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ABSTRACT 

With the advent of wavelets for lossy data compression came the 
notion of representing signals in a certain vector space by their pro- 
jections in well chosen subspaces of the original space. In this pa- 
per, we consider the subspace of signals generated by an overdec- 
imated rational nonuniform filter hank and find the optimal condi- 
tions under which the mean-squared error between a given deter- 
ministic signal and its representation in this subspace is minimized 
for a fixed set of synthesis filters. Under these optimal conditions, 
it is shown that choosing the synthesis filters to further minimize 
this error is simply an energy compaction problem. With this, we 
introduce the notion of deterministic energy compaction filters for 
classes of signals. Simulation results are presented showing the 
merit of our proposed method for optimizing the synthesis filters.' 

1. INTRODUCTION 

Along with the introduction of wavelets in the field of signal pro- 
cessing came the notion of representing signals in a given vector 
space, usually e,, by their projections in certain special types of 
subspaces of the original space. The impetus for such a represen- 
tation arises in lossy data compression and multiresolution theory 
[3, 41, since the above projections often require less information 
to be stored than the original signal itself at the cost of a small 
amount of loss of fidelity. 

'In this paper, we consider the subspace of signals generated by 
an overdecimated rational nonuniform synthesis bank as shown in 
Figure!l. By overdecimated, we mean that, 

P-1 

k=O 

and so the inputs {ck(n)} operate at a lower overall rate than the 
output y(n). The subspace V that we will focus on is defined by, 

For a fixed set of synthesis filters {FA. ( z ) } ,  we will find the optimal 
choicesof the driving signals {e*(.)} which minimize the mean- 
squared error between y(n) and any given signal z(n) E e,. This 
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Fig. 1. Rational nonuniform synthesis filter bank. 

is a generalization of the results given in 171 for integer nonuni- 
form filter hanks. Though rational nonuniform filter banks can be 
shown to be transformable to integer nonuniform filter hanks, our 
approach avoids this complicated transformation and solves the 
least squares problem in a more direct way. 

In addition to solving this least squares problem, we also con- 
sider optimizing the synthesis filters to further minimize the mean- 
squared error. This is shown to be analogous to choosing the op- 
timum filter for compacting the energy of a process whose power 
spectrum is related to the blocked version of the given signal z(n). 
Though for a single deterministic signal, we can trivially force the 
mean-squared error to be zero through proper choice of the synthe- 
sis filters, the filters here are chosen to minimize the mean-squared 
error for a class of deterministic signals with certain practical con- 
straints. With this, we introduce the notion of deterministic energy 
compaction filters for classes of signals. Experimental results pro- 
vided here show the merit of our proposed method. 

1.1. Notations 

All notations are as in [6] unless specified otherwise. In particular, 
M-fold decimation and expansion will he represented by the sym- 
bols 1 M and T M, respectively. Also, the M-fold blocked version 
of a scalar signal ~ ( n )  is an M x 1 vector signal ~ ( n )  given by, 

1 4Mn) 1 x(Mn+l) 

1 4 M n  + ( M  - 1)) 1 
Finally, the M-fold blocked representation of a scalar transfer func- 
tion H ( z )  is an M x M multiple-input multiple-output (MIMO) 
pseudocirculant system H(z) whose 0-th column consists of the 
Type 1 polyphase components of H ( z ) .  
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2. LEAST SQUARES SIGNAL APPROXIMATION MODEL 

Consider the rational nonuniform synthesis filter bank shown in 
Figure I. We will make the following assumptions here. 

But note that we have, 
P--l P--l . .  

y(n) = y d n )  - y ( n )  = Y k h )  
k=O k=O 

Thus, using (4). we get, gcd(mk, nk) = 1 V k (Coprimeness of r% and nk) 
P -  1 

k=O 

(Overdecimated system) 

There is no loss of generality in making the lint assumption, as 
common factors between mk and n k  can be absorbed into the filter 
Fk(z) .  ?he second assumption ensures that the subspace V in ( I )  
is a proper subspace of 8 2 .  Let us define the following integers. 

