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ABSTRACT 
 

Conventional wisdom holds that the TCP like congestion control 
is unsuitable for real-time multimedia conferencing.  However, 
our results clearly show that an audio and video conferencing 
system that transmits video over TCP (and audio over 
RTP/UDP) can provide significantly better audio quality to the 
end user than one built on RTP/UDP alone. We measured audio 
quality in terms of packet loss, packets arriving too late (for real 
time play out), average packet delay, and jitter. Our results also 
clearly indicate that sending video over TCP does not introduce 
any additional delay in the arrival time of video packets in 
comparison to RTP/UDP. 

 
 
 

1. INTRODUCTION 
 

There is consensus among Internet architects that end-to-end 
congestion control is fundamental to the health of the Internet.  
Fall and Floyd [2] note that “In the current architecture, there are 
no concrete incentives for individual users to use end to-end 
congestion control, and there are, in some cases, “rewards” for 
users that do not use it (i.e. they might receive a larger fraction 
of the link bandwidth than they would otherwise).”  They go on 
to argue that additional incentives must be built into the network 
to encourage the use of TCP-friendly protocols, that is, those 
that reduce their load on the network when they experience 
packet loss (indicating congestion). Such incentives may include 
social incentives (i.e., avoiding the embarrassment of having 
your protocol/software labeled non-TCP friendly) pricing 
incentives, and traffic policing (providing degraded service to 
non-responsive flows). 

Underlying all of this is the assumption that users, left to 
their own devices, would just as soon blast as many packets over 
the network using UDP as they could get away with, and that 
TCP congestion control, like a speed limits on a highway, is a 
regulation that society recognizes is necessary, but individuals 
gain from disregarding. 

In this paper, we argue that TCP congestion control is not 
always your enemy. In fact, using TCP rather than UDP for 
video transport can actually improve the performance of audio 
stream when the current available bandwidth of a network path 
is unknown (which is the normal case in the Internet) and that 
available bandwidth is less than the maximum data rate of the 
video stream. 

Clearly, TCP congestion control can introduce the play out 
delay of video packets due to the retransmission. However, the 
influence of this delay on video quality can be controlled at the 
application layer. On the other hand, our results indicate that 
when video is transmitted over RTP/UDP, less than 1% of 
frames arrive without any packet loss even by minor packet loss 
conditions. This means that more than 99% of the received video 
frames would possibly show visual artifacts in played video. 

In this paper, we define a particular problem in network 
design that we call the “two-stream” problem. Our formulation 
of the two-stream problem is motivated by applications like 
video conferencing with the simultaneous transmission of real 
time audio and video, but is not limited to multimedia. Our long-
term research goal is to investigate various combinations of 
application and transport layer protocols to address this two-
stream problem.  This short paper has a more modest goal: to 
illustrate that sending real-time video over TCP is not only good 
for the network, but good for the end-user as well, in the case of 
simultaneous streaming of audio and video. 

Our main claim is that a TCP-friendly congestion control 
applied to video stream substantially improves the quality of 
audio stream. Note that we do not claim that TCP is optimal for 
sending video. As we point out, the retransmissions inherent in 
TCP introduce a tradeoff between reliability and delay.  
Alternative protocol designs that incorporate TCP-friendly rate 
control into an unreliable message oriented protocol (e.g., DCCP 
[4] and other related work) may provide a better long-term 
solution. Our purpose is rather to refute the conventional 
wisdom that TCP is a bad fit for real time video with data that 
suggest otherwise, and hopefully to encourage a more favorable 
view towards the effects of TCP-friendly congestion control on 
streaming media in general. 

