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ABSTRACT

In this paper, we present an algorithm for Real-time Iterative

Spectrogram Inversion (RTISI) with Look-Ahead (RTISI-LA).

RTISI-LA reconstructs a time-domain signal from a given 

sequence of short-time Fourier transform magnitude

(STFTM) spectra without phase information. Whereas RTISI 

[1] reconstructs the current frame using only magnitude 

spectra information for previous frames and the current

frame, RTISI-LA also uses magnitude spectra for a small 

number future frames. This  allows RTISI-LA to achieve

substantially higher signal-to-noise (SNR) performance than 

either RTISI or the Griffin & Lim method [2][3] with an

equivalent computational load, while retaining the real-time

properties of RTISI.

1. INTRODUCTION

Magnitude and power spectra, and their time sequences in 

the form of spectrograms, are widely used to represent the 

time-frequency stru cture of audio signals such as speech 

and music. They are also used where the frequency domain 

representation of a signal is modified before being

transformed back into a time-domain signal, in a number of 

applications such as  noise reduction, signal enhancement

and signal source separation.

In general however, even when a given magnitude 

spectrum is calculated from a real signal, there is no way to 

exactly convert the magnitude spectrum back into the

original time-domain real signal. Furthermore, in some

applications we have only a modified (or arbitrary)

magnitude spectrum, which may be not a valid

representation of an audio signal in the sense that there may 

be only a complex, but no real signal whose STFTM exactly 

matches the modified one. In such cases, we would like to 

find a real-valued signal with an STFTM as close as possible 

to the modified or target STFTM. Griffin and Lim [2][3]

developed an iterative least-squares error method for

estimating a real audio signal from a modified STFTM (that 

we abbreviate ‘G&L’). G&L generally reaches high quality 

construction after a large number of iterations. Slaney [4] 

developed techniques to reconstruct time -domain audio 

signals from cochle agrams and correlograms exploiting the 

G&L technique.

Based on G&L, the RTISI algorithm [1] was developed 

to invert spectrograms  in real-time. RTISI generates the 

initial phase estimation for a new frame from the partially-

constructed frame. With a better initial phase estimation, 

RTISI needs far fewer iterations than G&L to achieve 

acceptable quality.

RTISI also considers only the previous frames when 

estimating the phases for the current frame and immediately

“commits”  to those phases before considering the next frame.

Since it does not rely on information from future frames, it 

has the advantage of being suitable for real-time applications, 

unlike G&L. However, because it does not consider any 

future information, the quality of reconstruction quickly 

plateaus as the number of iterations is increased. Depending 

on the signal, generally after 20 to 50 iterations, the SNR of 

G&L exceeds that of RTISI.

We propose a revised RTISI algorithm that relies on 

information in a small number of future frames. We call this 

method Real-Time Iterative Spectrogram Inversion with

Look-Ahead (RTISI-LA). It leaves the current frame

“uncommitted”  until a number of future frames are

considered. By choosing the look-ahead length and the 

number of iterations appropriately, RTISI-LA can provide 

excellent SNR performance while still providing low-latency.

The rest of this  paper is organized as follows. In section 

2 we review related work including the G&L and the RTISI 

algorithms. In Section 3 we  present the details of the RTISI-

LA algorithm. In Section 4 we evaluate RTISI-LA and

compare  the results with RTISI and G&L. In Section 5 we

draw conclusions.

2. BACKGROUND

A discrete signal x(n) can be represented as a sequence of 

STFT’s as follows:
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where w is the analysis window, S is the analysis step size 

and m is the index of the frames of STFT’s. The STFT can be 

considered to be generated by sliding a window w across 
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the time domain signal with step size S.  From ( , )X mS ϖ  we 

can exactly reconstruct the time -domain signal x(n). However 

in many applications we need to recover the time-domain

from the magnitude spectrum ( , )X mS ϖ , or a modified

version '( , )X mS ϖ .

2.1. G&L algorithm

The structure of the G&L algorithm is illustrated in 

Figure 1. Starting with an initial estimate x0(n) of the original 

time-domain signal x(n),  the G&L algorithm iteratively

renews the estimate xi(n) at the ith iteration so that the 

STFTM of the new estimate is monotonically closer to the 

STFTM of the original signal x(n) in terms of the distance 

measure function )](),([ nxnxD i
M . The distance measure is 

defined as
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where ( , )X mS ϖ is the STFTM of original signal x(n) and 

( , )
i

X mS ϖ is the STFTM of the i
th
 estimate x

i
(n).

Figure 1. The Basic iterative process in G&L. The dashed square is 

the magnitude spectrum constrained transform (“M-constrained

transform”)

G&L uses the following function to update the estimate 

in each iteration,
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where X
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(mS, ϖ ) is the STFT of x

i
(n) with the magnitude 

constraint:
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By the magnitude constraint, X
^

i
(mS, ϖ ) has the same 

phase as ( , )iX mS ϖ and the same magnitude as ( , )X mS ϖ .

