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ABSTRACT
We propose a new graph-based data structure, calledSpatio Tem-
poral Region Graph(STRG) which can represent the content of
video sequence. Unlike existing ones which consider mainly spa-
tial information in the frame level of video, the proposed STRG
is able to formulate its temporal information in the video level ad-
ditionally. After an STRG is constructed from a given video se-
quence, it is decomposed into its subgraphs calledObject Graphs
(OGs), which represent the temporal characteristics of video ob-
jects. For unsupervised learning, we cluster similar OGs into a
group, in which we need to match two OGs. For this graph match-
ing, we introduce a new distance measure, calledExtended Graph
Edit Distance(EGED), which can handle the temporal character-
istics of OGs. For actual clustering, we exploitExpectation Max-
imization (EM) with EGED. The experiments have been con-
ducted on real video streams, and their results show the effective-
ness and robustness of the proposed schemes.

1. INTRODUCTION

Graph is a powerful tool for pattern representation and classifica-
tion in various fields [1, 2, 3], such as image processing, video
analysis, and biomedical applications. The primary advantage of
graph-based representation is that it can represent patterns and re-
lationships among data easily. To take this advantage into video
analysis, several studies have proposed the graph-based techniques
[4, 5, 6, 7]. In Region Adjacency Graph (RAG) [4, 5], segmented
regions and spatial relationships among them are expressed as nodes
and edges, respectively. However, RAG cannot represent the tem-
poral characteristic of video which is its representative feature.
Also, various graph matching algorithms such as bipartite match-
ing [6] and error-correcting matching [7] have been used in video
data. However, the existing graph matching algorithms still require
high computational cost, and suffer from low accuracy since they
consider only the spatial feature to match video data.

To address these, we first propose a new graph-based data
structure, calledSpatio-Temporal Region Graph(STRG) repre-
senting spatial and temporal relationships among objects in a video
sequence. The STRG is constructed by combining RAGs which
are generated from each frame, and decomposed into its subgraphs,
calledObject Region Graphs (ORGs) representing the same corre-
sponding regions. ORGs representing the same object are merged
into anObject Graph(OG) which represents each semantic object
in a video sequence. For unsupervised learning, we cluster similar
OGs into a group, in which we need to match two OGs. For this
graph matching, we introduce a new distance measure, calledEx-
tended Graph Edit Distance(EGED), which can handle temporal
characteristics of OGs. Our contributions are as follows:

• We propose a new data structure, STRG based on graph for
video. It can represent not only spatial features of objects
in a video, but also temporal relationships among them.

• We propose a new distance measureEGED which pro-
vides more accurate measurement between OGs by consid-
ering temporal characteristics.

• For unsupervised learning, we exploit a model-based clus-
tering algorithm (EM) withEGED.

The remainder of this paper is organized as follows. In Sec-
tion 2, we explain how to construct an STRG from RAGs, and how
to decompose STRG into OGs. In Section 3, we introduce the
EGED for graph matching, and a model-based clustering algo-
rithm to group similar OGs. The performance study is reported in
Section 4. Finally, Section 5 presents some concluding remarks.

2. GRAPH-BASED DATA STRUCTURE FOR VIDEO

In this section, we describe STRG and OG for video.

2.1. Spatio-Temporal Region Graph

For a given video, each frame is segmented into a number of re-
gions using region segmentation technique. Then, Region Adja-
cency Graph (RAG) is obtained by converting each region into
node, and spatial relationships among regions into edges [4, 5].
RAG is good for representing spatial relationships among the nodes
indicating the segmented regions. However, it cannot represent
temporal characteristics of video. We propose a new graph-based
data structure for video,Spatio Temporal Region Graph(STRG)
which is temporally connected RAGs. The STRG can handle both
temporal and spatial characteristics of video, and defined as fol-
lows:

Definition 1 Given a video segmentS, a Spatio-Temporal Region
Graph,Gst(S), is a six-tuple graph,Gst(S) = {V, ES , ET , ν,
ξ, τ}, where

• V is a finite set of nodes for segmented regions fromS,

• ES ⊆ V × V is a finite set of spatial edges ofS,

• ET ⊆ V × V is a finite set of temporal edges ofS,

• ν : V → AV is a set of functions generating node at-
tributes,

• ξ : ES → AES is a set of functions generating spatial edge
attributes,

• τ : ET → AET is a set of functions generating temporal
edge attributes.
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Fig. 1. Example of STRG for frame #141− #143

In STRG, the node attributes (AV ) represent size (i.e., number
of pixels), dominant color and location of corresponding region,
the spatial edge attributes (AES ) represent the relationships be-
tween two adjacent nodes such as spatial distance and orientation,
and the temporal edge attributes (AET ) represent the relationships
between corresponding nodes in two consecutive frames such as
velocity and moving direction. Fig. 1 (a) and (b) are actual frames
in a sample video and their region segmentation results, respec-
tively. Fig. 1(c) shows a part of STRG for frames #141− #143
constructed by adding temporal edges which are horizontal lines
between the frames.

