powerful due to the rapid technological development and

0-7803-7304-9/02/$17.00 C2002 |IEEE 233

economy of scale achieved by the personal computer industry.
This development opens a new way to build VoD systems.

Specificatly, we take advantage of the increased storage
and processing capability of STBs to build a completely
distributed VoD systems that does not require dedicated server at
all. We call this a server-less architecture for obvious reason, In
this server-less architecture, all STBs, or called a node in this
paper, in the system serve both as a client and as a mini-server.
Video data are distributed among the nodes and multiple nodes
work together to serve video streaming requests from other
nodes. The beauty of this architecture is that the system is
inherently scalable, i.e., when new users are added to the system,
they add both streaming load and streaming capacity to the
system. Moreover, network costs can also be reduced because
the nodes are likely to be clustered together, reducing the need
for costly long-distance backbone network.

However, building a server-less VoD system is not without
challenges. First, one needs a placement policy to determine how
to distribute the video data among the nodes, Second, one needs
an algorithm to schedule the retrieval and transmission of video
data for a video streaming session. Third, as video data are
distributed among many nodes, the system will need to provide a
directory service for a node to locate and request data for a new
stream. Fourth, as nodes in the system are more loosely
controlled than dedicated video servers, the system will need to
adapt to changes in system configurations such as addition of
new nodes, deletion of existing nedes, node heterogeneity, etc.

In this study, we address the first two of the above-
mentioned challenges and leave the challenge of designing a
directory service and system adaptation for future work. In the
rest of the study, we assume that a node always knows the
location of the data it needs and the system configuration never
changes. The rest of the paper is organized as follows: Section 2
summarizes the contributions of this study; Section 3 presents
the proposed server-less VoD architecture; Section 4 evaluates
performance of the architecture using numerical results; Section
5 discusses the scalability issue and sumnmarizes the paper.

2. CONTRIBUTIONS OF THIS STUDY

First, compared to the traditional client-server architecture, our
approach decentralizes and distributes the server functions to the
clients. This server-less architecture not only climinates the
primary bottleneck in the system, but also is inherently scalable.

Figure I: A server-less architecture for VoD systems.

Second, compared to current peer-to-peer (P2P) systems
such as Naptser and Gnutella, the server-less architecture
investigated in this study serves completely different
applications, i.e. video-on-demand versus file sharing, In
particular, VoD applications have stringent performance
requirements that are essential to the correct operation of the
system. Consequently, the server-less VoD architecture requires
completely different data placement policy, retrieval scheduling,
transmission scheduling, and fault tolerance mechanism
compared to the current P2P systems.

To the best of the authors’ knowledge, our study is the first
to address issues in building server-less VoD systems with a goal
to provide a service comparable to or even better than existing
client-server-based VoD architectures. In particular, we address
the issue of data placement policy and presented a striping-based
algorithm for video data placement. New retrieval and
transmission schedulers are then developed for this data
placement policy. To address the issue of reliability, we
incorporate the use of data and node redundancies into the
system architecture and extend the scheduling algorithms to
account for fault tolerant operation. Through numerical results,
we show that building VoD systems using the presented server-
less architecture is feasible and it can achieve performance
comparable to client-server-based systems despite not having
dedicated high-end video servers.

3. ARCHITECTURE

A server-less VoD system comprises a pool of homogeneous
user nodes connected by a network as shown in Fig. 1. Each
node has its own CPU, memory and disk storage. Inside each
node there is a mini video server software that serves a portion of
each video title to other nodes in the system. Unlike
conventional video server however, this mini server serves a
much lower aggregate bandwidth and therefore can readily be
implemented in today’s STBs and PCs. For large systems, the

234

nodes can be further divided into clusters that each forms an
autonomous system independent from other clusters.

3.1 Data Placement Policy

Unlike dedicated video servers where storage capacity is usually
large, a node in the form of a STB or a PC will have relatively
limited storage capacity. Therefore, instead of replication, we
propose the use of striping as the data placement policy for the
architecture.

Specificaily, each video title is divided into fixed-size
striping units (or called blocks) of O bytes each. These blocks
are then distributed to all nodes in the cluster in a round-robin
manner. This node-level striping scheme avoids data replication
while at the same time divides the storage requirement equally
among all nodes in the cluster. To initiate a video streaming
session, a client node will first locate the set of server nodes
carrying blocks of the desired video title, the striping policy and
other parameters (format, bitrate, etc.) through a directory
service. These server nodes will then be notified to start
transmitting the video blocks to the client node. The notification
can be performed directly by the client node or indirectly by the
directory service, of which the exact mechanism involved is
beyond the scope of this study.

3.2 Retrieval and Transmission Scheduling

Let N be the number of nodes in the cluster and assume all video
titles are constant-bit-rate (CBR) and share the same bitrate R,.
For a server node in a cluster, it may have to retrieve video data
for up to N video streams, of which N-1 of them are transmitted
while the remaining one played back locally. Note that as a video
stream is served by N nodes concurrently, each node only needs
to serve a bitrate of R,/N for each video stream.

