
IEEE Int. Conf. on Multimedia & Expo, Baltimore, July 2003

BETTER AUDIO PERFORMANCE WHEN VIDEO STREAM IS
MONITORED BY TCP CONGESTION CONTROL

Longin Jan Latecki Kishore Kulkarni Jaiwant Mulik
latecki@temple.edu kkulkarn@temple.edu jmulik@temple.edu

Dept. of Computer and Information Sciences, Temple University

Philadelphia, PA 19122, USA, Tel. +1 215 204 5781

ABSTRACT

Conventional wisdom holds that the TCP like congestion control
is unsuitable for real-time multimedia conferencing. However,
our results clearly show that an audio and video conferencing
system that transmits video over TCP (and audio over
RTP/UDP) can provide significantly better audio quality to the
end user than one built on RTP/UDP alone. We measured audio
quality in terms of packet loss, packets arriving too late (for real
time play out), average packet delay, and jitter. Our results also
clearly indicate that sending video over TCP does not introduce
any additional delay in the arrival time of video packets in
comparison to RTP/UDP.

1. INTRODUCTION

There is consensus among Internet architects that end-to-end
congestion control is fundamental to the health of the Internet.
Fall and Floyd [2] note that “In the current architecture, there are
no concrete incentives for individual users to use end to-end
congestion control, and there are, in some cases, “rewards” for
users that do not use it (i.e. they might receive a larger fraction
of the link bandwidth than they would otherwise).” They go on
to argue that additional incentives must be built into the network
to encourage the use of TCP-friendly protocols, that is, those
that reduce their load on the network when they experience
packet loss (indicating congestion). Such incentives may include
social incentives (i.e., avoiding the embarrassment of having
your protocol/software labeled non-TCP friendly) pricing
incentives, and traffic policing (providing degraded service to
non-responsive flows).

Underlying all of this is the assumption that users, left to
their own devices, would just as soon blast as many packets over
the network using UDP as they could get away with, and that
TCP congestion control, like a speed limits on a highway, is a
regulation that society recognizes is necessary, but individuals
gain from disregarding.

In this paper, we argue that TCP congestion control is not
always your enemy. In fact, using TCP rather than UDP for
video transport can actually improve the performance of audio
stream when the current available bandwidth of a network path
is unknown (which is the normal case in the Internet) and that
available bandwidth is less than the maximum data rate of the
video stream.

Clearly, TCP congestion control can introduce the play out
delay of video packets due to the retransmission. However, the
influence of this delay on video quality can be controlled at the
application layer. On the other hand, our results indicate that
when video is transmitted over RTP/UDP, less than 1% of
frames arrive without any packet loss even by minor packet loss
conditions. This means that more than 99% of the received video
frames would possibly show visual artifacts in played video.

In this paper, we define a particular problem in network
design that we call the “two-stream” problem. Our formulation
of the two-stream problem is motivated by applications like
video conferencing with the simultaneous transmission of real
time audio and video, but is not limited to multimedia. Our long-
term research goal is to investigate various combinations of
application and transport layer protocols to address this two-
stream problem. This short paper has a more modest goal: to
illustrate that sending real-time video over TCP is not only good
for the network, but good for the end-user as well, in the case of
simultaneous streaming of audio and video.

Our main claim is that a TCP-friendly congestion control
applied to video stream substantially improves the quality of
audio stream. Note that we do not claim that TCP is optimal for
sending video. As we point out, the retransmissions inherent in
TCP introduce a tradeoff between reliability and delay.
Alternative protocol designs that incorporate TCP-friendly rate
control into an unreliable message oriented protocol (e.g., DCCP
[4] and other related work) may provide a better long-term
solution. Our purpose is rather to refute the conventional
wisdom that TCP is a bad fit for real time video with data that
suggest otherwise, and hopefully to encourage a more favorable
view towards the effects of TCP-friendly congestion control on
streaming media in general.

1.1 The Two-Stream Problem:
Consider a video telephony application with two streams to
send, where the audio stream (A) is of high priority with a low
fixed bit rate, and the video stream (V) is of lower priority. In
video conferencing applications it is well known that users
would rather accept degradation in video than in audio quality.
The sender transmits streams A and V to a receiver over IP. In
stream A, packets are sent regularly, for example, every 50 ms.
Assuming that the available transmission bandwidth is sufficient
to successfully transmit stream A, we want to also transmit
stream V with as much bandwidth as possible without affecting
the quality of stream A. We also want a minimal delay for both
streams.