 
1.1 The Two-Stream Problem: 
Consider a video telephony application with two streams to 
send, where the audio stream (A) is of high priority with a low 
fixed bit rate, and the video stream (V) is of lower priority. In 
video conferencing applications it is well known that users 
would rather accept degradation in video than in audio quality. 
The sender transmits streams A and V to a receiver over IP. In 
stream A, packets are sent regularly, for example, every 50 ms. 
Assuming that the available transmission bandwidth is sufficient 
to successfully transmit stream A, we want to also transmit 
stream V with as much bandwidth as possible without affecting 
the quality of stream A.   We also want a minimal delay for both 
streams. 
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Any solution to the two-stream problem needs to consider 
the transport protocols used for both streams and the interaction 
with the application. Since transmission of stream A has higher 
priority than transmission of stream V, the performance of 
stream A is our main criterion to measure the quality of the 
solution. In this paper we present experimental results that 
demonstrate that transport of stream V over TCP provides a 
significantly better solution to the two-stream problem than 
transport over UDP. Under the same network conditions, both 
the number of dropped packets and the number delayed packets 
are significantly better for stream A when stream V is 
transported over TCP. 

 
2. EXPERIMENTAL SETUP 

 
We conducted experiments using our audio-video clients in three 
different network environments: 

1. Emulab - the Utah Network Emulation Testbed 
(Netbed) [7], 

2. Our network with NistNet emulator [6], and 
3. Dial-up connection with 28.8 kbps over the Internet. 

In all our experiments stream A is an audio stream that is sent as 
RTP over UDP. We send every 50 ms an audio packet of 96 
Byte size. Since we transport 20 packets per second, we have 
1,920 Byte/s of audio data. Our video stream V is also sent in 
RTP packets. In order to have the same conditions in all 
experiments, we streamed video from a prerecorded video file 
that produces a video stream. In order to preserve the original 
video quality, this stream requires the transmission of 264.436 
Kbps (33,054 Byte/s) for the total time of 76 seconds.  

All experiments followed the same scenario:  
1. We first streamed just audio data for 60 seconds,  
2. Then we added our prerecorded video stream for 76 

seconds, 
3. Finally again we sent only audio data for the last 60 

seconds.   
We performed two runs of experiments, in one run stream 

V was sent over UDP, and in the second run stream V was sent 
over TCP. The statistics are obtained from our audio-video 
software client. All times are recorded at the time audio and 
video packets were given to the transport layer or were received 
form the transport layer.  

When there were no bandwidth restrictions and no packet 
drop, we obtained the optimal video throughput of 264.436 Kbps 
in 76 seconds. The situation for arrival of audio packets for both 
transport protocols UDP and TCP was the same. The average 
interarrival time of audio packets was as expected (50 ms). The 
standard deviation of the interarrival time (std) was zero at the 
times when only audio was transmitted and it increased slightly 
to about 5 ms when audio and video were transmitted together. 

 
3. EXPERIMENTAL RESULTS 

 
We performed several experiments under the experiment settings 
described in the last section. In these experiments we varied the 
bandwidth and the packet loss. Our experiments clearly 
demonstrate that when video is sent over TCP not only the 
packet loss is smaller but also the delay of audio packets is 
significantly smaller. Since the results of all our experiment 
show the same phenomena, we describe one representative 

experiment in detail in this section. We set the following 
parameters using NistNet: 
• 15500 Bytes/s bandwidth limit and  
• 5% packets drop rate.  

 
3.1 Interarrival time of audio packets for video over UDP 
The sender sent 3932 UDP audio packets, 3710 packets arrived, 
and consequently, 222 audio packets were dropped. This is 
equivalent to 11 seconds of audio data loss. In addition 220 
audio packets arrived more than 250 ms after the arrival of the 
previous packet. The expected time of arrival for an audio 
packet is 50 ms after the arrival of the previous audio packet.  
Therefore, any packet that arrives >= 250 ms after the arrival of 
the previous packet is at least 200 ms late. Hence, additional 11 
seconds of audio data would be lost due to play out buffer 
overflow when the play out jitter buffer for audio is set to 200 
ms. This means that the end user would lose 22 seconds audio. 

Since the results of all our experiments are consistent, we 
present a detailed report on our experiments with NistNet and 
only a brief overview of the experiments in the other two 
network environments. Our software and experiment reports can 
be found on www.cis.temple.edu/~latecki/TwoStream. 

