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ABSTRACT 

This paper describes a robust algorithm for arbitrary object 
tracking in long image sequences. This technique extends 
the dynamic Hough transform proposed in our earlier work 
to detect arbitrary shapes undergoing affine motion. The 
proposed tracking algorithm processes the whole image 
sequence globally. First, the object boundary is represented 
in lookup-table form, and we then perform an operation that 
estimates the energy of the motion trajectory in the param- 
eter space. We assign an extra term in our cost function 
to incorporate smoothness of deformation. The object is 
actually rigid, so by ‘deformation’ we mean changes due 
to rotation or scaling of the object. There is no need for 
training or initialization, and an efficient implementation 
can be achieved with coarse-to-fine dynamic programming 
and pruning. The method, because of its evidence-based 
nature, is robust under noise and occlusion. 

1. INTRODUCTION 

Most motion tracking techniques consider information in 
the current frame plus a small number of previous, frames 
to predict the motion and structure parameters for the next 
frame. In cases of fast moving objects, noise, and clutter, 
the wrong decision at the current frame will compromise 
tracking of the object for subsequent frames; only a global 
processing technique can give the optimal result. Apart 
from the velocity Hough transform and the dynamic Hough 
transform there are no efficient algorithms in the literature 
to find the optimal trajectory [ l ,  21. Our approach provides 
a method of integrating shape extraction within an energy 
maximization framework. It defines the object to be tracked 
in terms of maxima of a motion trajectory with an associated 
energy function. The choice of this energy function is a 
compromise between evidence from image data and inte- 
gration of motion and deformation constraints. An energy 
maximization method is required to extract the desired 
motion trajectory and determine the structure parameters of 
the object. Our method seeks a global optimum. 

2. PROBLEM STATEMENT 

Let us consider an image sequence as a three-dimensional 
space (x, y, t )  comprising two spatial dimensions (x, y) 
corresponding to every image plane and one temporal di- 
mension t .  Then in this space, a moving object generates 
a trajectory. Hence the determination of the moving object 
amounts to the determination of the motion trajectory by 
processing globally the image sequence. The motion trajec- 
tory tries to link points-potential centroids of an object- 
according to local measures of continuity and smoothness 
and specifically continuity in direction, displacement, and 
deformation. Such quantities tend to he locally smooth, but 
can change dramatically from the first to the last frame. 
They should be consistent with the observed data. Such 
problems can he naturally formulated in terms of energy 
maximization. 

Maximization methods attempt to model global image 
properties, i.e., characteristics of the moving object that 
cannot he captured by local correlation techniques or with 
parametric motion models. We consider a very general 
definition of smoothness which can accommodate not only 
irregular sampling but also missing data. Furthermore, 
pairwise interactions of adjacent points on the trajectory 
contribute to a global nature of the smoothness. 

As a shape coding method, we use the generalized 
Hough transform (GHT) [3, 41. The image sequence is 
pre-processed, first applying an edge detection algorithm 
to each frame, and then transforming into a 5-dimensional 
parameter space P(u ,  U, 8, s, t )  where (U, U) is the position 
of the centroid, b’ is the orientation, s is the scale factor 
of the object, and t is the time index for each frame, 
1 5 t 5 N. The motion trajectory is represented by a set 
of discrete points in each frame, where we can consider the 
speed and direction of a point at frame t to be: 

(Yt-1 - Yt) $t = arctan [ 
( xt-1 - xt) ] 
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where (zt-1,yt-1) and (zt,yt) are the locations of the 
point in frames (t - 1) and t .  The problem is to determine 
the trajectory which satisfies some appropriate energy crite- 
rion in this space. 

3. ENERGY REPRESENTATION 

An energy function to assess the fitness of any trajectory can 
be considered to have the following three terms: (a) Hough 
energy representing the points of the parameter space with 
maximum structure evidence; (b) motion energy determined 
by the smoothness of velocity and direction of the motion 
trajectory [5]; (c) deformation energy representing the vari- 
ations of the object over time, scale and orientation. We 
consider the latter two terms to have equal weight in the 
energy formulation, so that: 

Etraj = ~ u I E H ~ ~ ~ I ~  - wz(E,,ti,, + Edef) (3) 

where tu1 and w2 are weights that can be adjusted to vary 
the relative importance of each term. 