IEEE Int. Conf. on Multimedia & Expo, Baltimore, July 2003

Any solution to the two-stream problem needs to consider
the transport protocols used for both streams and the interaction
with the application. Since transmission of stream A has higher
priority than transmission of stream V, the performance of
stream A is our main criterion to measure the quality of the
solution. In this paper we present experimental results that
demonstrate that transport of stream V over TCP provides a
significantly better solution to the two-stream problem than
transport over UDP. Under the same network conditions, both
the number of dropped packets and the number delayed packets
are significantly better for stream A when stream V is
transported over TCP.

2. EXPERIMENTAL SETUP

We conducted experiments using our audio-video clients in three
different network environments:

1. Emulab - the Utah Network Emulation Testbed
(Netbed) [7],

2. Our network with NistNet emulator [6], and
3. Dial-up connection with 28.8 kbps over the Internet.

In all our experiments stream A is an audio stream that is sent as
RTP over UDP. We send every 50 ms an audio packet of 96
Byte size. Since we transport 20 packets per second, we have
1,920 Byte/s of audio data. Our video stream V is also sent in
RTP packets. In order to have the same conditions in all
experiments, we streamed video from a prerecorded video file
that produces a video stream. In order to preserve the original
video quality, this stream requires the transmission of 264.436
Kbps (33,054 Byte/s) for the total time of 76 seconds.

All experiments followed the same scenario:
1. We first streamed just audio data for 60 seconds,
2. Then we added our prerecorded video stream for 76

seconds,
3. Finally again we sent only audio data for the last 60

seconds.
We performed two runs of experiments, in one run stream

V was sent over UDP, and in the second run stream V was sent
over TCP. The statistics are obtained from our audio-video
software client. All times are recorded at the time audio and
video packets were given to the transport layer or were received
form the transport layer.

When there were no bandwidth restrictions and no packet
drop, we obtained the optimal video throughput of 264.436 Kbps
in 76 seconds. The situation for arrival of audio packets for both
transport protocols UDP and TCP was the same. The average
interarrival time of audio packets was as expected (50 ms). The
standard deviation of the interarrival time (std) was zero at the
times when only audio was transmitted and it increased slightly
to about 5 ms when audio and video were transmitted together.

3. EXPERIMENTAL RESULTS

We performed several experiments under the experiment settings
described in the last section. In these experiments we varied the
bandwidth and the packet loss. Our experiments clearly
demonstrate that when video is sent over TCP not only the
packet loss is smaller but also the delay of audio packets is
significantly smaller. Since the results of all our experiment
show the same phenomena, we describe one representative

experiment in detail in this section. We set the following
parameters using NistNet:
• 15500 Bytes/s bandwidth limit and
• 5% packets drop rate.

3.1 Interarrival time of audio packets for video over UDP
The sender sent 3932 UDP audio packets, 3710 packets arrived,
and consequently, 222 audio packets were dropped. This is
equivalent to 11 seconds of audio data loss. In addition 220
audio packets arrived more than 250 ms after the arrival of the
previous packet. The expected time of arrival for an audio
packet is 50 ms after the arrival of the previous audio packet.
Therefore, any packet that arrives >= 250 ms after the arrival of
the previous packet is at least 200 ms late. Hence, additional 11
seconds of audio data would be lost due to play out buffer
overflow when the play out jitter buffer for audio is set to 200
ms. This means that the end user would lose 22 seconds audio.

Since the results of all our experiments are consistent, we
present a detailed report on our experiments with NistNet and
only a brief overview of the experiments in the other two
network environments. Our software and experiment reports can
be found on www.cis.temple.edu/~latecki/TwoStream.

We have two machines running our audio-video clients, and
one machine with NistNet emulator [6] (version 2.0.11) in
between. All three computers are Celeron 366 MHz PCs and
have RedHat Linux 7.2 operating system. They are in an isolated
network connected using 10Mbps Ethernet.

NistNet emulator is a Linux kernel-level module that can be
used to emulate performance dynamics in IP networks, by
allowing settings of various network characteristics like
bandwidth, delay, and queuing parameters. NistNet uses the
Derivative Random Drop (DRD) congestion control algorithm
(Gaynor [3]) and allows configuration of the minimum and
maximum queue length. The queue length in measured in the
number of packets. When the queue length reaches the
configured minimum queue length, DRD starts dropping 10% of
packets and the loss percentage continually increases until the
actual queue length reaches the configured maximum queue
length. At the configured maximum queue length, DRD loses
95% of packets.