Many existing video server designs employ round-based
scheduters such as SCAN and its variants [1]. In our design, we

employ the Grouped Sweeping Scheme (GSS) proposed by Yu,
et al. [2] to schedule a node’s disk retrieval and network
transmission. Compared to the more common SCAN scheduler
that maximizes throughput at the expense of buffer overhead,
GSS allows one to control the tradeoff between disk efficiency
and buffer requirement. This is a crucial feature as disk

throughput may not be the bottleneck in a server-less VoD

system (c.f. Section 4.3).

In GSS, streams are divided inte g groups in which
retri¢vals within a group are scheduled using SCAN. The groups
are served in a round-robin manner. We call the period of
serving a group a micro round and the peried of serving all
groups once a macro round. If one set g=1 and g=N then GSS
reduces to SCAN and FCFS respectively. Intermediate values of
g can be used 1o tradeoff disk efficiency with buffer requirement.

Both micro and macro rounds have fixed duration, denoted
by T, and Ty respectively. Given a data block size of bytes, up
to N/g data blocks will be retrieved in a micro round using the
SCAN scheduler. These retrieved data blocks will then be
transmitted at a rate of R/N for a duration of T seconds, which
precisely equals to g micro rounds. Therefore the g groups are
effectively staggered in time and this reduces the combined
buffer requirement [2].

3.3 Fault Tolerance

In a server-less VoD system, fault tolerance becomes an essential
capability as reliability of STBs and PCs will be significantly
lower than dedicated video servers located in a data centre run
by professional operators around the clock. Moreover, given the
relatively large number of nodes, the system needs to expect and
prepare to recover not from a single failure, but from multiple
simultanecusly faitures as well.

When a node fails, all data stored in that particular node
becomes unavailable — called data erasure. To recover from data
erasures, erasure-correcting codes such as the Reed-Solomon
Erasure Correcting (RSE) Code [3,4] can be used. Specifically, a
(n, h)-RSE codeword comprises n symbols of which {(n—h) of
them are message symbols (i.e. data) and the remaining # are
redundant symbols. One can recover all (n—}) message symbols
as long as any (n—k) out of the n symbols are correctly received.

By extending the striping-based placement policy in Section
3.1 with a (¥, 1)-RSE code, the system will have sufficient
redundant data for a client node to recover all video data with up
to A node failures in the cluster. To accommodate the RSE-code,
we need to modify the placement policy and the schedulers. For
the placement policy, an additional encoding step will be needed
to compute the % redundant blocks for each group of (N-A} video
data blocks. Moreover, as now only (N—#} of the stored data are
playable data, we will need to increase the strip unit size from @
bytes to 0, = ON /(N — h) bytes to maintain the same data size
of a striping group.

For the disk scheduler, the retrieval unit will be increased
from bytes to ¢, bytes. Transmission rate will also increase
from R, to R_ = R, N /(N — h) to maintain the same video bitrate.

235

4. PERFORMANCE EVALUATION

In this section, we evaluate the system requirements and
performance of the server-less VoD architecture presented in
Section 3. Numerical results are computed using parameters
listed in Table 1. Due to space limitation, derivations of the
performance model are omitted.

4.1 Storage Capacity

Under the striping-based placement policy, the storage
requirement is equally shared by all nodes in the cluster. Hence,
the more nodes in a cluster, the less storage per node is required
to store the same amount of video data. Therefore the storage
requirement imposes a lower limit on the scale of a cluster.

For example, assuming a video bitrate of 150 KBps and a
video length of 2 hours, the total storage for 100 videos is 102.9
GB. Given that today’s harddisks have at least tens of gigabytes
of storage capacily, even if each node only allocates 1 GB for
video storage, the minimum cluster size needed is still only 108
nodes including redundancy of 5 nodes to achi¢ve a system mean
time to failure (MTTF) of 1000 hours.

4.2 Network Capacity

One way to connect nodes together to form a cluster is to use a
switch-based network such as switched Ethernet. Today’s
medium-range FEthernet switches typically has switching
capacity of 32 Gbps or more. Given a video bitrate of 150 KBps
and ignoring protocel overhead, a node will consume 154.66
KBps both upstream and downstream including a redundancy of
7 nodes for a cluster size of 200 nodes. Using 154.66 KBps as
the bandwidth requirement, a 32 Gbps switch running at 60%
utilization can support a maximum cluster size of 8124 nodes.

On the other hand, the server-less architecture does require
more bandwidth for the last-mile access network. In particular,
the architecture requires more upstream bandwidth than
traditional client-server-based VoD systems, which require little
to no upstream bandwidth. This requirement will rule out some
access network with asymmetric bandwidth such as ADSL or
cable modem. Nonetheless, the emerging Ethernet-based access
network running at 10Mbps or even 100Mbps full-duplex will
provide more than sufficient bandwidth to accommodate a
server-less VoD system in the future.

