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ABSTRACT

Reconstructing a 3D model of a human face from a video sequence
is an important problem in computer vision, with applications to
recognition, surveillance, multimedia etc. However, the quality of
3D reconstructions using structure from motion (SfM) algorithms
is often not satisfactory. One common method of overcoming this
problem is to use a generic model of a face. Existing work us-
ing this approach initializes the reconstruction algorithm with this
generic model. The problem with this approach is that the algo-
rithm can converge to a solution very close to this initial value,
resulting in a reconstruction which resembles the generic model
rather than the particular face in the video which needs to be mod-
eled. In this paper, we propose a method of 3D reconstruction of a
human face from video in which the 3D reconstruction algorithm
and the generic model are handled separately. A 3D estimate is
obtained purely from the video sequence using SfM algorithms
without use of the generic model. The final 3D model is obtained
after combining the SfM estimate and the generic model using an
energy function that corrects for the errors in the estimate by com-
paring local regions in the two models. The optimization is done
using a Markov Chain Monte Carlo (MCMC) sampling strategy.
The main advantage of our algorithm over others is that it is able
to retain the specific features of the face in the video sequence even
when these features are different from those of the generic model.
The evolution of the 3D model through the various stages of the
algorithm is presented.

1. INTRODUCTION

Reconstructing 3D models from video sequences is an important
problem in computer vision with applications to recognition, med-
ical imaging, video communications etc. Though numerous algo-
rithms exist which can reconstruct a 3D scene from two or more
images using structure from motion (SfM) [1], the quality of such
reconstructions is often poor. The main reason for this is the poor
quality of the input images and a lack of robustness in the recon-
struction algorithms to deal with it [2]. One particularly interesting
application of 3D reconstruction from 2D images is in the area of
modeling a human face from video. The successful solution of
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this problem has immense potential for applications in face recog-
nition, surveillance, multimedia etc.

A few algorithms exist which attempt to solve this problem
using a generic model of a face [3, 4]. Their typical approach is
to initialize the reconstruction algorithm with this generic model.
The problem with this approach is that the algorithm can converge
to a solution very close to this initial value, resulting in a recon-
struction which resembles the generic model rather than the par-
ticular face in the video which needs to be modeled. This method
might give very good results when the generic model has signifi-
cant similarities with the particular face being reconstructed. How-
ever, if the features of the generic model are very different from
those being reconstructed, the solution from this approach may be
highly erroneous.

We propose an alternative way of reconstructing a 3D model
of a face. Our method also incorporates a generic model; how-
ever, we do so after obtaining the estimate from the SfM algo-
rithm. The SfM algorithm reconstructs purely from the video data.
This reconstruction is fused with the generic model in an energy
function minimization framework [5]. The 3D estimate obtained
from the reconstruction algorithm needs to be smoothed in local
regions where there are errors. These regions are identified with
the help of the generic model. After the 3D depth estimate and the
generic model have been aligned, the boundaries where there are
sharp depth discontinuities are identified from the generic model.
Each vertex of the triangular mesh representing the model is as-
signed a binary variable (defined as a line process, following the
terminology of [6]) depending upon whether or not it is part of a
depth boundary. The regions which are inside these boundaries are
smoothed. The energy function consists of two terms which de-
termine the closeness of the final smoothed solution to either the
generic model or the 3D depth estimate, and a third term which de-
termines whether or not a particular vertex of the mesh should be
smoothed based on the value of the variable representing the line
process for that vertex. The combinatorial optimization problem
is solved using simulated annealing and a Markov Chain Monte
Carlo sampling strategy [7, 8, 9]. The advantage of this method
is that the particular characteristics of the face that is being mod-
eled are not lost since the SfM algorithm does not incorporate the
generic model. Moreover, any errors in the reconstruction are cor-
rected in the energy function minimization process by comparison
with the generic model.



2. INCORPORATING THE GENERIC MODEL

2.1. The Optimization Function

In this section, we will explain our method of incorporating the
generic model after obtaining the 3D estimate from the video se-
quence using any standard SfM algorithm [10]. Both the generic
model and the 3D estimate have a triangular mesh representation
with � vertices and the depth at each of these vertices is known.
Let ���� � � � �� ���� �� be the set of depth values of the generic
model for each of these � vertices of the triangles of the mesh. Let
���� � � � �� ���� �� be the corresponding depth values from the
SfM estimate. We wish to obtain a set of values ���� � � �� ���� ��
which are a smoothed version of the SfM estimate, after correcting
the errors on the basis of the generic model.