N 
p k  V k  

Icm(no,nl , .  . . , n p - l )  

nli 

k=O 

Note that as the system is overdecimated, we have K < N .  

imize the mean-squared error objective. 
The goal here is to choose the driving signals [ck(n)} to min- 

4 Iv(n) - =(n)12 
n 

where x (n )  IS any signal in t z .  If x (n )  and y (n )  denote, respec- 
tively. the N-fold blocked versions of z(n) and y(n). we have, 

" 

P -  1 P-1 

Y(Z) = Yk(Z) = Fk(Z)Ck(Z) 
k=O k=O 

This can be expressed as. 

Co(4 
C I ( 4  

CP-l(Z) 

. - 
C(=) 

(5 )  
where F ( z )  is an N x K matrix and C(z) is a K x 1 vector. Note 
that even though the fixed mauix F(z) has aresnicted smcture as 
can be seen from (3), the vector C(L) is completely arbitrary. 

,I Y ( z )  = [ Fo(z) F I (z )  ... FP-I(z) ] 
F(*) 

Substituting (5 )  into (2). we have, 

C = & 12% 11 F(e jY)C(e jY)  - X(e'-) ) I z  dw 

and so we can minimize E by minimizing 11~(u)11' pointwise inw. 
The solution to this well known least squares problem is 121, 

C(e'") = [Ft(dY)F(e'")] Ft(ej")X(ejY) 

" 
€ ( U )  

+ 

Using Paneval's relation, this in tUm Can be expressed as follows. 

c = &l I/Y(ej")  -X(ej")l/' d~ (2) 

where A+ denotes the Moore-Penrose pseudoinverse ofthe matrix 
A [2]. We will assume here that F(ejW) has a full rank of K and 
so the pseudoinverse from above will in fact be a true inverse. In 
the z-domain, the optimum driving signal C(z) is given by, 

277 

where X(z) and Y ( z )  denote, respectively. the z-transforms of 

To simplify Y(z ) ,  consider the k-th branch of the system of 
Fieure 1 reoroduced in Figure 2(a). If we imolement Fblz)  in an 

x (n )  and ~ ( n ) .  

- ~ . ,  . - ~  I 

mkN-fold block form, we obtain the system shown in Figure 2(b). 
where A k ( Z )  an mkN m k N  P%udocirculant [61 with, 

[Ak(Z)I , . ,  = [ Z - ' F k ( Z ) l i m k N  

for 0 5 T ,  s 5 mkN - 1. By applying the polyphase identity 161, 
the expander on the left (T n k )  as well as the decimator on the right 
(lmk) can be moved across the network resulting in the system of 
Figure Xc). The N x m k p h  transfer matrix Fk(z)  is obtained by 
preserving only the N rows of A k ( z )  which are multiples of mk 

and the mkpk columns which a e  multiples of nb. In other words, 

[ F ~ ( z ) ] ~ , ~  = 

where &z)  & At (I/=*) for any A(z) 161. Hence, the optimal 
C(z )  from (6) can be obtained via the system shown in Figure 3. 

3. OPTIMIZING THE SYNTHESIS FILTERS SUBJECT 
TO A PARAUNITARY CONSTRAINT 

The optimal dnving signal vector C(z) in (6) can be viewed as an 
information compacted version of the blocked signal vector X(z). 
In this setting, a signal to be approximated, say z:(n), will be pro- 
cessed through the network of Figure 3 to produce C(z) (or equiv- 
alently [ck(n))). The [ck(n)} are then stored and used to obtain 
y(n), the best approximation to x(n)  for the given model. 

