
CONTENT-BASED RETRIEVAL OF MUSIC IN SCALABLE PEER-TO-PEER NETWORKS

Jun Gao
�
, George Tzanetakis

�
, Peter Steenkiste

��� �

�
School of Computer Science

�
Department of Electrical and Computer Engineering

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213-3891

ABSTRACT

A large portion of data exchanged in today’s Peer-to-Peer
(P2P) networks consists of music stored as MP3 compressed
audio. Existing P2P systems typically are not scalable and
only support primitive methods for the searching of music
files, e.g., by looking up exact filenames or using simple
metadata information such as artist or album name. In this
paper, we present the design and evaluation of a scalable
P2P system that uses Rendezvous Points (RPs) for music
file registration and query resolution, and supports content-
based Music Information Retrieval (MIR) of audio signals.

1. INTRODUCTION

A substantial percentage of the Internet traffic today con-
sists of music files exchanged by Internet users over P2P
networks. In such a system, each peer may contribute to
the music collection by making a set of files on its local
machine available to others, and the P2P protocol allows a
peer to discover files stored on other peers. Unlike the tradi-
tional client-server based system, the decentralized and self
organizing nature of P2P networks makes them a more suit-
able and powerful platform for resource sharing. However,
the usefulness of existing P2P systems is often limited by
their scalability and searching capability. For example, they
only provide primitive searching methods, such as keyword
searching, or searching based on simple metadata.

Centralized P2P systems such as Napster are not ro-
bust and may be vulnerable to Denial-of-Service attacks,
since the central server forms the system’s single point of
failure. Such a system does not scale well as registration
and query load increase. Distributed P2P systems, such
as Gnutella and KaZaA, are more robust, but since peers
do not explicitly register their shared files, a query may
have to be broadcast throughout the network to get resolved.
The potentially large number of messages involved for each
query limits the system’s scalability. Distributed Hash Ta-
ble (DHT) [1, 2] based systems achieve good scalability by
deploying a structured overlay P2P network. However, the

basic set of applications built on top of DHT only supports
exact file name look up and does not allow searching.

In addition to scalability, users of a P2P system desire
more powerful searching capabilities such as searching based
on the music content itself. For example, one may want to
search for the album that contains an unknown song recorded
from radio, and may want to find more songs that are “sim-
ilar” to that one in terms of tempo. Recent advances in Mu-
sic Information Retrieval (MIR) have enabled the analysis,
indexing and retrieval of audio files based on musical con-
tent. Example work in MIR includes automatic audio clas-
sification [3] and beat detection [4]. By combining signal
processing and machine learning algorithms, sophisticated
models for audio retrieval and indexing can be built [5]. For
example, [6] describes an automatic musical genre classifi-
cation based on features automatically extracted from audio
signals. [7] proposes the idea of performing MIR over P2P
networks. However, their system only supports searching of
symbolic data (MIDI) and not audio, and their P2P network
architectures are either centralized or broadcast based.

In this paper, we present the design and evaluation of
a scalable P2P system that supports content-based retrieval
of music files as well as the traditional attribute-value based
search using simple metadata. We ensure system scalability
by employing a Rendezvous Points based architecture on
top of DHT-based overlay network for music file registra-
tion and query resolution.

2. SYSTEM OVERVIEW

Figure 1 shows the software architecture on each peer node.
A user may perform two types of operations: registering
shared files and initiating searches. For registration, a shared
audio file is represented with a Music File Description (MFD),
which consists of a set of attribute value pairs (AV-pairs).
The MFDs are either specified by the user or automatically
generated by the Music Feature Extraction Engine (MFEE).
We explain the MFEE component in more detail in Sec-
tion 3. The criteria of a search is formulated as a query,
which is also in the form of an MFD.

DHT−based Overlay

Registration Searching

MFD Specification

MFEE

Content Discovery System
MFD

Database

Fig. 1. Software architecture on a peer node.

