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ABSTRACT

In this paper, we systematically analyze different components of
human gait, for the purpose of human identification. We inves-
tigate dynamic features such as the swing of the hands/legs, the
sway of the upper body and static features like height, in both
frontal and side views. Both probabilistic and non-probabilistic
techniques are used for matching the features. Various combina-
tion strategies may be used depending upon the gait features being
combined. We discuss three simple rules: the Sum, Product and
MIN rules that are relevant to our feature sets. Experiments using
four different datasets demonstrate that fusion can be used as an
effective strategy in recognition.

1. INTRODUCTION

Biometrics, such as face, voice/speech, iris, fingerprints, gait etc.
have come to occupy an increasingly important role in human
identification due, primarily, to their universality and uniqueness.
Face recognition systems have good performance with canonical
views at high resolution and good lighting conditions. Current
iris recognition systems are designed to work when the subjects
are placed at relatively close distances from the imaging system.
A possible alternative is gait or simply, the way a person walks.
While medical studies [1] have shown that gait is indeed a unique
signature of humans, all the components considered, psychophys-
ical evidence [2] also points to the viability of gait recognition.
Gait, a non-intrusive biometric, can be captured by cameras placed
at a distance. Illumination changes are not a cause for serious con-
cern. In particular, it might even be attempted in night-time con-
ditions using IR imagery. The potential applications of gait anal-
ysis/recognition systems include access control, surveillance and
activity monitoring and kinesiology.

We know from our experience that gait and posture provide us
with cues to recognize people. Consider a familiar person walking
at a sufficiently large distance so that the face is not clearly visible
to the naked eye. To recognize the person, we may try to combine
information such as posture, arm/leg swing, hip/upper body sway
or some unique characteristic of that person. Generally speaking,
information may be fused in two ways. The data available may be
fused and a decision can be made based on the fused data or each
signal/feature can be matched separately, using possibly different
techniques and the decisions made may be fused. The former is
called data fusion while the latter is decision fusion. Kokar et al.
[3] have shown that decision fusion is a special case of data fu-
sion. Note however, that the converse relationship need not be

�Partially supported by the DARPA/ONR Grant N00014-00-1-0908.

true. Consequently, data fusion, which tends to be more complex
to implement, need not be a bottleneck.

In this paper, we investigate different techniques to combine
classification results of multiple measurements extracted from the
gait sequences and demonstrate the improvement in recognition
performance. Three different sets of features are extracted from
the sequence of binarized images of the walking person. Firstly,
we investigate the swing in the hands and legs. Since gait is not
completely symmetric in that the extent of forward swing of hands
and legs is not equal to the extent of the backward swing, we
build the left and right projection vectors. To match these time-
varying signals, dynamic time warping is employed. Secondly,
fusion of leg dynamics and height combines results from dynamic
and static sources. A hidden Markov model is used to represent
the leg dynamics [4]. While the above two components consider
the side view, the third case explores frontal gait. We characterize
the performance of the recognition system using the cumulative
match scores [5] computed using the aforesaid matrix of similarity
scores. As in any recognition system, we would like to obtain the
best possible performance in terms of recognition rates. Combi-
nation of evidences obtained is not only logical but also statisti-
cally meaningful. We show that combining evidence using simple
strategies such as Sum, Product and MIN rules improves the over-
all performance.

The paper is organized as follows: section 2 discusses different
features viz. hand and leg swing, leg dynamics, and height, foot
dominance and frontal gait. Section 3 presents the experiments
performed on different datasets and Section 4 concludes the paper.

2. METHODOLOGY

We assume that, within the field of view of the stationary camera,
only one person is present. This simplifies the task of tracking.
Background subtraction [6] is used to convert the video sequence
into a sequence of binarized images in which a bounding box en-
capsulates the walking subject. All the features of interest are ex-
tracted from the aforesaid sequence of binarized images. Three
aspects of gait are discussed: Motion of the hands and legs, dy-
namics of the legs alone and frontal gait. We address the issue of
foot dominance as well. Different strategies such as Sum, Product
and MIN rules [7], as applicable in each of the cases are used.