We have two machines running our audio-video clients, and 
one machine with NistNet emulator [6] (version 2.0.11) in 
between. All three computers are Celeron 366 MHz PCs and 
have RedHat Linux 7.2 operating system. They are in an isolated 
network connected using 10Mbps Ethernet. 

NistNet emulator is a Linux kernel-level module that can be 
used to emulate performance dynamics in IP networks, by 
allowing settings of various network characteristics like 
bandwidth, delay, and queuing parameters. NistNet uses the 
Derivative Random Drop (DRD) congestion control algorithm 
(Gaynor [3]) and allows configuration of the minimum and 
maximum queue length. The queue length in measured in the 
number of packets. When the queue length reaches the 
configured minimum queue length, DRD starts dropping 10% of 
packets and the loss percentage continually increases until the 
actual queue length reaches the configured maximum queue 
length. At the configured maximum queue length, DRD loses 
95% of packets. 

 
3.2 Interarrival time of audio packets for video over TCP 
The sender sent 3932 UDP audio packets, 3762 packets arrived, 
and consequently, 172 audio packets were dropped. Observe that 
52 less packets were dropped in this case.  Thus, the packet loss 
is about 23% smaller. This is equivalent to 2.5 seconds of more 
audio data than in the case of UDP. Moreover, only 7 packets 
arrived more than 250 ms after the arrival of the previous packet. 
This is a huge difference in favor of TCP in comparison to video 
transfer over UDP. The total end user loss of audio data is twice 
smaller for TCP with the 200 ms play out jitter buffer for audio. 
It is reduced to 8.8 seconds for TCP.  The situation is similar for 
other values of the audio play out jitter buffer. This can be 
clearly seen by comparison of Figures 1 and 2. For example, 
there are still 220 audio packets that arrived more than 500 ms 
after the arrival of the previous packet when video is transmitted 
over UDP (Fig. 1). 
 
3.3 Video packets between audio packets 
To show how video transmission influences the audio 
transmission we measured the average interarrival time for audio 
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packets that contain at least one video packet in between them. 
This value was 756 ms when video was sent over UDP, whereas 
average interarrival time for audio packets with no video packet 
in between them was 21ms. Average of interarrival time for 
audio packets with video in between them was 122 ms when 
video was sent over TCP, whereas average interarrival time for 
audio packets with video in between them is 43ms. These 
numbers indicate that video transport over TCP caused 
significantly less delay to the interarrival time (decreased 
interarrival time for audio packets with video packets between 
them) as well as significantly less burst (the interarrival time 
closer to the ideal value of 50 ms was obtained for consecutive 
audio packets with no video packets between them). 

 

Figure 1. Interarrival time of audio packets, video over UDP. X 
axis: packet sequence number, Y axis: time in seconds. 

 

Figure 2. Interarrival time of audio packets, video over TCP. X 
axis: packet sequence number, Y axis: time in seconds. 

 
 
3.4 STD of audio packets 
Further advantages of sending video over TCP can be obtained 
by comparison of Figures 3 and 4 that show values of the 
standard deviation (std) of the interarrival time taken over last 
100 packets. Whereas the maximal value of the std for audio 
packets during the video transmission over TCP is below 100 ms 
(Fig. 4), it becomes more than 300 ms when video is sent over 

UDP in Fig. 3. Moreover, the mean std for audio packets during 
the video transmission over TCP is about 60 ms (Fig. 4), 
whereas it is larger than 250 ms during the video transmission 
over UDP (Fig. 3). 

 

Figure 3. Std of the interarrival time of audio packets, video over 
UDP. X axis: packet sequence number, Y axis: time in seconds. 

 

Figure 4. Std of the interarrival time of audio packets, video over 
TCP. X axis: packet sequence number, Y axis: time in seconds. 
 

 
3.5 Results for video packets 
Clearly, one has to pay the price for the improved audio 
performance. As expected less video data can be transmitted 
over TCP, but the difference is surprisingly small. Video data 
over UDP arrived with the average speed of 110.801 Kbps, 
whereas for TCP it was 102.676 Kbps. Moreover, the delay of 
video packets that arrived over TCP was smaller than over UDP.  