A scale d Hamming window w is used, with 75% overlap and

scaling such that the sum of the squares of the overlapping 

windows is always 1.   This simplifies the update function in 

Equation (3), as the denominator will be 1 for all n. In this 

paper we simply use w to refer to this modified Hamming 

window.

We will refer to the main part of Figure 1, shown in the 

dashed box, as the magnitude spectrum constrained

transform (M-constrained transform). In each iteration the

G&L algorithm concurrently applies the M-constrained

transform to all the frames and overlap-adds them to get a 

new estimate of x(n).

2.2. RTISI algorithm

In G&L, the phase estimate for a given frame is dependent 

on all future and all past frames in the original signal, so the

algorithm is inherently non real-time. RTISI is a variant of the 

G&L algorithm in which a given frame’s phase estimate is 

dependent only upon the current and previous frames of the 

spectrogram so that it can be used for real-time applications 

(where by definition the magnitude spectra of the future 

frames are unavailable).

RTISI is also considerably faster than G&L, thanks to 

better initial phase estimates. Instead of applying the M-

constrained transform on all the frames concurrently, RTISI 

performs the M-constrained transform on a frame -by-frame

basis. Before constructing frame m, RTISI uses the phase of 

the partial frame shown in Figure 2 as the initial phase and 

applies the M-constrained transform on the frame m alone. 

After each iteration, the constructed frame is overlap-added

with the partial frame and the phase of the summation is 

used as the input phase of the next M-constrained

transforms iteration. When frame m is generated, it is 

overlap-added with the partial frame and we get a new partial 

frame for frame m+1 and the process moves on.

Figure 2. An illustration of the partially reconstructed frames of 

signal y(n). Before frame m is estimated, there exists an overlap-

added result of the frames m-1, m-2, m-3 in the range of the frame 

m window. The solid line shows the time domain contour of the 

previously constructed signal and the dotted lines show the overlap-

added windows. S is the synthesis stepsize between two adjacent 

frames.

3. THE RTISI-LA ALGORITHM

In RTISI only the information from previous frames is used

when constructing frame m. Although RTISI generates high 

quality results with a small number of iterations, the lack of 

information from future frames prevents RTISI from further 
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performance improvement, even as the iteration number is 

increased. In this section we present RTISI with Look-Ahead

(RTISI-LA), a versatile algorithm which uses information 

from a small number of future frames before committing the 

current frame. 

Before the presentation of the structure , we first explain 

the Look-K-Ahead concept. In RTISI frame m is committed 

except for future frame overlap immediately after it is

generated by the iterative process. By contrast, in RTISI 

with Look-K-Ahead, after we generate the frame m, it is kept

uncommitted until the frame m+K is generated.

In Figure 3 the commitment of frame m is shown with K=3.

The position of frame m is shown in Figure 3(a) in shade. We

use a frame buffer (shown in Figure 3(b)) to hold the

committed frames overlapped with frame m, frame m  itself, 

and K future frames. We use a fixed 75% overlap rate 

between the adjacent frames in our system so the number of 

committed frames overlapped with frame m is 3.  In Figure 3 

the number of look ahead frames K is 3 but it can be any

non-negative integer (Note that if K=0, RTISI-LA is identical

to RTISI).

Figure 3. RTISI with Look-Ahead  after committing frame m. (a)

Constructed signal with the indication of the contour (solid line) and

overlapped windows (dashed line).  (b) The frames being processed

in the frame buffer. There are three kinds of frames in the buffer:

frames committed in the previous process; the newly- committed

frame m and the uncommitted frames. (c)The overlap-add result of 

the frames in the buffer. The shaded part is the “ overlap

completed” signal.

When frame m is initially generated, we leave it

uncommitted in the frame buffer and move forward until we 

reach the frame m+K. Then we use the partial frame to 

estimate the initial phase for frame m+K and concurrently 

apply the M-constrained transform to all the uncommitted 

frames in the frame buffer (frames m to m+K) using the 

corresponding magnitude spectra. We overlap-add all the 

frames in the frame buffer and obtain an overlap-add result, 

as shown in Figure 3(c). Note at that time frame m is still 

noted as uncommitted. We read in all the uncommitted 

frames (frame m to m+K) using the scaled Hamming window 

from the overlap-add result. Then we concurrently apply the 

M-constrained transform again. This process is repeated for 

a given number of iterations and frame m is noted to be 

committed. The committed position is moved one step

forward and set at the position of the first quarter of frame m.

In the above process, a committed frame in the frame 

buffer will not be changed. However it still plays its role in 

the frames with which it overlaps. As shown in Figure 3(c), 

only the “overlap completed”  frame (meaning the segment 

where all overlapping fames have been committed) is output.

Then we remove frame m-3 from the frame buffer and read in 

the partial frame m+K+1 and repeat the above iterative 

process for frame m to m+K+1.

The basic framework of the RTISI-LA is shown in Figure 

4.  In each step we concurrently apply the M-constrained

transform to all the uncommitted frames in the frame buffer 

and update the uncommitted frames by overlap-adding and 

window. This process is repeated until the maximum iteration 

number is  reached. Then the “overlap completed” signal is 

output and the commitment information in the frame buffer is 

revised.  Then we move one step forward and pursue the 

same process and go on until we reach the end of the given 

magnitude spectra.