Typically x(n)  will be afinite length signal (i.e. aspeechsig- 
1N nal or an image) and we want the signals {ck(n)} to be finite in 

Fk(z)],m,N = [.' [ z - ~ " ~ F ~ ( ~ ) ]  ] 
t3) 

for 0 5 c 5 N - 1 and 0 5 d 5 mkpt - 1. Note that from Figure 
2(c), Ck(n) is simply the mtpk-foldblocked version ofck(n)  and 

length thems&es. In addition, we also want the synthesis filters 
{ F k ( z ) }  to be finite impulse response (FIR) filters. However, in 

if these filters are FIR. then the transfer functlon H(z) 
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Fig. 2. (a) The  k-th branch of the  signal model, (b) With 
F k ( 2 )  implemented in an mkN-fo ld  block form. (c) Re- 
sulting structure after applying t h e  polyphase identity. 
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Fig. 3. System for  obtaining the optimal driving signal C ( z )  

Fig. 4. Condition for  orthonormality of the  synthesis filters. 

One way to keep H(z) FIR and consequently to keep the driv- 
ing signals {c*(n)} finite in length is to impose the paraunitary 
condition on F(z) [61. Namely, we will constrain F(z)  to satisfy, 

F(z)F(z) = I  (7) 

Given the StNCtUIC inherent in F(z) (see ( 5 )  and (3)). it is not 
obvious that we can even satisfy (7). However, it turns out that (7) 
is satisfied iff the synthesis filters {Fk(z)} form an orthonormal 
basis, as shown in Figure 4. This is stated formally in the following 
theorem, the proof of which is omitted for sake of brevity. 
Theorem 1 The lransferfunrrion F(z) given by (5) and (3) saris- 
fiesrheparaunirarycondirion of(7j ifrhe synrhesisfilters {Fk(z)} 

0 
From [I], the orthonormality condition given in Figure 4 can 

satisb the onhonormality nlarion shown in Figure 4. 

be expressed algebraically as, 

f;(m*n - nxm)fi(mtn - nli) = 6(k - l )6(m - i) (8) 

Hence, the paraunitary condition for F(z) in (7) is equivalent to 
the orthonormality condition in (8). It should be noted that the 
condition given in (8) can often be satisfied in practice and so in- 
deed we can usually ensure the paraunitarily of F(z) as desired. 

" 

4. RELATION TO ENERGY COMPACTION 

Using the optimal C ( z )  of (6), the error 5 can be expressed as. 

dw Iz(n)lz-/ " Tr [G(e'Y)X(dW)Xt(e'Y)Ct(e2")]  2rr 
2n 

( = 
" 

3 

where G ( z )  P [F(z)F(+)]-' @(z).  Hence, minimizing ( is 
equivalent to maximizing a'. But maximizing CT' i s  equivalent to 
compacting the energy of a filtered wide sense stationary (WSS) 
process V(z)  G(z)W(z) where W(z) is WSS with a power 
spectral density (psd) of S,,(z) = X(z)a(z).  In the single 
channel integer case, i t  was shown [SI that F could be made zero 
by trivially adjusting the subspace to accomcdate the given deter- 
ministic signal z(n). To avoid such trivialities. Unser considered 
the energy compaction problem for an ensemble of signals charac- 
terized by a WSS process z(n) with a psd of S,,(z) subject to the 
paraunitary constraint of (7) for the single channel integer case. 

In this paper, we consider the energy compaction problem for 
a collection or class of deterministic signals. The class may repre- 
sent. for example, a set of vowel phonemes uttered by a variety of 
speakers, or a set of images with a common theme. Consider a set 
of L signals {zi(n)} for 0 5 1 5 L - 1. Using the optimal driving 
signal model from Figure 3, we propose to choose F(z) subject to 
the paraunitaq constraint in (7) to minimize the objective, 
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Fig. 5. Collection of images used for simulations. 

and y~(n) is the output of m(n) to the system of Figure 3. Here, 
al is a weighing factor that satisfies, 

L--l 

With this, it can be shown that choosing F(z) to maximize J is 
equivalent to the above energy compaction problem with, 

I . - ,  

SWW(Z) = a l x l ( z ) t l ( z )  
1=0 

5. SIMULATION RESULTS 

To test our proposed design method. we used i t  for a set of L = 
4 images shown in Figure 5 .  Each image is from a fingerprint 
database and the goal is to design an optimal synthesis bank for 
the class of such images. The images were converted to one- 
.dimensional signals via a raster scan. Equal weighing was used for 
each signal (i.e. 011 = V 1).  Minimizing J in (9) subject to (7) 
is equivalent to maximizing a quadratic form subject to quadratic 
constraints. As such, nonlinear optimization techniques were used. 