3.2 Interarrival time of audio packets for video over TCP
The sender sent 3932 UDP audio packets, 3762 packets arrived,
and consequently, 172 audio packets were dropped. Observe that
52 less packets were dropped in this case. Thus, the packet loss
is about 23% smaller. This is equivalent to 2.5 seconds of more
audio data than in the case of UDP. Moreover, only 7 packets
arrived more than 250 ms after the arrival of the previous packet.
This is a huge difference in favor of TCP in comparison to video
transfer over UDP. The total end user loss of audio data is twice
smaller for TCP with the 200 ms play out jitter buffer for audio.
It is reduced to 8.8 seconds for TCP. The situation is similar for
other values of the audio play out jitter buffer. This can be
clearly seen by comparison of Figures 1 and 2. For example,
there are still 220 audio packets that arrived more than 500 ms
after the arrival of the previous packet when video is transmitted
over UDP (Fig. 1).

3.3 Video packets between audio packets
To show how video transmission influences the audio
transmission we measured the average interarrival time for audio

IEEE Int. Conf. on Multimedia & Expo, Baltimore, July 2003

packets that contain at least one video packet in between them.
This value was 756 ms when video was sent over UDP, whereas
average interarrival time for audio packets with no video packet
in between them was 21ms. Average of interarrival time for
audio packets with video in between them was 122 ms when
video was sent over TCP, whereas average interarrival time for
audio packets with video in between them is 43ms. These
numbers indicate that video transport over TCP caused
significantly less delay to the interarrival time (decreased
interarrival time for audio packets with video packets between
them) as well as significantly less burst (the interarrival time
closer to the ideal value of 50 ms was obtained for consecutive
audio packets with no video packets between them).

Figure 1. Interarrival time of audio packets, video over UDP. X
axis: packet sequence number, Y axis: time in seconds.

Figure 2. Interarrival time of audio packets, video over TCP. X
axis: packet sequence number, Y axis: time in seconds.

3.4 STD of audio packets
Further advantages of sending video over TCP can be obtained
by comparison of Figures 3 and 4 that show values of the
standard deviation (std) of the interarrival time taken over last
100 packets. Whereas the maximal value of the std for audio
packets during the video transmission over TCP is below 100 ms
(Fig. 4), it becomes more than 300 ms when video is sent over

UDP in Fig. 3. Moreover, the mean std for audio packets during
the video transmission over TCP is about 60 ms (Fig. 4),
whereas it is larger than 250 ms during the video transmission
over UDP (Fig. 3).

Figure 3. Std of the interarrival time of audio packets, video over
UDP. X axis: packet sequence number, Y axis: time in seconds.

Figure 4. Std of the interarrival time of audio packets, video over
TCP. X axis: packet sequence number, Y axis: time in seconds.

3.5 Results for video packets
Clearly, one has to pay the price for the improved audio
performance. As expected less video data can be transmitted
over TCP, but the difference is surprisingly small. Video data
over UDP arrived with the average speed of 110.801 Kbps,
whereas for TCP it was 102.676 Kbps. Moreover, the delay of
video packets that arrived over TCP was smaller than over UDP.

4. OTHER NETWORK SETTINGS

We also performed experiments in Emulab and in real network
conditions and found similar results. We present a brief
summary of the results of a representative experiment in each
case.
Emulab(Netbed [7]): The setup consists of two RedHat Linux
7.1 machines with a FreeBSD 4.5 machine in between that runs

IEEE Int. Conf. on Multimedia & Expo, Baltimore, July 2003

dummynet to control the bandwidth, which is set to 15500
bytes/s with 5% loss.
The real network: We established a 28.8 Kbps dial-up
connection between a sender (Pentium 1.6 GHz, RedHat Linux
7.3, 10 Mbps Ethernet) and receiver (Pentium 236 MHz, RedHat
7.2, 28.8 Kbps dial-up).
Experimental results are summarized in the following table,
where (1) is the total amount of audio data lost for the play out
due either to the packet loss or late arrival (for play out jitter
buffer of 200ms), (2) is the avg. inter-arrival time for audio
packets with video packets in between, (3) is the mean std. of
audio packets when video is also being streamed along, (4) is the
video bit rate at the receiver, (5) represents frames sent / frames
received without packet loss. The second row indicates the
transport protocol used for video transmission.

 Emulab [Netbed] Real Network (28.8 Kbps)
 TCP UDP TCP UDP
1 11.5 sec 20 sec 27 sec 55 sec
2 190 ms 360 ms 635 ms 537 ms
3 65 ms 115 ms 150 ms 350 ms
4 96.34 Kbps 93.18 Kbps 20.12 Kbps 23.32 %
5 82/82 209/1 30/30 220/7

Clearly, the data in the table indicate significantly better audio
performance when video is sent over TCP. This is particularly
obvious in (1), (3), and (5). Only the value in (2) for real
network is slightly higher for TCP then for UDP, but the values
are comparable. The values for (4) are comparable, which means
we receive nearly the same amount of video. However, nearly no
video frame arrived without any packet loss over UDP (5).