The first term forces the trajectory to pass through 
the points in the parameter space with maximum structure 
evidence, using the specific form: 

t=1 

which simply adds the peak values, p t ,  of the accumulator 
space through which the trajectory passes. The motion 
energy represents the elasticity and rigidity of the trajectory, 
and has the form: 

t=a t = 2  

where Vt and q5t are as in equations ( I )  and (2). The 
first term penalizes the points in the parameter space which 
correspond to large changes in speed, and the second term 
penalizes large changes in direction. 

The deformation energy expresses the smoothness of 
deformation, which means that the object will deform in 
size and orientation gradually during time. This energy term 
favors small changes in orientation and scale and penalizes 
abrupt changes. It is given by: 

N-1 N-I  

E d e f =  l s t - l -2 s t f s t+ l /  + I6 t - l -2~ t+o t+ l l  
t=2 t=2 

where st and Bt are the scaling factor and orientation 
of the object at frame t .  To find the optimal trajectory 
that maximizes the cost function (3), we apply a dynamic 
programming (DP) scheme [6].  

4. OPTIMIZATION 

Following our previous work [2], the optimization problem 
to find the parameters of P(u ,  U ,  0, s, t )  is efficiently solved 
using dynamic programming. DP allows the introduction of 
constraints that cannot be violated, called hard constraints, 
as well as second-order continuity constraints, which are 
inherent in the energy formulation. These latter are known 
as soft constraints because they are not satisfied absolutely, 
only to a certain degree. We divide the optimization 
problem into stages, corresponding to frames, with a policy 
decision required at each, namely to maximize the energy 
function. Each stage has a number of associated state vari- 
ables. In our case, these are the weighted features, points in 
the parameter space (i.e., peaks of each accumulator may) .  
For each trajectory, we associate an energy function: 

E = E ( z ~ , z ~ ,  . . . ,Q,. . . ,ZN) 
where z l r  z 2 , .  . . , X N  are the state variables, or the points 
in the parameter space. Because we wish to represent the 
smoothness of motion and deformation, we introduce a 
time lag, or delay in our system; therefore, the principle 
of optimality is not applicable. Hence, to overcome this 
difficulty, we implement a time-delayed DP algorithm, in 
which the two-element vector of state variables, (zt, x ~ + ~ ) ,  
is fixed. So the energy function can be written: 

The recursion that relates the cost or reward earned 
during previous stages is a function of two temporal state 
variables of the form: 

5. IMPLEMENTATION ISSUES 

The global evidence-based search technique considers all 
possible peaks in the Hough space, even those with zero 
value, to find the optimal smooth trajectory. Use of Hough 
techniques avoids the need for initialization, which can 
contribute to major error in other approaches. The motion 
trajectory problem involves finding the possible correspon- 
dence of features among frames. This correspondence prob- 
lem is combinatorially explosive even with a DP scheme. 
To cope with the complexity of this problem, we need 
to perform a constrained search. Fortunately, the local 
connectivity of the motion trajectory can be exploited to 
reduce the computation time dramatically. A search window 
(a hard constraint set by knowledge of the maximum and 
minimum allowable speeds) determines the extent to which 
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the motion trajectory is allowed to stretch or bend at that 
point. These constraints are employed to prevent impossible 
motion trajectories, and are both qualitatively and computa- 
tionally beneficial [7]. 

Besides maximum and minimum velocity, further con- 
straints should he introduced to control the amount of defor- 
mation. This means that the object scaling and orientation 
cannot exceed some maximum predefined values. The 
principle of smoothness of deformation exploits the fact 
that, because of inertia, the size and rotation of the object 
cannot change instantaneously. This assumption will he 
valid for all moving objects. Provided the sampling rate 
is high enough, the changes in scale and orientation will 
be gradual. Thus, we introduce some further constraints 
that enable us to perform a limited search in a smaller 
temporal neighborhood of the parameter space, so reducing 
the complexity of the problem. 