The left and right projection vectors are constructed from the
image sequence to study the motion of the hands and legs. Dy-
namic time warping is used to match the two vector sequences
separately. The overall similarity score is taken to be the sum of
the two scores. Secondly, the truncated width vector captures the
leg dynamics. Hidden Markov model is used to describe the mo-
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Fig. 1. Illustrating the generation of (a) left projection vector, (b)
right projection vector and (b) width vector.

tion of the leg within a walk cycle. In the evaluation phase, the
absolute value of the forward log probability is recorded as the
similarity score. These scores are weighted by a factor that de-
pends on the height of the subject. Thirdly, frontal gait sequences
are represented using the width vector, suitably normalized for ap-
parent changes in the height as the subject approaches the camera.
A set of width vectors are built for the side view and the two are
matched, separately, using DTW. Again, the Sum rule is used to
combine the two similarity scores.

2.1. Motion of the arms and legs

In the four-limb system, we seek to find a consistent pattern by
systematically analyzing (a) all the four limbs and (b) a pair of
limbs. If the degree of coupling between, say, the legs is signifi-
cantly more than the coupling between the right leg and left hand,
then we would assign a higher weight to the similarity score ob-
tained by comparing the leg motion in the reference and test pat-
tern. We first consider the arms and legs of the subject. While it is
tempting to assume that gait is a symmetric activity, there exists an
asymmetry between the forward and backward swing of the limbs.
Maintaining this dichotomy, we build the left and right projection
vectors as follows. Given a binarized image, we first align the box
so that the subject is in the center of the bounding box. The left
and right projection vectors are computed as illustrated in Figure
1 (a) and (b) respectively.

After feature selection and extraction, the next logical step
is matching. Direct frame-by-frame matching is not a realistic
scheme since humans may slightly alter the speed and style of
walking with time. Instead of restricting the frames of possible
matches, it would be prudent to allow a search region at each time
instant during evaluation. Dynamic Time Warping (DTW) pro-
vides for such a mathematical framework [8] in that it allows for
non-linear time normalization. We form two matrices of similar-
ity scores by matching the left and right projection vectors in the
gallery (reference/training) with those in the probe (testing) set,
separately.

The overall similarity score is the sum of the similarity scores
obtained the two sets of projection vectors. If the estimation er-
rors of the different classifiers are assumed to be uncorrelated and
unbiased, then variance reduces to ��� � ������

Like hand dominance (right/left handedness), foot dominance
(right/left leggedness) also exists. While matching therefore, we
may assume that improperly aligned (i.e. right/left leg forward)
reference and test sequences affects the performance. This is an
issue because it is not possible to distinguish between the left/right
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Fig. 2. Effect of eigen decomposition and reconstruction on the
width vectors. (a) Overlapped raw width vectors (b) Smoothed
width vectors.

limbs from 2-D binarized silhouettes. Suppose there are five (half-
) cycles in both the gallery and probe sequences for a particular
subject. To account for foot-dominance, we match the first four
half-cycles of the two sequences and generate a matrix of similar-
ity scores. Then, we match the gallery sequence with a phase-
shifted probe sequence to generate another matrix of similarity
scores. Of the two phase-shifted test sequences, only one can pro-
vide a match that is in-phase unless the subject does not exhibit
foot dominance. Without loss of generality, we may assume that
foot dominance exists in all subjects. Then one of the two test se-
quences is a better match unless corrupted by noise. Therefore, the
two similarity scores are combined using the MIN rule.

2.2. Leg dynamics

Previously, both the hands and legs were considered while select-
ing the features. If the movement of the hands is restricted (if the
subject is carrying an object in his/her hands) or if the sequence
is excessively noisy in the torso region due to a systematic failure
in background subtraction, then leg dynamics carries information
about the subject’s gait. We construct a ’width vector’ (width of
the outer contour of the binarized silhouette) of size � � � from
each of the images of size ��� in the sequence, as illustrated in
Figure 1(c). Resistance to noise is provided in two stages. While
a part of the noise is removed during the computation of the width
vector using the spatial correlation of pixels, eigen decomposition
and width vector reconstruction utilizes the temporal nature of the
data. The sequence of width vectors (matrix of width vectors)
� � ���� 	 � �� �� � � � � 
� where �� represents the width
vector of size � � �, at time � � 	, is standardized and the scatter
matrix computed. Eigen decomposition yields the eigen vectors,
the largest � of which are retained. The projections of the width
vectors on the �� largest eigen vectors yield coefficients that are
in turn, used to reconstruct the gait sequence by summing the ap-
propriately weighted�� largest eigen vectors. Figure 2 illustrates
the effect of ’eigen-smoothing’ on the gait sequence.

