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ABSTRACT

Digital fingerprinting is a technology for tracing the distribution of
multimedia content and protecting them from unauthorized redis-
tribution. Collusion attack is a cost effective attack against digi-
tal fingerprinting where several copies with the same content but
different fingerprints are combined to remove the original finger-
prints. In this paper, we consider average altack and several nonlin-
ear collusion attacks on independent Gaussian based fingerprints,
and study the detection performance of several commonly used
detection statistics in the literature under collusion attacks, Ob-

serving that these detection statistics are not specifically designed

for collusion scenarios and do not take into account the characteris-
tics of the newly generated fingerprints under collusion attacks, we
propose pre-processing techniques to improve the detection perfor-
mance of the detection statistics under collusion attacks.

1. INTRODUCTION

With the rapid development of multimedia and communication
technologies, an increasing amount of multimedia data are dis-
tributed through networks. This introduces an urgent demand to
insure the proper distribution and usage of content, especially con-
sidering the ease of manipulating digital multimedia data.

To prevent illegal redistribution of the multimedia content, a
digital fingerprinting sysiem embeds unique identification infor-
mation into each distributed copy to trace customers who use their
copies inappropriately. There is a cost effective attack against digi-
tal fingerprinting, known as coliusion. In collusion attacks, several
users (colluders) get together, combine information from different
fingerprinted copies of the same host signal and generate a new
copy where the original fingerprints are removed or attenuated [1].
Digital fingerprinting should be resistant to collusion attacks as
well as to common signal processings.

In the literature, there are several commonly used detection
statistics [1, 2, 3] available for the detection of the existence of
the additively embedded watermark in the test signals. To our
knowledge, there is no work that compares their detection perfor-
mance under collusion attacks. Also, these detection statistics are
not specifically designed for detection of fingerprints under col-
Iusion attacks and ignore the statistical characteristics of the col-
luded fingerprints under different collusion attacks. In this paper,
we focus on average and several nonlinear collusion attacks [1]
on independent Gaussian based fingerprints and study the detec-
tion performance of different statistics under collusion attacks. We
also take into consideration the statistical features of the colluded
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fingerprints in the detection process to improve the detection per-
formance under collusion attacks.

The paper is organized as follows. Section 2 intreduces the
fingerprinting and collusion attack system model. In Section 3, we
analyze the detection performance of the detection statistics under
collusion attacks. In Section 4, we study the performance of the
statistics on independent Gaussian based fingerprints. Section 5
proposes the pre-processing stage to improve the detection perfor-
mance of the statistics. Conclusions are drawn in Section 6.

2. SYSTEM MODEL

We consider a system that consists of three parts: fingerprint em-
bedding, collusion attacks, and fingerprint detection. Spread spec-
trum watermark embedding [4, 51 is widely used in watermark ap-
plications where the robusiness of the watermark is required. As-
sume that there are a total of M users in the system. Given a host
signal represented by a vector 8 with length N, the owner chooses
a unique fingerprint W of length NV foruseri = 1,--- , M, and
generales the fingerprinted copy x4 by X9 =8+ oWl o
is the Just-Noticeable-Difference (JND) from human visual mod-
els [5] to control the energy and guarantee the imperceptibility of
the embedded fingerprints. We assume that the M fingerprints
{W®} are chosen independently.

Assume that K users collude and 5S¢ is the set containing the
indices of the colluders. We further assume that the collusion at-
tack is in the same domain as the fingerprint embedding. With K
different copies {X(k}}kesc, the colluders generate the jth (j =
1,--, N)component of the attacked copy V = [V4, Vo, - -+, Va7
using one of the following collusion functions:

. — (k)
average: Vpave = Z XJ- /K, 1)
keSe
s . ‘/'min = s ‘;k)
minimum £ Jin {X;¥},
maximum: V™" = max {X;k)},

k€S

randomized negative:  V7*er = V™™ with prob. p,
’ V™" with prob. 1 — p.