Since we want to retain the specific features of the face we are
trying to model, our error correction strategy works by comparing
local regions in the two models and smoothing those parts of the
3D estimate where the trend of the depth values is significantly
different from that in the generic model, e.g. a sudden peak on the
forehead will be detected as an outlier after the comparison and
smoothed. This is where our work is significantly different from
previous ones [3, 4], since we do not intend to fuse the depth in
the two models but correct the errors based on the local trends.
Towards this goal, we introduce a line process on the depth values.
The line process indicates the borders where the depth values have
sudden changes and is calculated on the basis of the generic model,
since it is free from errors. For each of the � vertices, we assign
a binary number indicating whether it is part of the line process or
not. This concept of the line process is borrowed from the seminal
work of Geman and Geman [6] on stochastic relaxation algorithms
in image restoration.

The optimization function we propose is
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where 	� � � if the �th vertex is part of a line process and � is a
combining factor which controls the extent of the smoothing. ��

is the set of vertices which are neighbors of the �th vertex. ��� ����
represents the indicator function which is � is �� �� �� , else 0. In
order to understand the importance of (1), consider the third term.

When 	� � �, the �th vertex is part of a line process and should
not be smoothed on the basis of the values in ��; hence this term
is switched off. Any errors in the value of this particular vertex
will be corrected on the basis of the first two terms, which control
how close the final smoothed model will be to the generic model

and the 3D estimate. When 	� � �, indicating that the �th vertex
is not part of a line process, its final value in the smoothed model
is determined by the neighbors as well as its corresponding values
in the generic model and SfM estimate. The importance of each
of these terms is controlled by the factor � 
 � 
 �. In the case
(largely academic) where �� � �� , the smoothed model can be
either �� or �� and this is taken care of in the indicator function in
the third term in (1).

In order to solve the optimization problem in (1), we use the
technique of simulated annealing built upon the Markov Chain

Monte Carlo (MCMC) framework [9, 8, 11]. The MCMC opti-
mizer is essentially a Monte Carlo integration procedure in which
the random samples are produced by evolving a Markov chain. Let
�� � �� � ��� � �� � ��� be a sequence of monotone decreasing
temperatures in which �� is reasonably large and ��	���� � �.
At each ��, we run �� iterations of a Metropolis-Hastings (M-H)
sampler with the target distribution 
���� � 
������������
[7, 12]. As � increases, 
� puts more and more of its probability
mass (converging to �) in the vicinity of the global maximum of
�. Since minimizing ���� is equivalent to maximizing 
���, we
will almost surely be in the vicinity of the global optimum if the
number of iterations �� of the M-H sampler is sufficiently large.
The steps of the algorithm are:

� Initialize at an arbitrary configuration �� and initial temper-
ature level ��.

� For each �, run �� steps of MCMC iterations with 
����
as the target distribution. Pass the final configuration of �
to the next iteration.

� Increase � to � � �.

2.2. Model Registration

The optimization procedure described above requires a one-to-one
mapping of the vertices ����� and �����. Once we obtain the
estimate from the SfM algorithm, a set of corresponding points
between this estimate and the generic mesh is identified manually
(as in [3, 4]). This is then used to obtain a registration between the
two models. Thereafter, using proper interpolation techniques, the
depth values of the SfM estimate are generated corresponding to
the ��� �� coordinates of the vertices of the triangles in the generic
model. By this method, we obtain the meshes with the same set of
� vertices, i.e. the same triangulation.

2.3. Algorithm
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Fig. 1. A block diagram representation of the 3D modeling algo-
rithm.

Figure (1) represents in a block diagram the 3D modeling al-
gorithm, whose main steps are as follows.
�� Obtain the 3D estimate from the given video sequence using any
standard SfM algorithm.

� Register this 3D model with the generic model and obtain the
depth estimate whose vertices are in one-to-one correspondence
with the vertices in the of the generic model.
�� Compute the line processes and to each vertex � assign a binary
value 	�.
�� Obtain the smoothed model �� from the optimization function
in (1).
�� Map the texture onto � from the video sequence.



3. 3D MODELING RESULTS

3.1. SfM Algorithm

Figure 2 depicts two images from the video sequence which is
the input to the SfM algorithm. We use a two frame algorithm
that computes the structure from the optical flow [13] using two
consecutive frames and then integrates over the video sequence
using robust estimation techniques [14]. The output of the multi-
frame SfM (MFSfM) algorithm is shown in Figure 5(b), where the
model is represented using a triangular mesh. The model shown
is obtained after the registration process explained in Section 2.1

The 3D reconstruction from the SfM algorithm using 30 frames
and after texture mapping is shown in Figure 3(b). The decrease in
the distortion in the 3D estimate with increasing number of images
[14] is shown in Figure 3(a).