In order to see the merit of our approach, we applied a model 
signal, shown in Figure 6(a). to a variety of our optimally designed 
synthesis banks. We considered the following filter banks. 

(Integernonuniform) P = 2, mk = 1 V k ,  no = 2, rz1 = 4 
(Uniform) P = 3, mk = 1. ni = 4 V k 
(Integer single channel) P = 1, mo = 1, n o  = 2 

For simplicity, we chose the length of all filters to be 4. The results 
of applying the model signal to the above optimally designed filter 
banks are shown in Figure 6(b). (c), and (d). respectively. 

From Figure 6. we can see that all methods yielded outputs 
similar in appearance to the given model signal, although the single 
channel case appears to have Moire pattems when viewed at full 
size [81. To quantitatively compare the methods, we calculated 
the peak signal-to-noise ratio (PSNR) of the output signals, which 
can be found in the caption of Figure 6. Here, the uniform case 
performed the best. while the single channel case was the worst. 
Though the uniform case performed better than the nonuniform 
one, this was at the expense of having another channel. This brings 
to light the tradeoff between signal fidelity and computational load. 

(4 (d) 

Fig. 6. (a) Original model signal, (b) Nonuniform case 
(PSNR = 40.18 dB), (c) Uniform case (PSNR = 47.90 dB), 
(d) Single channel case (PSNR = 34.05 dB). 

6. CONCLUDING REMARKS 

In this paper, we considered the least squares approximation model 
for rational nonuniform synthesis banks and showed the equiva- 
lence of the paraunitarity of the matrix F(z) and the onhonormal- 
ity of the synthesis filters. We also introduced the notion of deter- 
ministic compaction filters for a class or collection of signals and 
showed the merit of our method with examples. Future research 
includes studying the effects of quantizing the optimal driving sig- 
nals {c*(n)} for the purpose of further compression. 

7. REFERENCES 

[ I  I T. Chen and P. P. Viidyanathan, ”Vector space framework for 
unification of one- and multidimensional filter bank theory,” 
IEEE Trans. on Signal Processing. 42(8):2006-2021. Aug. 
1994. 

[Z] R.  A. Horn and C. R. Johnson, Malrix Analysis. Cambridge 
Univ. Press, Cambridge. U.K., 1985. 

[3] S. G. Mallat, A Wavelet Tour ofsignal Processing, Academic, 
Press, London, U.K., 1999. 

[4] S.  G. Mallat. “A theory of multiresolution signal decomposi- 
tion: The wavelet representation,” IEEE Trans. on Pan. Anal. 
Mack. /nre/l., I1:674-693, 1989. 

(51 M. Unser, “On the optimality of ideal filters for pyramid and 
wavelet signal approximation,” IEEE Trans. on Signal Pm-  
cessing, 41(12):3591-3596, Dec. 1993. 

[6] P P. Vaidyanathan, Mullirate Systems and Filter Banks, 
Prentice-Hall, Inc., Englewood Cliffs, NI, 1993. 

[7] B. Vrcelj and P. P. Vaidyanathan, “Least squares signal ap 
proximation using multirate systems: multichannel nonuni- 
form case,’’ in Pmc. Asilomar ConJ Signals, Systems, and 
Computers. Monterey, CA, Nov. 2001, pp. 553-557. 

[8] http: / /www.  systems .caltech. edu/dsp/ 
students/andre/papers/models.pdf 

I - 860 