In this paper, we assume that p in the randomized negative attack
is independent of the fingerprints {WJ.M} and p = 0.5. Analy-
ses of other nonlinear collusion attacks are available in [6]. Note
that for our model, applying the collusion attacks to the finger-
printed copies is equivalent to applying the collusion attacks to the
fingerprints. For example, V™" = mingesg {S + aWE} =
S + aminkes, {W®}.
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In the detection process, the detector removes the host signal
from V and extracts the fingerprint Y = g({W(kj}kEsc ), where
g(-) is the collusion function defined in (1). The detector measures
the similarity between Y and each of the M original fingerprints
{Wm }, compares with a threshold, and outputs the estimated col-
luder set. In the literature, three detection statistics [1, 2, 3] are
used to measure the similarity between the exiracted fingerprint
and the original fingerprint !;

L]

TJ(‘j) (Y,W(*))/ /||W(’)Li2, (2)
AR %Mk,gi—*__p where
o, - RELEW - GEL Y B W)
Voway
and ¢V = VNM,/\/VZ, where
N () N () :
Y. wt Y; W — M,
My = Z JNJ andvf:z(-,—;v_l—y)
i=1 =1

In (2), f}W(i)|| is the Fuclidean norm of W*9, N is the length
of the watermark, p is the estimated correlation coefficient be-
iy A2 1 (5 _ 1 N (942
tween Y and WO, 6%, = o5 (W - LT W)
and 6% = iy 32, (Ys ~ & 3571, ¥5)” are the unbiased esti-
mates of the ongmai fingerprint’s variance and the extracted fin-
gerprint’s variance, respectively, and A4, and V;? are the sample

mean and sample variance of {Y;W{"}.

We adopt the commeonly used criteria to measure the detec-
tion performance of the three statistics under collusion attacks: the
probability of capturing at least one colluder (Py) and the proba-
bility of accusing at least one innocent user (Pr,). We also con-
sidered other measurements like the fraction of colluders that are
successfully captured and the fraction of users that are innocently
accused. From the analysis in [6], they have the same tendency as
P, and Py, and therefore are not included in this paper.

3. ANALYSIS OF THE DETECTION STATISTICS UNDER
COLLUSION ATTACKS

3.1. Analysis of the Correlation Term

Note that, in (2), all detection statistics are correlation based, and
the kernel term is the linear correlation between the extracted fin-
gerprint Y and the original fingerprint wio

ol

T ¥

k) 1 N i
<Y, WO >= 5 g({W/ hkes W)Y @)
i=1

where IV is the length of the fingerprint and TN(") can be regarded
as the unnormalized T statistics for user 4.
Under the assumption that {Wj(k)} are i.i.d. distributed with

zero mean and variance o3y, {g({WJ(k)}kgsc)VVji)}f=1 are also
i.i.d. distributed. From central limit theorem, if they have finite

;o
mean g and finite variance o2, then we can approximate Tfé’) with
the following Gaussian distribution:

T ~ N (u, 0 /NY. @

I Note that the original definition of Ty statistics in [2] is slightly differ-
ent from the one given here. But it was shown in [6] that this modification
is valid for comparing the detection performance of different statistics.

Therefore, we need to find 1 = E[g({W(k)}kesc)W(i)] and
a* = var[g({W¥) }es )W) (for simplicity, we will drop the
subseript 7). Due to the symmetry of g({W )}, YW with
respect to the user 7, with the same collusion function and the same
number of colluders, all g({W " }res, )W) where i € Sc have
the same mean and variance. Similarly, all g({ W}, YW
where ¢ ¢ S¢ have the same mean and variance.,
For i € S¢, define

&)

momn £ E [ hes W],
var [g({W(k)}kesc)W(‘)] .

Fori ¢ Sc,because {W D}, areiid. distributed with zero
mean and variance 0%, we have

E [9({W(k)}kesc)w(i)] =0,
var [g({W P hres ) WO]
B[@(W P hes)| ol ©

Detailed derivation of pig, 5, , ¢, 57, and o2 ;7. under different
collusion attacks is available in [6]-

From (4), (5) and (6), T)\"’ can be approximated with the fol-
lowing Gaussian distribution

It

and U;H]

a
Hg,Hy =

e

2
and o g,

02
» N0, -%ﬂ) ifi ¢ Sc,
Ty ~ A ™
N pg,my g—hffl) ifi € Se.