5. VIDEO PERFORMANCE

As we stated in the introduction, TCP congestion control can
introduce the play out delay of video packets due to the
retransmission. However, in all our experiments the play out
delay was in average less than half of the interarrival time of
video frames. Moreover, the influence of this delay on video
quality can be controlled at the application layer. On the other
hand, when video is transmitted over RTP/UDP, less than 1% of
frames arrive without packet loss even with a minimal network
packet loss conditions. For example, in our experiments on
Emulab, in average only one frame out of 209 sent frames
arrived without any packet loss when video was sent over UDP.
Due to TCP congestion control only 82 frames were sent and
arrived (without any packet loss). Average interarrival time of
the frames was one second, and average delay was 400 ms.

To summarize, transmission of video over TCP may lead to
additional frame freezing, but transmission of video over UDP
definitely introduces packet loss when the bandwidth drops.
Several years of research in video compression did not provide
any acceptable solution to compensate for video quality
degradation due to the packet loss. In our opinion, it is much
easier task to reduce the frame freezing effect. Possible solutions
on the video client level include: sending the most recent frame,
and on the transport level: restriction of the retransmission time
of video packets and transmission of consecutive frames in
different streams, e.g., by using partial reliable SCTP as
proposed for MPEG 4 stream in [5] or using DCCP.

6. RELATED WORK

An alternative to TCP is to use the Congestion Manager (CM)
described in [1]. The CM provides a mechanism for sharing
congestion information across multiple flows. With the CM in
place, a videoconferencing could use the rate callback method
of data transmission. The rate callback mechanism is well suited
for videoconferencing applications that transmit at a fixed
schedule. An application using the rate callback method registers
a callback that is invoked by the CM every time the allowable
rate falls below or goes above the configured thresholds. A video
conferencing application could use this feedback from the
congestion manager to adjust the video stream. The basic idea is
that the CM allows sharing congestion information between
flows. This information can be used to eliminate the two-stream
problem that occurs either due to a slow host or/and due to a
network bottleneck.

7. ACKNOWLEDMENTS

We would like to thank Phillip Conrad for his helpful comments.
We are grateful to Jay Lepreau and the support staff of Netbed
(formerly known as Emulab), the Utah Network Emulation
Testbed (which is primarily supported by NSF grant ANI-00-
82493 and Cisco Systems) for making their facilities available
for our experiments.

8. REFERENCES

[1] D. Andersen, D. Bansal, D. Curtis, S. Seshan and H.
Balakrishnan. System support for bandwidth management and
content adaptation in Internet applications. Proc. Symposium on
Operating Systems Design and Implementation, pp. 213-226,
San Diego, CA, October 2000.

[2] S. Floyd and K. Fall. Promoting the Use of End-to-End
Congestion Control in the Internet, IEEE/ACM Transactions on
Networking, August 1999.

[3] M. Gaynor, Proactive Packet Dropping Methods for TCP
Gateways, 1996. http://www.eecs.harvard.edu/~gaynor/final.ps

[4] E. Kohler, M. Handley, S. Floyd, and J. Padhye. Datagram
Congestion Control Protocol (DCCP). Internet Engineering Task
Force, INTERNET-DRAFT, http://www.ietf.org/internet-
drafts/draft-ietf-dccp-spec-00.txt

[5] M. Molteni and M. Villari. Using SCTP with Partial
Reliability for MPEG-4 Multimedia Streaming. Proc. of
BSDCon Europe 2002.

[6] NistNet, software provided by National Institute of Standards
and Technology, http://snad.ncsl.nist.gov/itg/nistnet/

[7] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M.
Newbold, M. Hibler, C. Barb, and A. Joglekar. An Integrated
Experimental Environment for Distributed Systems and
Networks. Proc. 5th Symposium on Operating Systems Design
and Implementation, to appear 2002.

http://www.eecs.harvard.edu/~gaynor/final.ps
http://www.ietf.org/internet-drafts/draft-ietf-dccp-spec-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-dccp-spec-00.txt
http://snad.ncsl.nist.gov/itg/nistnet/

	BETTER AUDIO PERFORMANCE WHEN VIDEO STREAM IS MONITORED BY TCP CONGESTION CONTROL
	ABSTRACT

