
ENHANCING CURVATURE SCALE SPACE FEATURES
FOR ROBUST SHAPE CLASSIFICATION

Stephan Kopf, Thomas Haenselmann, Wolfgang Effelsberg

Dept. of Computer Science IV, University of Mannheim, Germany
{kopf,haenselmann,effelsberg}@informatik.uni-mannheim.de

ABSTRACT

The curvature scale space (CSS) technique, which is also part
of the MPEG-7 standard is a robust method to describe com-
plex shapes.The central idea is to analyze the curvature of
a shape and derive features from inflection points. A ma-
jor drawback of the CSS method is its poor representation of
convex segments: Convex objects cannot be represented at all
due to missing inflection points. We have extended the CSS
approach to generate feature points for concave and convex
segments of a shape. This generic approach is applicable to
arbitrary objects. In the experimental results, we evaluate as
a comprehensive example the automatic recognition of char-
acters in images and videos.

1. INTRODUCTION

One of the central topics in computer vision is the recognition
of objects in images and videos. The problem can be subdi-
vided into two parts: segmentation and classification. We
focus on the classification aspect and present a generic ap-
proach that analyzes the outer shape of a segmented object.
Many surveys on the recognition of objects in videos based
on shape analysis have been published in recent years [1, 2].
One of the reliable and fast shape classification techniques is
the curvature scale space (CSS) technique [3] which was one
of the features selected to describe objects in the MPEG-7
standard [4]. A severe, and as yet unaddressed, problem with
the CSS approach, is the poor representation of convex seg-
ments of a shape. We present a new approach based on the
CSS technique with which even convex shapes can be classi-
fied.
The remainder of this paper is organized as follows: Sec-

tion 2 describes our new approach to classify shapes. We then
present experimental results in Section 3 and conclude with
Section 4.

2. CLASSIFICATION OF SHAPES

We analyze the outer shape of an object and derive features
for classification. The features are based on the curvature
scale space (CSS) technique that is presented in this section.

A major drawback of the standard CSS approach is its poor
representation of the convex segments of a shape. We pro-
pose an approach to solve this problem.

2.1. Standard CSS Technique

The CSS technique [3] is based on the idea of curve evo-
lution. A CSS image provides a multi-scale representation
of the curvature zero crossings of a closed planar shape. A
shape is smoothed with a Gauusian kernel and the CSS im-
age shows the zero crossings with respect to their positions
on the shape and the width of the Gaussian kernel (or the
number of iterations). An example of smoothed shapes and
the CSS image is depicted in Figure 1.
During the deformation process, zero crossings merge as

the transitions between shape segments of different curvature
are equalized. Consequently, after a certain number of iter-
ations, inflection points cease to exist, and the shape of the
closed curve becomes convex. Significant shape properties
that are visible during a large number of iterations result in
high peaks in the CSS image. However, areas with rapidly
changing curvatures caused by noise produce only small lo-
cal maxima. In many cases, the peaks in the CSS image pro-
vide a robust and compact representation of a shape.

2.2. Extended CSS Features

Certain shapes that differ significantly in their visual appear-
ance nevertheless have similar CSS images. A major draw-
back of the CSS approach is the inadequate representation of
convex segments on the shape. A CSS image represents the
position of the inflection points, so concave segments on the
shape are required.
We apply the standard CSS approach first to get char-

acteristic feature vectors that classify concave parts of the
shape. The general idea is now to create a second shape – we
call it mapped shape – that will provide additional features
for the convex segments of the original shape. The original
shape is mapped to a new shape with an inverted curvature.
Strong convex segments of the original shape become con-
cave segments of the mapped shape. Significant curvatures
in the original shape are still significant in the mapped shape.

This is a preliminary version of an article published in 
Proc. of IEEE International Conference on Multimedia and Expo (ICME), Amsterdam, The Netherlands, July 2005
by Stephan Kopf, Thomas Haenselmann, Wolfgang Effelsberg



iteration

1

2
3

21 3 arc
length

Fig. 1. Original character and smoothed shapes with inflec-
tion points after 5, 20, 100, 250, 500, 1000 and 1150 itera-
tions. The corresponding CSS image is depicted on the right
side. Three major concave segments are labeled.

To create a mapped shape [5, 6], we enclose the shape of
the character by a circle of radius R and identify the point
P of the circle closest to each shape pixel. The shape pixels
are mirrored on the tangent of the circle in P . Two mapped
shapes are depicted in Figure 2. Segments of the shape that
have a strong convex curvature are mapped to concave seg-
ments. The calculation of the mapped shape is quite fast.
Each shape pixel (x(u), y(u)) of the closed planar curve is
mapped to the new position (x′(u), y′(u)). The center of
the circle (Mx, My) with radius R is the average position
of shape pixels.