3.2. Analysis of the Detection Statistics

From (7). TS) can be approximated with Gaussian distribution

a2
© N7 N[0, —a,“‘f&) ifi ¢ S,
1§ Rk NGNS B . ®
WP | (L i ) ifi€ So.
w

The Z statistics can be approximated with a Gaussian random
variable A/ (', 1) with g’ = 1/N — 3log %H , where E[g]
is the mean of p defined in (2) and is the correlation coefficient of
Y and W [1]. Since E[W | = 0, we have

cov [g({W(k)}kGSC): W“)] _E [9({W(k)}k63c)W(')]

Elp] = = —
\/"wag,y

2 -2
\/crwa ¥

where 02y = var[g({W® }res,)] is the variance of the ex-
tracted fingerprint. Consequently, we have

0 N0, 1) ifi &€ 5S¢,
~ N(% N =3log 125f), 1) ifi € Se,

"
where Elp] = ElTy oty &)

[ 2 2 a2
Fo v T \/;y.Yaw

Similarly, ¢¢*) can be approximated with Gaussian distribution

. N@O, 1 ifi¢ Se,
"~ vag.u - (10
N (m‘, 1) ifi € S¢.
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3.3. Analysisof Py and F;,

AvVRug i 2 N .2 Aol
DeﬁneuTN:-#L-O’TN,H,Z—:!W sand 9T, g, = :w! 1

the number of colluders is /, among the the M statistics {T}J)}M

i=1
K of them are normally distributed with A{pT, ,U%N, H, )» and
the others are normally distributed with A/(0, O'%N, o) If {T}J } M
are uncorrelated with each other or the correlation is very small,
then for a given threshold A, we can approximate Py and Py, with

; h—
- (4) 1 —(1— Qi HTv K
Py = P[{relg}CcTN >hl~1—(1-8( e )
() i h M-k
and Py, P[‘r:glg?:( Ty >hl=1-(1 Q(_—UTN.HO ))

2
where Q(z} = [~ Té:e_e? dt is the Gaussian tail function.

Define ,uzééx/N —3log %’;—E«} and Hqé\/N,Ug,Hl INCH™S

Similarly, with a given threshold A, we have

for the Z statistics, Py 1—(1—Q(h — uz))™.

and Pj, =~ 1-—(1-Q()M ¥,
for the g statistics, Py ~ 1—(1—Q{h — u N,
and Pr, = 1—(1-QhYY ¥, ap

4. GAUSSIAN BASED FINGERPRINTS

It was shown in [1] that uniformly distributed fingerprints can be
easily defeated by nonlinear colluston attacks. The simulation re-
sults in [1] also showed that Gaussian fingerprints are more re-
sistant to nonlinear collusion attacks than uniform fingerprints.
However, unlike uniform fingerprints, Gaussian fingerprints are
not bounded and may introduce noticeable distortion in the fin-
gerprinted copies. In order to achieve both the robustness against
collusion attacks and the imperceptibility of the embedded finger-
prints, bounded Gaussian-like fingerprints were introduced in [6].
Assume that fx(-) and Fx(-) are the pdf and cdf of a Gaus-
sian random variable with zero mean and variance o, respec-
tively. The pdf of a bounded Gaussian distribution fi (-) is:

x(z .
frle) = {FXUJ;J(F;(_U e a2
0 otherwise .
Given the pdf (12) and the analysis in Section 3, we can calculate
Jg.Hyis Ooit,s 0o oo ad o2y, and therefore Py and Pyp. De-
tailed derivation is available in [6].

From the simufation results in Figure 1, we can see that, three
detection statistics have similar performance under the average and
randomized negative attacks; and under the minimum and maxi-
mum attacks, the Z statistics is more robust than the Tv and g
statistics. The detection performance under the maximum attack
is the same as that under the minimum attack.