 Figure 4. Framework of RTISI-LA algorithm. The dashed square 

is the M-constrained transform.

For the initial step there are no frames in the frame buffer 

so we start with zero phase for the first frame and then

pursue the same process as above and leave all the frames in 

the frame buffer uncommitted until we finish frame K, then 

we commit the first frame and output the first L/4 samples of 

the overlap-add result. 

The computational load is determined mainly by the total 

number of M-constrained transforms required per frame. For 

a given frame, the number of M-constrained transforms is 

the number of iterations times K+1 (i.e. the current frame plus 

the number of look-ahead frames).

4. EVALUATION

We evaluate the phase reconstruction result using a SNR 

function similar to the one in [5], comparing the spectrogram 

of the reconstructed signal to that of the target:
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where |Sw(f)| is the STFTM of the original signal,  |S
^

w(f)|  is the 

STFTM of the reconstructed signal, E is the total energy in 

the original signal and E
^

is the total energy in the

reconstructed signal, and summations over w and f are over 

all windows and frequencies respectively.

In RTISI-LA, the total iteration number for a frame is 

determined by the number of look-ahead frames and the 

given number of iterations in each step. With 75% overlap 

between adjacent frames, frame m+4 has no overlap with 

frame m so that the magnitude spectrum of frame m+4 has no

direct relationship with the magnitude spectrum of frame m.

In our experiments, looking more than 3 frames ahead gives

limited performance improvement, generally less than 1dB.

Figure 5 shows the SNR of the construction result of a 

male speech signal using G&L, RTISI and RTISI-LA with 

look-ahead number K=3. We can see that RTISI achieves 

better SNR than G&L in only a very few iterations but the 

SNR remains almost stable after that. RTISI-LA achieves

almost the same performance level as RTISI in 4 iterations 

and is substantially improved when the iteration number is 8

or 12. Like G&L, the SNR continuous to increase with the 

iteration number. (Note that the total iteration number of 

RTISI-LA can only be a multiple of K+1.)

Figure 5. SNR of the construction result of a male speech signal

using G&L, RTISI and RTISI-LA (with look-ahead number of 3)

respectively.

We evaluate the RTISI-LA with look-ahead number K=3

and G&L and RTISI algorithm on a test set containing 15

musical and speech signals. The average SNR is shown in 

Table 1. From the result we can see that under few iterations,

RTISI generates the best quality construction signal but 

stays stable with more iterations; under a greater number of 

iterations (>4), RTISI-LA generates better result than both of 

the other algorithms and the SNR keeps growing with the 

increase of iteration numbers. The performance of RTISI-LA

at 12 iterations is at the same level or even better than the 

result from G&L at 100 iterations.

Table 1. average SNR (in dB) of construction result 

M-constrained

Transforms per Frame

 G&L RTISI RTISI -LA

4 9.42 15.31 13.58

12 12.78 15.48 19.17

100 19.06 15.81 23.12

.

5. CONCLUSIONS

A versatile real-time magnitude spectrum inversion algorithm,

RTISI-LA, is presented.  Based on RTISI, the new algorithm 

utilizes the information of a number of future frames to 

achieve a better match between adjacent frames. With zero 

look-ahead frames, RTISI-LA is identical to the normal RTISI 

algorithm. The performance of RTISI-LA with a few

iterations is comparable with RTISI. Increasing iteration

improves performance even beyond that of G&L. RTISI-LA

inherits advantages from both the G&L algorithm and the

RTISI algorithm, although the error does not decrease

strictly monotonically as it dose for G&L.

Future work includes the quantification of the frame 

transition artifacts that are not reflected in spectral SNR 

measures for this family of signal reconstruction techniques. 

Further work is also necessary to improve the ability to 

capture and incorporate transient behavior from source 

signals in applications where such information is available.

6. REFERENCES

[1] G.T. Beauregard, X. Zhu, L. Wyse, “ An Efficient Algorithm for 

Real-Time Spectrogram Inversion”, Proc. of the 8th Int. Conference 

on Digital Audio Effects (DAFX-05), Madrid, Spain, Sep 2005.

[2] D.W. Griffin, J.S. Lim, “ Signal Estimation from Modified 

Short-Time Fourier Transform”, IEEE Transactions on Acoustics, 

Speech, and Signal Processing, vol.32, no. 2, Apr, 1984. 

[3] S.H. Nawab, T.F. Quatieri, J.S. Lim,  “ Signal Reconstruction

from Short-Time Fourier Transform Magnitude”, IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol.31, 

no. 4, Aug 1983.

[4] M. Slaney, D.Naar, R.F. Lyon, “ Auditory Model Inversion for 

Sound Separation” ,  IEEE International Conference on Acoustics,

Speech, and Signal Processing, vol. 2, pp. 77-80, Apr 1994.

[5] K. Achan, S.T. Roweis, B.J. Frey, “Probabilistic Inference of 

Speech Signals from Phaseless Sepctrograms” , Neural Information 

Processing Systems, pp. 1393-1400, 2003.

232