A cursory examination of the width vectors suggests that the
leg region may exhibit a more consistent pattern compared to other
parts of the body such as the arms. At the same time, the gross
structure of the body, as contained in the say, the height is also
useful in discriminating between subjects. While leg dynamics
concentrate on the variation of the width vector in the horizontal
direction in the leg region alone, the height of the subject varies in
an orthogonal direction. The width vector is truncated so that only
the information about the leg is retained. This sequence of trun-



Fig. 3. Identification rates for USF Database: Effect of fusion of
left and right projection vectors. Gallery in all the experiments is
sequences from surface: grass, shoe type: A, camera view: right.

cated width vectors is the first feature set, say set �. We estimate
the height of the subject from the image sequence using robust
statistics. The estimated height of the individuals forms the sec-
ond feature set, say set �. Euclidean distance is used to compare
the feature set � of estimated height of the subjects in the probe
and gallery sets.

To compare the truncated width vectors that contain the in-
formation about leg dynamics, we use the Hidden Markov model
(HMM) [8], which is a generalization of the DTW framework.
There exists a Markovian dependence between frames since the
way humans go through the motion of walking has limited degrees
of freedom. K-means clustering is used to identify ’key frames’ or
’stances’ during a half-cycle. We found that a choice of 	 � � is
justified by the rate-distortion curve. We project the sequence of
images on the stance set creating a �� vector (Frame-to-Stance
Distance or FSD) representation for each frame and use these sam-
ples to train an HMM model using the Baum-Welch algorithm [9].
The viterbi algorithm is used in the evaluation phase to compute
the forward probabilities. The absolute values of the log probabil-
ity values are recorded as the similarity scores.

If the decisions made are statistically independent, we may
write the final error probability�e �

�
�

c=1 �
c
e . In practice, how-

ever it is difficult to validate this assumption. Instead, we use the
low correlation of decisions across feature sets as corroboration to
the hypothesis that the errors in the two feature sets, the leg dy-
namics and the height, are uncorrelated. We use the product rule
to combine the scores to compute the overall similarity scores.

2.3. Frontal gait

Hitherto, we have studied gait in its canonical view so that the
apparent motion of the walking subject is maximal. This does
not preclude the possibility of using other views ranging from the
frontal view to any arbitrary angle of viewing. Even in the frontal
view where the apparent leg/arm swing is the least, there may be
several cues that can be used toward human recognition. More
specifically, the head posture, hip sway, oscillating motion of the
upper body among other features may pave the way for recogni-
tion. As before, to focus our attention on gait, we extract the outer
contour of the subject from the binarized gait sequence in the form
of the width vector, suitably normalized for an apparent change in
height as the subject approaches the stationary camera.

For matching these sequences, we use the DTW technique for
similar reasons as outlined in section 2.1. When both the frontal

Table 1. Cumulative match scores at rank 1 and rank 5 for CMU
dataset: Combining leg dynamics and height using Sum rule

Feature CMS at rank 1 CMS at rank 5
Leg dynamics 91 100

Fusion: leg dynamics 96 100
and height

Table 2. Cumulative match scores at rank 1 and rank 5 for CMU
dataset: effect of frontal and side gait fusion

Feature CMS at rank 1 CMS at rank 5
Frontal Gait 91 95

Side gait 93 95
Frontal and side 96 97

and fronto-parallel (side) gait sequences are available, it is natu-
ral to combine these two orthogonal views before making the final
decision about the identity of the subject. One way to combine
multiple views is through the use of 3-D models. Currently, 3-D
models have been built using sequences captured inside the lab un-
der controlled conditions.[10] takes the visual hull approach while
Bobick et al. extract parameters insensitive to the angle of view-
ing [11]. We adopt the decision fusion approach and combine the
matching scores obtained by matching the frontal and side gait se-
quences separately using the Sum rule.

3. EXPERIMENTS

We report our experiments using the following datasets.

	 CMU Dataset (http://hid.ri.cmu/edu)
consists of 25 subjects walking on a treadmill. Seven cam-
eras are mounted at different angles and we use two of the
views for our experiments, viz. the frontal and the side
views. The first half of the gait sequence is used for training
while the second half is used for testing.