Dx(u),y(u) =
√

(Mx − x(u))2 + (My − y(u))2 (1)

x′(u) = (x(u) − Mx) ·
2 · R − Dx(u),y(u)

Dx(u),y(u)
+ Mx (2)

y′(u) = (y(u) − My) ·
2 · R − Dx(u),y(u)

Dx(u),y(u)
+ My (3)

Dx(u),y(u) specifies the distance between the center of the
circle and the current shape pixel. If the positions of a shape
pixel and the center of the circle are the same, a mapping is
not possible. In this case, the shape pixel is interpolated from
adjacent shape pixels of the mapped shape.
In principle, the mirroring of shapes is not limited to en-

closing circles. Although other shapes could be used as well,
some difficulties would arise. Angular shapes like rectangles
would create discontinuous shapes. Ellipses have the disad-
vantage that the point P (where the shape pixel is mirrored)
is not always unique. E.g., in the case of ellipses that are par-
allel to the X- and Y-axis, the mirroring is undefined for all
points on these axes.
We apply the standard CSS approach to the mapped shape.

To indicate the classification of convex segments in the orig-
inal shape we represent this new CSS image with negative
values. In Figure 3 extended CSS images of four characters
are depicted. Positive values represent the original CSS im-
ages, negative values the CSS images of the mapped shapes.

(x’,y’)
P

(x,y)

M

M
(x,y)

P

(x’,y’)

Fig. 2. The shapes of two characters (gray color) are ”mir-
rored” at the circle.

The convex characters ”I” and ”O” cannot be classified with
the standard CSS approach, but the dual CSS representations
differ significantly.

2.3. CSS Matching

For the matching of an unknown object it is sufficient to ex-
tract the significant maxima (above a certain noise level). The
position on the shape and the value (iteration or Gaussian ker-
nel width) are stored for each peak. These peaks characterize
convex regions. The sampled shape pixels are transformed
to the mapped (dual) shape, and a second CSS image is cre-
ated. The mapped feature vectors are stored as negative val-
ues. An unknown object is matched by comparing the feature
vectors (CSS peaks) to those of the objects that are stored in a
database. The summarized Euclidean distances of the height
and position of each peak defines the difference between the
CSS images. It is not possible to match negative and positive
CSS peaks (the concave segments in the original and mapped
shape). Details of the matching algorithm of CSS images are
published in [7].

3. EXPERIMENTAL RESULTS

We have implemented the extended curvatire scale space al-
gorithm and focus in our evaluation on simple shapes (char-
acters), because the classification of complex shapes gener-
ally works quite well with the standard curvature scale space
approach [3, 5, 7]. Additionally, we illustrate the main con-
cept of the automatic segmentation of superimposed text in
images.

3.1. Segmentation of Characters

We assume that each text line contains at least several charac-
ters. To locate a text region in an image we use the techniques
presented by Sato and Smith [8]: The idea is to identify re-
gions with high contrast and sharp edges. If this region suf-



Fig. 3. Four examples of extended CSS images are depicted.
Positive values represent the original CSS images, negative
values the dual images.

fices certain constrains like minimum size, the bounding box
of this region is classified as text region. Figure 6 displays an
example of the detected bounding boxes in an image with a
complex background.
Each pixel in each text region is classified as text or back-

ground pixel. The distinction is not trivial because the lumi-
nance and chrominance values of text pixels of one character
can vary significantly. The separation of characters does not
work very well with vertical projection profiles that summa-
rize edge values for each column of a text line (see bottom
of Figure 4). Many characters are split and separators are
missed.
Usually, the contrast between text pixels and background

pixels is high, whereas the average difference between adja-
cent background pixels is much lower. We take advantage
of this fact and search a path from the top to the bottom of
the text region. Different starting positions in the top row are
selected, and the paths with the lowest costs are stored. The
costs of a path are defined as the summarized pixel differ-
ences between adjacent path pixels. The path with the mini-
mum cost which we call cheapest path rarely crosses charac-
ter pixels and defines a good separator for characters.
We use the Dijkstra shortest-path algorithm for graphs to

identify the separators. Results of the minimumpaths (cheap-
est paths) are depicted in the top of Figure 4. A major advan-
tage of this approach is the fact that no threshold is required
to locate the separators of characters. In the final step of the
segmentation, we use a region-growing algorithm to classify
pixels as text or background. An example of the final seg-
mentation of characters is depicted in Figure 6.

3.2. Classification of Characters

We have implemented a simple pattern matching approach
and used a commercial OCR software that is part of a scanner
software to evaluate the recognition rates. The CSS peaks of

(a) (b)

Fig. 4. Top: Character separators based on cheapest paths.
Bottom: Vertical projection profile with (a) missed separators
and (b) split characters.

characters of four fonts are stored in a database. Figure 5
depicts sample characters of different fonts.
We have analyzed the recognition results for images and

videos. Twenty images with complex backgrounds and ten
video segments from different genres with a total length of 20
minutes were selected. A reliable segmentation is quite chal-
lenging. We define that a character is correctly segmented if
it is not split or merged with other characters. We have ana-
lyzed the quality of the segmentation of characters by com-
paring projection profiles and the optimum path approach.
The results in Table 1 (top) indicate that the optimum path
algorithm is much more reliable (errors rates drop from 17.4
to 9.2 percent).