An STRG is an extension of RAGs by adding temporal edges
(ET ) to them.ET represents temporal relationships between cor-
responding nodes in two consecutive RAGs. The main procedure
of building STRG is therefore, how to constructET , which is sim-
ilar to the problem of objects tracking in a video sequence. To
find the corresponding nodes in two consecutive RAGs, we use a
graph isomorphismandmaximal common subgraph[3]. These al-
gorithms are conceptually simple, but have a high computational
complexity. To address this, we decompose a RAG into its neigh-
borhood graphs (GN (v)) which are subgraphs of RAG as follows:

Definition 2 GN (v) is the neighborhood graph of a given nodev
in a RAG, if for any nodesu ∈ GN (v), u is the adjacent node of
v, and has one edge such thateS = (v, u).

LetGm
N andGm+1

N be sets of the neighborhood graphs inmth and
(m + 1)th frames respectively. For each nodev in mth frame,
the goal is to find the corresponding target nodev′ in (m + 1)th

frame. To decide these corresponding nodes, we use the neigh-
borhood graphs in Definition 2. For each neighborhood graph
GN (v) in Gm

N , the goal is converted to finding the correspond-
ing target graphGN (v′) in Gm+1

N , which is an isomorphic or
the most similar graph toGN (v). First, we find the neighbor-
hood graph inGm+1

N , which is isomorphic toGN (v). Second, if
we cannot find any isomorphic graph inGm+1

N , we find the most

similar neighborhood graph toGN (v) using a similarity measure,
SG(GN (v), GN (v′)), which is defined as follows:

SG(GN (v), GN (v′)) =
|GC |

min(|GN (v)|, |GN (v′)|) (1)

where|G| denotes the number of nodes ofG, andGC is the max-
imal common subgraph ofGN (v) andGN (v′). GC can be com-
puted based on maximal clique detection [8]. The higher the value
of SG, the more similarity betweenGN (v) and GN (v′). For
GN (v) ∈ Gm

N , GN (v′) is the corresponding neighborhood graph
in Gm+1

N , whoseSG with GN (v) is the largest among neigh-
borhood graphs inGm+1

N , and greater than a certain threshold
value. In this way, we find all pairs of corresponding neighborhood
graphs (eventually corresponding nodes) fromGm

N toGm+1
N .

2.2. Object Graph

An STRG constructed in the previous subsection is decomposed
into Object Region Graphs(ORGs). We consider a temporal sub-
graph that can be defined as a set of sequential nodes connected to
each other by a set of temporal edges (ET ) as follows:

Definition 3 Given a graphGst = {V, ES , ET , ν, ξ, τ}, a tem-
poral subgraph of Gst is a graph,Gst′ = {V ′, E′

S , E′
T , ν′, ξ′, τ ′}

such that

• V ′ ⊆ V , E′
S = ES∩(V ′×V ′) andE′

T = ET ∩(V ′×V ′)
• ν′, ξ′ andτ ′ are the restrictions ofν, ξ andτ to V,ES and

ET , respectively, i.e.

ν′(v) =

{
ν(v) if v ∈ V ′,
undefined otherwise,

ξ′(eS) =

{
ξ(eS) if eS ∈ E′

S ,
undefined otherwise,

τ ′(eT ) =

{
τ(eT ) if eT ∈ E′

T ,
undefined otherwise.

An ORG is a special case of temporal subgraph of STRG when
the spatial edge setES is empty. However, due to the limitations
of region segmentation techniques, different color regions belong-
ing to a single object cannot be detected as a single region. For
instance, a body of person may consist of several regions such as
head, upper body and lower body. Fig. 2 (a) shows an object
(a person) which is segmented into four regions over three frames.
Since there are four regions in each frame, we build four ORGs, i.e.
(v1, v5, v9), (v2, v6, v10), (v3, v7, v11), and (v4, v8, v12) like Fig. 2
(b). Since they belong to a single object, it is better to merge those
ORGs into one. For convenience, we refer to the merged ORGs as
Object Graph(OG). In order to merge two ORGs which belong to
a single object, we consider the attributes (i.e. velocity and moving
direction) of temporal edge (ET ). If two ORGs have same moving
direction and same velocity, these can be merged into one. In Fig.
2 (c), four ORGs are merged into a single OG, i.e. (v2, v6, v10).