The time complexity of the DP scheme can he reduced 
further by employing an absolute pruning technique. We 
perform a two-step search. Initially, we calculate the hest 
trajectory that passes though the points of the parameter 
(Hough) space considered alone. By a backtracking proce- 
dure, we then prune all points in the parameter space lying 
on trajectories with an energy smaller than a threshold value 
(equal to 0.8 of the maximum energy in this work). Hence, 
we reduce dramatically the solution space, and subsequently 
we can perform a more extensive search considering the 
motion and deformation terms as well. This is done with 
to1 = 0.8 and w 2  = 0.2 in equation (3). Further time and 
memory reductions can he achieved using the coarse-to- 
fine DP algorithm [SI whereby we form a series of coarse 
approximations by aggregating states into superstates. For 
each coarse approximation, the optimal trajectory is found 
using DP. The superstates along this optimal trajectory 
are noted and the process is iterated until the optimal 
path is found. This idea can be simply adapted to our 
5D optimization problem. In each frame, we merge state 
variables to form 5D hyperstate variables. 

6. SIMULATIONS AND RESULTS 

Two simulations were carried out: one to test performance 
i n  the presence of noise and the other to test robustness 
to object occlusion with a small amount (10%) of noise. 
Image sequences were synthesized so that for each frame 
of the sequence, the quantity of noise present or occlusion 
bar width is known. In both cases, the generated sequence 
is binary. The error measure employed is the root mean 
square error of the estimated parameters relative to ground 
truth, averaged over 50 trials (i.e., different seed for the 
pseudorandom noise generator). 

The first simulation was designed to quantify the noise 
performance of the new tracking algorithm compared with 

Fig. 1. Typical frames from image sequences showing the 
arbitrary object with 4%, 12%, 20% and 28% added noise. 

Fig. 2. Typical frames showing the arbitrary object oc- 
cluded with bars of width 20 pixels and 48 pixels (with 
10% noise). 

the GHT. Each image of a 32-frame sequence consisted 
of 320 x 280 pixels. The object to he tracked has arbitrary 
shape and moves with constant linear velocity in the z direc- 
tion, and is rotated and scaled at a constant rate through the 
image sequence. The added noise had a uniform probability 
density function; affected pixels had their polarity inverted. 
The level of noise varied from 0% to 30% in 2% incre- 
ments. Figure 1 shows typical frames for a representative 
range of added noise. In the occlusion simulation, the 
object was moving with the same parameters as before, but 
we added an occlusion bar in the middle of each frame. 
The width of the occlusion bar varied from 0 to 60 pixels in 
4 pixel increments. The object dimension is 26 x 25 pixels, 
and it moves by 10 pixels per frame. The I 1 -frame sequence 
consisted of 320 x 280 pixels and the object in some frames 
is partially or totally occluded by the bar (Figure 2). 

As shown in Figures 3 and 4, our method offers superior 
performance over the GHT for simulations with added noise 
and occlusion, especially' for the more demanding condi- 
tions. Thus, despite total occlusion over several frames, we 
can still track the occluded object with low error (Fig. 4). 

7. CONCLUSIONS 

Robust tracking of objects in noise is an outstandingly 
important problem in computer vision. We have considered 
the tracking of a moving object as an energy maximization 
problem. That is, the motion trajectory is represented by 
an energy function with an image-dependent term, a term 
penalizing large changes in velocity (speed and direction) 
and a second-order smoothness term. This is then maxi- 
mized over the image sequence using time-delay dynamic 
programming to exploit the temporal correlation between 
adjacent points in the motion trajectory and so determine 
the global optimum. Efficiency can he improved using 
coarse-to-fine DP with pruning of points on trajectories 
below some energy threshold in Hough space. The method 
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Fig. 3. Comparison of the noise performance of GHT and 
energy-based tracking. Top: rotation error; Middle: scale 
error; Bottom: translation error. Error bars are standard 
deviations over 50 trials. 

gives superior results compared to the standard generalized 
Hough transform and proved to be especially robust under 
noise and occlusion. 
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