Segmentation errors Projection Profile Optimum Path
Characters split 9.9 % 3.8 %
Characters merged 7.5 % 5.4 %
Correctly separated 82.6 % 90.8 %
characters

Recognition results Images Video sequences
Number of characters 2986 1211
Pattern matching 64.5 % 72.1 %
Standard CSS 62.7 % 73.1 %
Extended CSS 70.8 % 77.2 %
Commercial OCR 70.5 % 72.4 %

Table 1. Top: Reliability of segmentation based on projec-
tion profiles and optimum path. Bottom: Aggregated recog-
nition results.

To calculate the overall recognition rate of characters we
analyzed all segmented objects (even artifacts and merged
or split characters). Both CSS methods rejected many poor
segmented characters. Table 1 (bottom) lists the recognition
results for images and video sequences. The results in videos
are usually much better due to the additional preprocessing
of the frames.



(a) (b) (c) (d) (e)

Fig. 5. Two examples of the European license plate font (a,b)
illustrate the largeminimumdistance of the pattern matching.
The distance is very low in other fonts (c). The standard CSS
approach cannot characterize convex characters (d) and even
some characters have very similar CSS peaks in the extended
approach (e).

The commercial OCR system could not recognize any
characters in the original images, so we used the segmented
binary images for classification. A direct comparison of the
recognition rates is still not possible due to the dictionary
lookup in the commercial system. The quality of the seg-
mentation is higher in video sequences, but the commercial
OCR systems cannot benefit that much. We assume that the
dictionary lookup is less efficient with text in videos.
To sum up, the classification results of shapes with only

a few concave segments are very poor with the standard CSS
approach. The extension using mapped shapes increases the
classification rates significantly and enables the recognition
of convex shapes. Figure 6 depicts the major segmentation
steps in an image with a complex background. The image
includes characters with different fonts and sizes.

4. CONCLUSION AND OUTLOOK

We have analyzed the curvature scale space technique and
presented major deficiencies of the standard approach. Al-
though it works quite well to describe complex shapes like
leaves or an automatically segmented person, the disadvan-
tage of this approach becomes more obvious with the analy-
sis of simpler shapes: the poor representation of convex seg-
ments of a shape.
Our extension of the CSS method classifies concave and

convex segments of a shape and proves to be very powerful
for the recognition of complex and simple shapes. We have
evaluated as a comprehensive example the automatic recog-
nition of characters in images and videos. As future work, we
plan to evaluate the recognition results of the extended CSS
method for deformable non-text objects.

5. REFERENCES

[1] Luciano da Fontoura Costa and Roberto Marcondes Ce-
sar, Jr., Shape Analysis and Classification, CRC Press,
Boca Raton, FL, September 2000.

[2] Sven Loncaric, “A survey of shape analysis techniques,”

Fig. 6. Original image (top), automatically detected text re-
gions (center) and segmented text (bottom)

in Pattern Recognition, August 1998, vol. 31(8), pp.
983–1001.

[3] Farzin Mokhtarian, “Silhouette-based isolated object
recognition through curvature scale space,” in IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 1995, vol. 17(5), pp. 539–544.

[4] Farzin Mokhtarian and Miroslaw Bober, Curvature
Scale Space Representation: Theory, Applications, and
MPEG-7 Standardization (Computational Imaging and
Vision, 25), Kluwer Academic Publishers, Dordrecht,
The Netherlands, 2003.

[5] Stephan Kopf, Thomas Haenselmann, and Wolfgang Ef-
felsberg, “Shape-based posture and gesture recognition
in videos,” in Electronic Imaging. January 2005, vol.
5682, pp. 114–124, IS&T, SPIE.

[6] Stephan Kopf, Thomas Haenselmann, and Wolfgang Ef-
felsberg, “Robust character recognition in low-resolution
images and videos,” Tech. Rep. TR-05-002, Dept. of
Computer Science, University of Mannheim, Mannheim,
Germany, 2005.

[7] Stephan Richter, Gerald Kühne, and Oliver Schuster,
“Contour-based classification of video objects,” in Pro-
ceedings of IS&T/SPIE conference on Storage and Re-
trieval for Media Databases, January 2001, vol. 4315,
pp. 608–618.

[8] Toshio Sato, Takeo Kanade, Ellen K. Hughes, and
Michael A. Smith, “Video OCR for digital news
archives,” in IEEE International Workshop on Content-
Based Access of Image and Video Databases (CAIVD),
1998, pp. 52–60.