3. DISTANCE FUNCTION AND CLUSTERING OF
OBJECT GRAPHS

For unsupervised learning, we cluster similar OGs into a group,
in which we need to match two OGs. For this graph matching,
we introduce a new distance measure, calledExtended Graph Edit
Distance(EGED), which can handle temporal characteristics of
OGs, then employ a model-based clustering algorithm usingEx-
pectation Maximization(EM).
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Fig. 2. The example of OG merging

3.1. Extended Graph Edit Distance

The purpose of the edit distance for graphs is to compute the min-
imum cost of graph edit operations such as adding, deleting, and
changing nodes, to transform one graph to the other. However, a
graph edit distance uses a simple edit cost function, which may
cause very low accuracy in computing the distance between OGs
because it does not consider time. To address it, we consider a
temporal characteristic of OG to compute the distance (dissimilar-
ity) between OGs. Since the main operations to edit graphs deal
with nodes and their attributes rather than edges, we consider only
the nodes and their attributes. LetOGs

m andOGt
n besth andtth

OGs withm andn number of nodes, respectively.

OGs
m = {vs

1, . . . , v
s
m, νs}, OGt

n = {vt
1, . . . , v

t
n, νt}

The distance functionEGED betweenOGs
m andOGt

n can be
defined as follows.

Definition 4 The Extended Graph Edit Distance (EGED) be-
tween two moving object graphsOGs

m andOGt
n is defined as:

EGED(OGs
m, OGt

n) =





∑m
i=1 |vs

i − gi| if n = 1,∑n
i=1 |vt

i − gi| if m = 1,
min[EGED(OGs

m−1, OGt
n−1) + dist(vs

m, vt
n),

EGED(OGs
m−1, OGt

n) + dist(vs
m, gap),

EGED(OGs
m, OGt

n−1) + dist(gap, vt
n)]

otherwise.

wheregap is an added, deleted or changed node, andgi is a gap
for ith node. And,

dist(vs
i , vt

j) =





|vs
i − vt

j | if vs
i ,vt

j are not a gap
|vs

i − gj | if vt
j is a gap

|vt
j − gi| if vs

i is a gap.

For better readability, letv indicate a valueν(v) of node at-
tribute. dist is the cost function for editing nodes. Depending on
how to select a gap (gi), various distance functions are possible. In
our case,gi =

vi−1+vi

2
is used fordist, which can handle local

time shifting for the distance function accurately.

3.2. Clustering with EM + EGED

In order to group similar OGs, we employ EM clustering algo-
rithm. First, OGs are selected randomly from the population. Let
Yj be thejth OG with a dimensiond. Each OG is assigned to
a clusterk with a probability ofwk such that

∑K
k=1 wk = 1,

which is the sum of the membership probabilities of all the mea-
surements forYj to a cluster. A finite Gaussian mixture model
is chosen to cluster OGs since it is widely used and easy to im-
plement [9]. Also,EGED in Definition 4 is applied for the dis-
tance measure. Thed-dimensional Gaussian mixture density using
EGED is given by

p(Yj |Θ) =

K∑

k=1

wk

2π1/2|σk|e
− 1

2σ2 EGED(Yj ,µk)2 (2)

Equation (2) isone-dimensional Gaussian mixture density func-
tion with theEGED for OGs. This mixture model provides some
benefits to handling OGs as follows. It can reduce the dimension,
deal with various time lengths of OGs, and give an appropriate dis-
tance function for OGs in each cluster. Suppose thatY s are mutu-
ally independent, the log-likelihood (L) of the parameters (Θ) for
a given data setY can be defined from Equation (2) as follows.