 
4. OTHER NETWORK SETTINGS 

 
We also performed experiments in Emulab and in real network 
conditions and found similar results. We present a brief 
summary of the results of a representative experiment in each 
case.  
Emulab(Netbed [7]): The setup consists of two RedHat Linux 
7.1 machines with a FreeBSD 4.5 machine in between that runs 
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dummynet to control the bandwidth, which is set to 15500 
bytes/s with 5% loss. 
The real network: We established a 28.8 Kbps dial-up 
connection between a sender (Pentium 1.6 GHz, RedHat Linux 
7.3, 10 Mbps Ethernet) and receiver (Pentium 236 MHz, RedHat 
7.2, 28.8 Kbps dial-up). 
Experimental results are summarized in the following table, 
where (1) is the total amount of audio data lost for the play out 
due either to the packet loss or late arrival (for play out jitter 
buffer of 200ms), (2) is the avg. inter-arrival time for audio 
packets with video packets in between, (3) is the mean std. of 
audio packets when video is also being streamed along, (4) is the 
video bit rate at the receiver, (5) represents frames sent / frames  
received without packet loss. The second row indicates the 
transport protocol used for video transmission. 
 

 Emulab [Netbed] Real Network (28.8 Kbps) 
 TCP UDP TCP UDP 
1 11.5 sec 20 sec 27 sec 55 sec 
2 190 ms 360 ms 635 ms 537 ms 
3 65 ms 115 ms 150 ms 350 ms 
4 96.34 Kbps 93.18 Kbps 20.12 Kbps 23.32 % 
5 82/82 209/1 30/30 220/7 

 
Clearly, the data in the table indicate significantly better audio 
performance when video is sent over TCP. This is particularly 
obvious in (1), (3), and (5). Only the value in (2) for real 
network is slightly higher for TCP then for UDP, but the values 
are comparable. The values for (4) are comparable, which means 
we receive nearly the same amount of video. However, nearly no 
video frame arrived without any packet loss over UDP (5). 
 

5. VIDEO PERFORMANCE 
 
As we stated in the introduction, TCP congestion control can 
introduce the play out delay of video packets due to the 
retransmission. However, in all our experiments the play out 
delay was in average less than half of the interarrival time of 
video frames. Moreover, the influence of this delay on video 
quality can be controlled at the application layer. On the other 
hand, when video is transmitted over RTP/UDP, less than 1% of 
frames arrive without packet loss even with a minimal network 
packet loss conditions. For example, in our experiments on 
Emulab, in average only one frame out of 209 sent frames 
arrived without any packet loss when video was sent over UDP. 
Due to TCP congestion control only 82 frames were sent and 
arrived (without any packet loss). Average interarrival time of 
the frames was one second, and average delay was 400 ms. 

To summarize, transmission of video over TCP may lead to 
additional frame freezing, but transmission of video over UDP 
definitely introduces packet loss when the bandwidth drops. 
Several years of research in video compression did not provide 
any acceptable solution to compensate for video quality 
degradation due to the packet loss. In our opinion, it is much 
easier task to reduce the frame freezing effect. Possible solutions 
on the video client level include: sending the most recent frame, 
and on the transport level: restriction of the retransmission time 
of video packets and transmission of consecutive frames in 
different streams, e.g., by using partial reliable SCTP as 
proposed for MPEG 4 stream in [5] or using DCCP. 

 
 

6. RELATED WORK 
 
An alternative to TCP is to use the Congestion Manager (CM) 
described in [1]. The CM provides a mechanism for sharing 
congestion information across multiple flows. With the CM in 
place, a videoconferencing could use the rate callback method 
of data transmission. The rate callback mechanism is well suited 
for videoconferencing applications that transmit at a fixed 
schedule. An application using the rate callback method registers 
a callback that is invoked by the CM every time the allowable 
rate falls below or goes above the configured thresholds. A video 
conferencing application could use this feedback from the 
congestion manager to adjust the video stream. The basic idea is 
that the CM allows sharing congestion information between 
flows. This information can be used to eliminate the two-stream 
problem that occurs either due to a slow host or/and due to a 
network bottleneck. 
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