	 MIT dataset (http://www.ai.mit.edu/people/llee/HID)
consists of side view of outdoor gait sequences of 25 sub-
jects collected on four different days. Four experiments are
designed. Data from three days provides the training data
and data from the fourth day is used as the test sequences.

	 UMD dataset (http://degas.umiacs.umd.edu/hid)
contains outdoor gait sequences captured by two cameras
(frontal and side views). 44 subjects are recorded in two
sessions. We train with the video data collected from the
first session and test with that of the second session.

Table 3. Cumulative match scores at rank 1 and rank 5 for UMD
dataset: effect of frontal and side gait fusion

Feature CMS at rank 1 CMS at rank 5
Frontal Gait 66 86

Side gait 58 74
Frontal and side 85 95



Table 4. Cumulative match scores at rank 1 and rank 5 for UMD
dataset: Foot dominance and effect of fusing evidence from two
gait sequences (each 4 half cycles long), with one sequence being
phase-shifted.

Feature CMS at rank 1 CMS at rank 5
First sequence 68 84

Phase shifted sequence 70 88
Fusion 77 89

Table 5. USF Dataset: 7 probe sets with the common gallery being
G,A,R consisting 71 subjects. The numbers in the brackets are the
number of subjects in each probe set.

Experiment Probe Difference
A G,A,L (71) View
B G,B,R (41) Shoe
C G,B,L (41) Shoe, View
D C,A,R (70) Surface
E C,B,R (44) Surface, Shoe
F C,A,L (70) Surface, View
G C,B,L (44) Surface, Shoe, View

	 USF dataset (http://marathon.csee.usf.edu/GaitBaseline/)
consists of outdoor gait sequences of 71 subjects walking
along an elliptical path on two different surfaces (Grass and
Concrete) wearing two different types of footwear (A and
B). Two cameras, R and L capture that data. Seven experi-
ments are set up5.

Table 1 shows that while the leg dynamics, by itself has rich
information fusion can only improve the performance. Results
obtained using the leg dynamics in the cases of UMD and MIT
datasets are shown in Tables 6 and 7 respectively. Figure 4 shows
that foot dominance is indeed present in certain individuals in the
database and that fusing classification results from out of phase
gait-sequences serves to increase identification rates. Figure 3 sug-
gests that asymmetry about a vertical axis in the side view may be
addressed by considering the two halves of the body on either side
of the vertical axis. The results of matching left and the right pro-
jection vectors separately were combined using the Sum rule. Ta-
bles 2 and 3 show that the performance of frontal gait recognition
can be enhanced by using the side view as well.

We observe, in Figure 3 that the right projection vector which
captures the forward swing outperforms the left projection vector.
This suggests that, in this database, the forward swing of the hands
and legs tends has a lesser degree of variability with time (between
the gallery and probe sequences). MIT dataset, unlike the other
datasets has a low frame rate. Secondly, errors in background sub-
traction necessitate frame-dropping. This could be a reason for the
poor performance.

4. CONCLUSION

Different features that affect gait such as the swing of the hands
and legs, the sway in the body as observed in frontal gait, static
features like height were systematically analyzed. Starting with
dynamic time warping which is a variant of template matching,
a more generalized scheme, the HMM was chosen for matching.

Table 6. Cumulative match scores at rank 1 and rank 3 for MIT
dataset: Combining leg dynamics and height by adding the simi-
larity scores.

Evaluation Scheme CMS at rank 1 CMS at rank 3
Day 1 vs. Days 2,3,4 29 50
Day 2 vs. Days 1,3,4 50 100
Day 3 vs. Days 1,2,4 20 54
Day 4 vs. Days 1,2,3 30 52

Table 7. Cumulative match scores at rank 1 and rank 5 for UMD
dataset: Combining leg dynamics and height using Sum rule.

Feature CMS at rank 1 CMS at rank 5
Leg dynamics 31 65

Fusion: leg dynamics 49 72
and height

The matrices of similarity scores between the gait sequences in
the gallery and probe sets were computed. Sum, Product and MIN
rules were used to combine the decisions made using the separate
features. As expected, the overall recognition performance im-
proved due to fusion. Experiments were conducted on four differ-
ent datasets, each dataset presented different types of challenges.
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