L(Θ|Y ) = log

M∏
j=1

p(Yj |Θ) =

M∑
j=1

log

K∑

k=1

wkpk(Yj |θk) (3)

To find appropriate clusters we estimate the optimal values of
the parameters (θk) and the weights (wk) in Equation (3) using the
EM algorithm which is a common procedure used to find the Max-
imum Likelihood Estimates (MLE) of the parameters iteratively.
The EM algorithm produces the MLE of the unknown parameters
iteratively. Each iteration consists of two steps: E-step and M-step.
E-step: It evaluates the posterior probability ofYj , belonging to
each clusterk. Let hjk be the probability ofjth OG for a cluster
k, then it can be defined as follows:

hjk = P (k|Yj , θk) =
wk

pk(Yj |θk)

M-step: It computes the new parameter value that maximizes the
probability usinghjk in E-step as follows:

wk =
1

M

M∑
j=1

hjk, µk =

∑M
j=1 hjkYj∑M

j=1 hjk

σk =

∑M
j=1 hjkEGED(Yj , µk)2

∑M
j=1 hjk

The iteration of E and M steps is stopped whenwk is con-
verged for allk. After the maximum likelihood model parameters
(Θ̂) in Equation (3) are decided, each OG is assigned to a cluster.

4. EXPERIMENTAL RESULTS

To access the proposed method for clustering OGs, we performed
the experiments with the real video streams captured by a video
camera. Table 1 shows the description of the video and results of
the experiments. The first two videos (Room1 and Room2) were
taken from a room in a building, and the other two (Car1 and Car2)



from outside, which have some traffic scenes. The third and the
fourth columns of Table 1 are the number of actual video objects
and the number of correctly detected OGs, respectively. As seen
in the fifth column, the accuracy of graph-based object tracking
reaches up to 94.7% on average.

Table 1. Results of graph-based object detection and clustering for
real video streams

Video

Room1

Room2

Car1

Car2

Total

OG performance
Actual
OGs

Found
OGs

Accu-
racy

438 411 93.8%

159 147 92.5%

202 195 96.5%

210 203 96.7%

1009 956 94.7%

Clustering Error Rate

EM KM KHM

29.1%

22.7%

13.0%

13.3%

19.5%

33.6%

28.9%

17.6%

17.7%

24.5%

16.8%

14.4%

8.8%

9.5%

12.4%

Duration

40h 30m

4h 12m

15m

12m

45h 7m

We compare the performance of EM clustering algorithm with
K-means (KM) and K-harmonic means (KHM). To be fair, all of
the clustering algorithms useEGED distance measure defined in
Definition 4. In order to evaluate the clustering algorithm, we use
the clustering error rate defined as:

Clustering Error Rate (%) =

(1− Number of Correctly Clustered OGs

Number Of Total OGs
)× 100

Table 1 also shows that EM is around two times better than KM
and KHM for all videos in terms of the clustering error rate. Fig. 3
shows the example of clustering result for the first video (Room1).
As seen in this figure, OGs are grouped into 8 clusters. The first
column indicates the number of clustered OGs, and the second
column is the visualization of each cluster by plotting its members
(OGs). Two sample OGs of each cluster are shown in the third col-
umn by some selected frames. The different clusters have differ-
ent characteristics: for example, Cluster 2 has the objects moving
bottom to top-right corner, and Cluster 3 has a similar pattern but
with an opposite direction to Cluster 2. The interesting results are
observed in Cluster 7 such that it has the noise data such as unex-
pected illumination changes at night. The algorithm clusters even
those noise data into separated groups correctly.

5. CONCLUSIONS

In this work we propose a new graph-based data structure, spatio-
temporal region graph (STRG) representing spatial and temporal
relationships among objects in a video. After an STRG is con-
strued, it is decomposed into its subgraphs called object graphs
(OGs), which represent each semantic object in a video sequence.
Since an STRG provides not only spatial view of individual frame
but also temporal relationships between consecutive frames, we
can detect video objects more accurately. For unsupervised learn-
ing, we cluster similar OGs into a group, in which we match two
OGs. For this graph matching, we introduced a new distance mea-
sure, extended graph edit distance (EGED) which can handle
temporal characteristics of OGs. For actual clustering, we em-
ployed a model-based EM clustering withEGED. It can clus-
ter video objects semantically. The experimental results on real
video streams show the effectiveness and robustness of the pro-
posed schemes.

Examples of OGResultCluster
(# of OG)

0
(134)

1
(51)

2
(45)

3
(33)

4
(19)

5
(15)

6
(15)

7
(98)

Descriptions

Objects moving 
at bottom right 
corner.

Objects appear 
at right, then go 
out through 
door.

Objects  
moving bottom 
to top-right 
corner.

Objects moving 
top to bottom 
right corner.

Objects moving 
at top-right 
corner.

Objects moving 
bottom to top, 
then returning.

Noises caused 
by PC and 
illumination 
changes.

Objects moving 
right to left, 
then returning.

Fig. 3. Results of EM clustering withEGED for video (Room1)
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