3.2. The Line Process and Neighborhood Set

Figure 5(a) represents the generic model, on the basis of which
the line processes were calculated. In Figure 4 the vertices of the
generic mesh that indicate the boundaries between regions with
sharp changes in depth are marked with black ’x’s. For these ver-
tices, 	� � � (in (1)). The local directional derivatives were calcu-
lated at each of the vertices of the generic mesh. The vertices at
which there was a sharp change in the magnitude of the depth were
selected to indicate that they belong to a line process. Thus, the
line processes form the boundaries between regions having differ-
ent depth values and divide the set of vertices into different equiv-
alence classes.

For each vertex, we need to identify a neighborhood set of
vertices for the optimization function in (1). The vertices which are
within a certain radial distance are identified as belonging to the
neighborhood set of the central vertex. However, if a line process
is encountered within this region, only those vertices which are in
the same equivalence class as the central one are retained in the
neighborhood. Since the entire process of determining the line
processes and neighborhood sets is done on the generic mesh, it
need not be done separately for each 3D model.

3.3. The Optimization Procedure

The combinatorial optimization function in (1) was implemented
using the simulated annealing procedure based on a Metropolis-
Hastings sampler. At each temperature we carried out 100 itera-
tions and this was repeated for a decreasing sequence of 20 temper-
atures. Although this is much below the optimal annealing sched-
ule suggested by Geman and Geman [6] (whereby the temperature
�� should decrease sufficiently slowly as������

��

������
	�, ��

being the total number of iterations at temperature ��), it does give
a satisfactory result for our face modeling example. We used a
value of � � ��� in (1). The final smoothed model is shown in
Figure 5(c).

3.4. Texture Mapping

Next, we need to map the texture onto the smoothed model in Fig-
ure 5(c). Direct mapping of the texture from the video sequence is
not possible since the large size of the triangles smears the texture
over its entire surface. In order to overcome this problem, we split

1The ear region is stitched on from the generic model in order to provide
an easier comparison between the different models.

each of the triangles into smaller ones. This is done only at the final
texture mapping stage. The initial number of triangles is enough to
obtain a good estimate of the depth values, but not to obtain a good
texture mapping. This splitting at the final stage helps us save a lot
of computation time, since the depth at the vertices of the smaller
triangles is obtained by interpolation, not by the optimization pro-
cedure. The fine mesh onto which the texture is mapped is shown
in Figure 5(d). Different views of the 3D model after the texture
mapping are shown in Figure 6.

(a) (b)

Fig. 2. Two views from the original video sequence which is the
input to the SfM reconstruction algorithm.
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Fig. 3. (a) represents the change in the distortion of the 3D es-
timate from the SfM algorithm with the number of images; (b)
depicts one view from the reconstructed model at this stage of the
algorithm.

Fig. 4. The vertices which form part of the line processes indicat-
ing a change in depth values are indicated with black ’x’s.



(a) (b)

(c) (d)

Fig. 5. Mesh representations of the 3d models obtained at dif-
ferent stages of the algorithm. (a) represents the generic mesh,
(b) the model obtained from the SfM algorithm (the ear region is
stitched on from the generic model in order to provide an easier
comparison between the different models), (c) the smoothed mesh
obtained after the optimization procedure and (d) a finer version of
the smoothed mesh for the purpose of texture mapping.

(a) (b)

(c) (d)

Fig. 6. Different views of the 3d model after texture mapping.

4. CONCLUSION

In this paper we have presented a novel method of 3D modeling of
a face from a video sequence using an SfM algorithm and a generic
face model. In previous approaches, the generic model was used

to initialize the SfM algorithm. The problem with this approach
was that the final solution often converged very close to the initial
value, resulting in a reconstruction which had the characteristics
of the generic model rather than those of the particular face in the
video which needs to be modeled. The main contribution of our
work lies in the fact we incorporated the generic model after the
SfM algorithm, which obtains the 3D estimate purely from the in-
put video sequence. Also, instead of combining the depth values
of the two models, we used an optimization framework whereby
the local trends in the 3D structure between the two models are
compared and errors in the specific model are corrected for. In or-
der to combine the generic model with this 3D estimate, we used
an energy function minimization procedure. The optimization was
done in a MCMC framework using a Metropolis-Hastings sam-
pling strategy. The results of our method at different stages of the
algorithm were presented.
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