The registration or query MFD is then passed to the
Content Discovery System (CDS), which runs on top of a
Distributed Hash Table (DHT) based P2P systems, such as
Chord [1]. In a DHT, each peer is responsible for a region,
represented with a node ID, in a contiguous � -bit virtual
address space. A data item such as a file name, is associ-
ated with some value in this address space, e.g., by apply-
ing a uniform hash function to the data item, and stored on
the peer whose region covers the value. Correspondingly,
by applying the same computation to the data item, a peer
can locate it from the same peer who stores it. We present
the algorithm used by the CDS to distribute MFDs to peers
in Section 4. The underlying mechanism of DHT ensures
routing and message forwarding efficiency in such a sys-
tem: in Chord, a peer only needs to keep information about�������	��

���

neighboring peers, and the number of overlay
hops between two peers is

�������	��
 � �
, where

 �
is the total

number of peers in the system.
Each peer maintains a local MFD database to store the

MFDs it receives. When receives a query, a peer exam-
ines its database and returns the set of MFDs that match the
query to the query initiator. The matched MFDs may con-
tain sufficient information that the query initiator is looking
for, e.g., the song name of an unknown piece of music. To
further retrieve the actual music file, the query initiator may
connect to the peer who owns the song for downloading.

3. MUSIC FEATURE EXTRACTION

The MFEE component takes as input an audio file in com-
pressed format, such as MP3, the MPEG audio compression
standard, and outputs a feature vector, also known as the
content-based vector, of AV-pairs that characterizes the par-
ticular musical content of the file. In our system, we use the
feature set proposed in [6] for the purpose of musical genre
classification. This feature vector captures aspects of instru-
mentation and sound texture (what instruments are playing
and their density distribution over time), rhythm (fast-slow,
strong-weak), and pitch content (harmony) and has been
shown to be an effective representation for the purposes of

classification and retrieval of music. Examples of such fea-
tures include tempo, beat strength and degree of harmonic
change. The different types of information represented by
the feature vector combined with the query flexibility of the
system supports a rich variety of queries. For example, a
user can search only on the basis of rhythmic content while
ignoring other similarity aspects.

We use a standard linear quantization and normalization
to transform the dynamic ranges of the continuous features
into discrete values necessary for searching based on AV-
pairs. Linear quantization was chosen so that the statistics
of the distribution of the features do not change. In our sys-
tem, each feature is quantized to 100 discrete values. Ex-
periments comparing automatic classification of the original
features and the quantized features showed no significant
differences in the results.

The results of the MFEE component together with man-
ually annotated metadata such as artist and album name are
combined to form a Music File Description (MFD), which
is a collection of AV-pairs. As an example, ��������������� �! �#"%$�$&$�"'�)(*� ! (,+ consists of - AV-pairs, where �/.'"102�43	$�$ -
can be either a manually annotated attribute or a content-
based feature attribute. For query, MFDs are similarly formed
to represent the search criteria. In particular, the MFEE is
used to generate a query MFD when the user provides a
sample piece of music. Using named AV-pairs in MFDs al-
lows more powerful queries than keyword searching. For
example, depending on a user’s need, rather than specifying
� U2, Zooropa + , the user can search for � artist = U2, album-
Name = Zooropa + or � artist = U2, songName = Zooropa + .

4. SCALABLE CONTENT DISCOVERY

Unlike centralized systems where files are registered at a
single place or broadcast-based systems where a query may
potentially be sent to all peers in the system, the CDS in
our system takes on a scalable approach where it uses Ren-
dezvous Points (RPs) for registration and query resolution.

4.1. MFD registration

To register an MFD such as ������� shown above, the CDS
applies a uniform hash function 5 such as SHA-1 to each
AV-pair in ����� � to obtain - node IDs: 5 � � . � ! . ��6
 . "10
�73	$�$ - , where

 . is the ID of a peer in the system.
The MFD is then sent to each of these peers, and this set
of peers is known as the Rendezvous Points(RP) set for this
MFD. Upon receiving an MFD, the peer inserts it into its
database. Hence each peer is responsible for the AV-pairs
that are mapped onto it. For example, node

 � will receive
all MFDs that contain ����� � ! �8+ .

Since the number of AV-pairs in an MFD is typically
small (e.g., 97:#;), the size of the RP set for an MFD is

small and registrations can be done efficiently. Different
MFDs will have different corresponding RP sets, which nat-
urally separates the system’s registration load. Registering
each AV-pair of an MFD individually allows the MFD to be
searched using any subset of its AV-pairs.