5. PRE-PROCESSING OF THE EXTRACTED
FINGERPRINTS

The three detection statistics we have studied so far are not specifi-
cally designed for collusion scenarios, and do not exploit the statis-
tical features of the extracted fingerprints under collusion attacks.
One of such features is the sample mean of the extracted finger-
prints. From the histogram plots of the extracted fingerprints un-
der different attacks as shown in Figure 2, we observe different
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Fig. 1. P; of three detection statistics under the average, minimum
and randomized negative attacks on i.i.d. fingerprints following
distribution (12) with ¢, = 1/9. M = 100, N = 10* and
Py, = 1072, Results are based on 2000 simulation runs.

patterns of the sample means of the extracted fingerprints: the av-
erage attack yields an approximately zero sample mean; the mini-
mum and maximum attacks yield a negative and a positive sample
means, respectively; and the extracted fingerprint components un-
der the randomized negative attack are from two distributions, one
with a negative mean, the other with a positive mean.

Recall from (6) that ag, H, is proportional to the second mo-
ment of the extracted fingerprint, subtracting the sample mean
from the extracted fingerprint will reduce its second moment, thus
improve the detection performance. Motivated by this intuition,
we Propose a pre-processing stage in the detection process. Given
the extracied fingerprint {Y; = g({W}}xeso)}iz1, we first in-
vestigate its histogram. If a single non-zero sample mean is ob-
served, we subtract it from the extracted fingerprint, and then apply
the detection statistics. If the fingerprint components are generated
from two (or more) distributions, we need to cluster components
into different distributions and then subtract the sample mean of
each distribution from those fingerprint components in that distri-
bution correspondingly. In our problem, for the randomized nega-
tive attack, a simple solution is to first observe the bi-modality in
the histogram of {¥;}, and then cluster all negative components
into one distribution and cluster all positive components into the
other distribution. Given the extracted fingerprint {Y;}, the pre-
processing stage generates a new signal {¥;}72; by

v (=X I <0/ 11 < 0] ifY; <o,
PTG - Y I > 0 5,0 > 0] i Y; >0,

where I[-] is the indication function, and then the detector applies
the detection statistics to {¥;}52,.

The analysis of the detection statistics with pre-processing is
the same as in Section 3. Under the minimum attack, for i €
Sc,if fhonin g, = BIW™ W@ o2, 4 = var[W™"WH)],
Cointo = El(W™)od, and 02, v = var[W™") are the
parameters without pre-processing, then with pre-processing,

fiminity = E[(W = B WO = pimin, iy,
var [(W”“'" — E[W""'"]) W“’]
Oriniy + (EV™") " o,

—2E W™ E [W'""“ (W("))Q] ,

>

~2
Tomin, Hy

fl
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Fig. 2. Histogram of the extracted fingerprints under the average, minimum and randomized negative attacks. Fingerprint components are

ii.d. following distribution (12) with oy = 1/9. N = 10* and K = 45.
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Fig. 3. P, of the three detection statistics with and without pre-processing under the minimum and randomized negative attacks. Fingerprint

components are i.i.d. following distribution (12) with ¢y == 1/9. M = 100, N = 10%nd P, = 10~2. Results are based on 2000
simulation runs. Left: under the minimum attack, right: under the randemized negative attack.

. N2 - :
Egnin,ﬂo 2 p [(Wn'nn _ E[wmzn]) ] o3 = crfnm,yffav', have similar performance under collusion attacks.
. . Acknowledgement The authors would like to thank Dr. Wade
=2 Fay in miny| _ 2
and Gy = var [Wm - BW )] = Tmin,y- azx Trappe for his constructive suggestions and inspiring discussions.

The analyses of the maximum and randomized negative attacks are
similar and thus omitted here. With (13), the analysis of { Py, Prp)
with this pre-processing stage is the same as in Section 3.3.

The simulation results in Figure 3 show that, with the pre-
processing stage, the detection performance under the minimum,
maximum and randomized negative attacks is improved, and three
statistics have similar performance. The performance under the
maximum attack is the same as that under the minimum artack.

6. CONCLUSICONS

In this paper, we have studied the detection performance of com-
monly used detection statistics on independent Gaussian based fin-
gerprints under collusion attacks. We have shown that, with the
three detection statistics as defined in the literature and without
any modification, the Z statistics is more resistant to the minimum
and maximum attacks than the T and g statistics, while the three
statistics have similar performance under other collusion attacks.
Observing different patterns of the sample means of the extracted
fingerprints under different collusion attacks, we have also intro-
duced a pre-processing stage to improve the detection performance
and we have shown that, with the pre-processing stage, the de-
tection performance is improved and the three detection statistics
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