4.3 Disk Access Bandwidth

A node obviously will have finite resources, including memory
and disk access bandwidth. We first investigate the disk access
bandwidth issue as it determines the configuration of the disk
scheduler (GSS), which in tum affects the buffer requirement.
The disk scheduler has two configurable parameters,
namely block size ¢ and the number of groups g in GSS.
Increasing the block size or decreasing the number of groups in
GSS results in higher disk efficiency, at the expense of larger
buffer requirement and longer system response time. Therefore
in terms of buffer requirement and system response time, it is
desirable to reduce the block size Q and to increase the number

of groups g in GSS as long as retrieval of requests in a group can
be completed within a micro round.

Take an off-the-shelve harddisk — Quantum Atlas 10K [5]
as an example. Using a block size of 4KB and setting g=N, the
computed worst-case retrieval time for a group is 0.017 seconds
while the micro-round time is 0.027 seconds. Hence the previous
retrieval constraint is satisfied even if we reduce GSS to the least
efficient special case of FCFS with g=N. This is in sharp contrast
to conventional VoD systems where disk efficiency is one of the
major performance bottleneck in the video server.

4.4 Buffer Requirement

Based on results from the previous section, we set g=N,
effectively reducing the GSS scheduler to FCFS. With a block
size of 4KB, the total buffer requirement is 2.376 MB at the
cluster size of 200 nodes. Given the current cost of memory, this
buffer requirement, while not insignificant, should be practical
for STBs and ordinary PCs.

4.5 System Responge Time

The system response time comprises scheduling delay and
prefetch delay. Scheduling delay is the time to wait for
admission to a group under the GSS scheduler, while prefetch
delay is the time to receive one striping group of blocks to
perform erasure correction. Fig. 2 plots the system response
time, scheduling delay, and prefetch delay, versus the number of
nodes in & cluster running at 90% system utilization. The
prefetch delay increases with increase in the cluster size while
the scheduling delay levels off for cluster size larger than 100
nodes. Clearly prefetch delay dominates and at a cluster size of
200 nodes, the system response time is 5.615 seconds.

5. SUMMARY AND CONCLUSIONS

Results from the previous section reveal several characteristics
of a server-less VoD system. First, within the system parameters
used, the system scalability is not limited by network or disk
bandwidth. The disk in particular has more than enough
bandwidth even when used with the least efficient FCFS
scheduler. This property is in sharp contrast to conventional VeD
systems built around the client-server architeciure, where
maximizing 1/O efficiency is of primary importance.

Second, the primary limit on the scalability of a cluster is,
surprisingly, the system response time. This is a result of the
striping-based placement policy, where a striping group must be
completely received before it can be erasure-comrected for
playback. The size of the striping group, and consequently the
prefetch delay, increases linearly with the number of nodes in the
cluster. While one can further reduce the block size to reduce the
response time, protocol overhead will become significant.

Nevertheless, one does not need to increase the cluster size
unless storage capacity is insufficient. With results from Section
4.1 showing that the lower limit on the cluster size is 108 nodes,
one can divide a large system into multiple clusters of say, 200
nodes each, to maintain the systemn response time to a reasenable
5.615 seconds. As these clusters are autonomous and

236

independent of one another, one can continuously expand the
scale of the system simply by forming new clusters.

ACKNOWLEDGEMENTS

This research is partially funded by research grants (Direct
Grant, Earmarked Grants CUHK6095/99E) from the HKSAR
Research Grant Council and the AoE-IT, a research grant from
the HKSAR University Grants Council.

6. REFERENCES

11 D. I Gemmell, H M. Vin, D. D. Kandlur, P. V, Rangan,
L. A Rowe, “Multimedia storage servers: a tutorial”,
Computer, voi.28(5), May 1995, pp.4049.

[21 P. S Yu, M. S. Chen, and D. D. Kandlur, “Grouped
Sweeping Scheduling for DASD-based Multimedia
Storage Management”, ACM Multimedia Systems, vol.1(2),
1993, pp.99-109.

[31 S. B. Wicker, Error Control Systems for Digital
Communication and Storage, Englewood Cliffs, NI:
Prentice-Hall, 1995, pp.227-234.

[4] A. I McAuley, “Reliable Broadband Communication
Using a Burst Erasure Correcting Code”, in Proc. ACM
SIGCOMM 90, Philadelphia, PA, September 1990, pp.
287-306.

[5] G. Ganger and J. Schindler, “Database of
Validated Disk Parameters for DiskSim”,
http://www.ece.cmu.edu/~ganger/disksim/diskspecs.html.

Table 1. Parameters used in numerical analysis in Section 4.

Parameters Symbol Value

Node mean time to failure 1/4 1000 hours

Node mean time 1o repair Y 10 hours
Video block size (9] 4096 Bytes

Video bitrate R, 150 KB/s

Disk fixed overhead o 0.176ms

Disk rotational latency W 5.99 ms
Minimum disk transfer rate Pnin 18.68 MB/s

Time (sec)

1 1 1 1
0 00 200 300 400 500
Nutuber of Nodes

— Scheduling Delay
—4— Prefetch Delay
06X System Response Time

Figure 2: Sysiem response time, scheduling delay, and prefetch
delay versus cluster size (O=4KB, g=N, 90% utilization).

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