4.2. MFD searching

We classify searches conducted by a user into two cate-
gories: exact searches and similarity searches. In an exact
search, the user is looking for MFDs that match all the AV-
pairs specified in the query simultaneously, and any extra
AV-pairs that may be in the MFDs but not in the query are
ignored. Suppose the query is � �/�8��� � ! �8"%$�$�$&" ��� � ! � + .
Since the MFDs that match � are registered at RP peers
 � through

 � , where

 .
� 5 � �).
� ! . � , the CDS can

send a single query message to any of these � peers to have
the query fully resolved. For efficient resolution, the CDS
chooses a peer that has the smallest MFD database. Once a
query is received, the peer conducts a pairwise comparison
between the query and all the entries in its database to find
the matching MFDs.

In a similarity search, the user is trying to find music
files that have a similar feature vector to what is specified in
the query. Suppose the user has a clip unknown.mp3 with an
extracted feature vector ��� � � ! � "%$�$�$&"�� � � ! � + , and wants
to find 10 songs that are most similar to the clip. Using the
same technique as above, the CDS may select a pair, e.g.,
���	� � ! �8+ and send the query to the peer

 � � 5 � � � �! � �'� . This peer, instead of conducting a pairwise equality
test, computes the “distance” between the query vector and
each MFD in its database. In our current system, Manhattan
distance defined as � � � "��	� � ��
 ! �
� ! ��
�� $�$�$���
 ! ��� ! ��
 is
used, where ! . ’s and ! �. ’s are the values of vector � and �	� re-
spectively. More sophisticated way of computing distance,
such as “cosine distance” may also be used. The distances
are then ranked and the 10 MFDs that have the smallest dis-
tance are returned to the user.

However, sending the query to peer

alone will fail to
discover the MFDs that slightly differ from the query in � � ,
but are similar or identical regarding other features, because
those MFDs are not registered with

. This is undesirable

especially when

does not have enough matches. In this
case, our system uses a limited expanding ring search to
gather more results: in addition to

, the query is sent ei-

ther by

or the query initiator to peers that correspond to
values that are near ! � , e.g., � ��� ! ��� 3 "��	��� ! �����/"%$�$�$.
Accordingly, these peers will carry out the distance compu-
tation and return any results.

4.3. Load balancing

By using Rendezvous Points, network-wide message flood-
ing is avoided at both registration and query times. How-

ever, in practice, some AV-pairs may be much more com-
mon or popular in MFDs than others. It has been observed
that the popularity of keywords in Gnutella follows a Zipf-
like distribution [8]. Such a distribution will cause a few
peers being overloaded by registrations or queries, while
the majority of peers in the system stay underutilized. To
improve system’s throughput under skewed load, the CDS
deploys a distributed dynamic load balancing mechanism
[9], where multiple peers are used as RP points to share the
heavy load incurred by popular AV-pairs. When an AV-pair
appears in many MFDs, instead of sending all the MFDs to
one peer, the system partitions them among multiple peers.
Similarly if there are a large number of queries for the same
AV-pair, the system allows the original peer who is respon-
sible for this pair to replicate its database at other peers.
The partitions and replicas corresponding to one AV-pair
are organized into a logical matrix, the Load Balancing Ma-
trix (LBM), and the matrix automatically expands or shrinks
based on this pair’s current registration and query load. LBMs
help to eliminate hot spots in the system under skewed load,
and the system can maintain high throughput in processing
registrations and queries [9].

1

10

100

1000

10000

1 10 100 1000

N
um

be
r

of
 fi

le
s

Rank of AV-pairs

Fig. 2. Popularity distribution of feature attributes.

5. SYSTEM EVALUATION

The MFEE is built using Marsyas [10], a free software frame-
work for audio analysis. We evaluate our system using an
event-driven simulator [9]. For our experiments, we set up
a P2P network that has 10,000 peers, and each peer is con-
figured with DSL-level link bandwidth (� :	;	;������ �). As
MFDs, 30 feature attributes were extracted from 4,816 MP3
files representing a variety of genres and styles. Figure 2 is
the log-log plot of the AV-pair distribution in these files.
There are 2,178 distinct AV-pairs, and the distribution is
highly skewed: the most common AV-pair (ranked 1) ap-
pears in 53% of the MFDs and 41 AV-pairs only appear in 1
MFD.

As registration workload, we generated 100,000 MFDs
by replicating each of the 4,816 files approximately 20 times,

and assigned them to random peers. Each peer registers the
files it has with the system. Due to the skewed feature distri-
bution, registrations of common AV-pairs result in multiple
partitions. For query load, 100,000 queries were generated
following a Zipf distribution independent from the above
distribution. Each query corresponds to the features of one
music file. We do so to emulate the behavior of a user who
submits a music clip and looks for similar music. The most
popular MFD occurs in over 10% of the queries, and the ma-
jority of the MFDs only occur in a few queries. A query’s
initiator is randomly picked from all peers, and for simplic-
ity, only exact matches are returned. A peer rejects a query
and generates a failure when the peer’s link utilization has
reached 100% due to simultaneous queries.

40

50

60

70

80

90

100

5 6 7 8 9 10 20 30 40 50

Q
ue

ry
 s

uc
ce

ss
 r

at
e

(%
)

Query rate (1000 q/sec)

Without replication
With replication

Fig. 3. Query success rate comparison.

Figure 3 compares the query success rate as a func-
tion of query arrival rate (Poisson arrival) to the system
under two scenarios. In the first scenario, when reaching
link capacity, a peer simply rejects new queries that arrive
at it without replicating its content at other peers. Since
for each query the CDS has 30 candidate AV-pairs, query
load can spread well among peers even without replication.
Therefore the system achieves a high success rate under
high load, e.g., the success rate is 94% for a query rate of
3 ;�"';	; ;������ � �������80	������� � . However, as load increases further,
peers corresponding to popular queries will be saturated,
and the success rate drops quickly. In the second scenario,
by using the dynamic replication mechanism, peers who ob-
serve high load will replicate their databases at other peers
to dissipate concentrated query load. As a result, we observe
that with replication, the system can sustain a much higher
query rate while keeping the success rate above 95%.

6. CONCLUSIONS

In this paper, we described a scalable and load-balanced
P2P system that supports a rich set of music search methods.
In particular, our automatic music feature extraction tech-
nique enables sophisticated music content based searches
such as similarity searches. The RP-based registration and

query scheme ensures system scalability by avoiding net-
work wide message flooding encountered in current P2P
systems. We evaluated the system using a realistic regis-
tration load obtained from a large set of music files. Our
dynamic load balancing mechanism allows the system to
maintain high throughput under skewed Zipf query load.

7. REFERENCES

[1] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan, “Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications,” in Pro-
ceedings of SIGCOMM 2001, San Diego, CA, August
2001, pp. 149–160.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable, Dis-
tributed Object Location and Routing for Large-scale
Peer-to-Peer Systems,” in Proceedings of Middleware
2001, Heidelberg, Germany, November 2001.

[3] Eric Scheirer, Music-Listening Systems, Ph.D. thesis,
MIT, 2000.

[4] Masataka Goto and Yoichi Muraoka, “Music Under-
standing at the Beat Level: Real-time Beat Tracking
of Audio Signals,” in Computational Auditory Scene
Analysis, David Rosenthal and Hiroshi Okuno, Eds.,
pp. 157–176. Lawrence Erlbaum Associates, 1998.

[5] Malcolm Slaney, “Mixtures of Probability Experts for
Audio Retrieval and Indexing,” in Proc. Int. Conf. on
Multimedia and Expo (ICME). IEEE, Aug. 2002.

[6] George Tzanetakis and Perry Cook, “Musical Genre
Classification of Audio Signals,” IEEE Transactions
on Speech and Audio Processing, July 2002.

[7] C. Wang, J. Li, and S. Shi, “A Kind of Content-Based
Music Information Retrieval Method in a Peer-to-Peer
Environment,” in Proceeding of ISMIR 2002, Paris,
France, Oct. 2002, pp. 178–186.

[8] K. Sripanidkulchai, “The Popularity of
Gnutella Queries and Its Implications on
Scalability,” http://www.cs.cmu.edu/ kun-
wadee/research/p2p/gnutella.html.

[9] Jun Gao and Peter Steenkiste, “Rendezvous points-
based scalable content discovery with load balancing,”
in Proceedings of NGC 2002, Boston, MA, October
2002.

[10] George Tzanetakis and Perry Cook, “Marsyas: A
framework for audio analysis,” Organised Sound, vol.
4(3), 2000.

