REMOVING SHADOWS USING FLASH/NOFLASH IMAGE EDGES
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ABSTRACT

Flash/noflash pairs have been used for noise-reduction
in ambient-light images. But not explicitly studied is the
problem of shadows in the ambient images. While shad-
ows are lessened in a flash image, other problems arise, and
other shadows are produced. It is known that we can in fact
produce a flash-only (no ambient) image by subtracting the
two images, but the result is not as pleasant as the ambient
image, because of several artifacts due to the flash. Here,
we use the pure-flash image to detect the ambient shad-
ows. We argue that first going to a “spectrally sharpened”
color space, and then focusing on the difference in a log
domain of the flash image minus the ambient image, gives
a very simple feature space consisting of two components
— one in an illuminant-change 3-vector direction, and one
along the gray axis. This space provides excellent separa-
tion of the shadow and nonshadow areas. Inserting edges
from the flash image within the ambient-shadow region into
the ambient image edge map and inverting Poisson’s equa-
tion fills in the shadow. In this way, we arrive at an image
with the advantages of the ambient-only image — warmth,
no flash effects such as disturbing illumination dropoff with
distance, pixel saturation etc. — but no shadows.

1. INTRODUCTION

The combination of both ambient lighting plus a flash of
course produces quite different illumination at a surface
point than in an image taken under ambient lighting. For
clarity, let us refer to the first image as “Ambient” and the
second as “Both” (A and B). If we control the camera set-
tings, or at least know them, and assuming there are no sat-
urated pixels etc. [1], then (B — A) should yield an image as
if it were taken under the flash only (assuming one adjusts
overall pixel magnitudes to compensate for camera settings,
as in [2]). This is due to the fact that the B image consists
of reflected light from the ambient sources plus from the
flash. Lighting is from a different direction from the cam-
era flash than the effective direction for ambient lighting (at
each pixel). That is, there is a different visibility function
for the flash image, and this produces “flash-shadows”. But
since the pure-flash image, denoted “Flash” (F’), sees re-
flected light from only the flash illumination, image F' has
no ambient shadows — no shadows that derive from the
ambient, usually quite visible in both B as well as in A.

So we should be able to combine F' with A, the ambient
image, to be able to detect and hence eliminate the ambient-
shadows. But we found that a simple differencing scheme
does not work well: F' — A is large within the ambient-
shadow region, but this is confounded by the change in
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color of the two illuminants: ambient and flash illumina-
tions. Here, we re-cast the difference image F' — A to make
ambient-shadows easily detected. We go over to a color
space in which a simple, diagonal, model of illumination
change applies; then the difference of log images forms a
feature space with two very simple components: a constant
component along a 3-vector lighting-change direction, plus
a difference of log intensity/shading/visibility terms along
the gray (1,1,1) axis. A projection into this plane leaves
a large intensity difference between in-shadow pixels from
A and from F', compared to out-of-shadow pixels. Results
are seen to be very effective: ambient-shadows are simply
identified.

Work on flash/noflash pairs started with [3] and then
[2, 4, 5]. These works do not explicitly use the flash in-
formation for finding shadows (finding a “shadow matte”,
in graphics terms—cf. [6]). Instead, these efforts are aimed
at using the high-frequency information and detail from
the lower-noise flash+ambient image to reduce noise in the
ambient-only image, e.g. using a joint bilateral filter. But
the flash image by itself suffers from several drawbacks that
make using the ambient-only image appealing: illumina-
tion dropoff with distance (producing a “tunnel effect” [7]),
pixel saturation, and strong interreflections. The ambient
image is known to be warmer and more pleasing. Related
work has also been carried out on filling in information
in nighttime imagery using much brighter, daytime images
[8, 9], or using multiple flashes [10, 11], but again not for
eliminating ambient shadows.

Here we show that a simplified image model greatly aids
in finding the shadows in the ambient image: naively us-
ing the intensity cannot succeed, since dark pixels can arise
from many sources. But if we consider image formation, for
the flash and ambient images, we can find a color space rep-
resentation that separates the ambient-shadow feature vec-
tors from the out-of-shadow locations. Our approach to re-
moving ambient-shadows uses the high-quality gradient in-
formation from the flash image for the shadow regions and
retains the nonshadow regions in the ambient image. To
seamlessly combine these two parts, the image is recon-
structed by solving Poisson equations.

In §2, a simple image-formation model is described that
greatly simplifies the problem. Section 3 sets out how to
promote the simple model via a color-space transform, and
then examines the log-difference image for flash-noflash
pairs, showing that an illumination difference image can be
generated with no surface-color term confounding lighting
change. Section 4 recovers the shadow mask for the ambient
image, via projecting log-difference values onto the plane
they mostly occupy and then detecting large differences by
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a robust procedure. Then §5 shows how to copy flash infor-
mation over to the ambient image, inside the shadow mask,
and then re-integrate by combining gradients to guarantee
integrability. The result is an ambient image with much less
ambient shadowing.

2. IMAGE FORMATION

Let us restrict attention to Lambertian surfaces. Then at a
surface point, under orthography, lighting is added up into a
single effective light [12], taking into account visibility fac-
tors for each source. In general, the direction of the effective
light is different in each color band [13].

Consider the RGB R formed at a pixel « , for illumina-
tion E(\) lighting a surface with reflectance function S(\).
With 3 camera sensor sensitivity functions @ (), we have

Re = o / EOVSNQuNdN, k=R, G, B, (1)

where o is Lambertian shading — surface normal dotted
into illumination direction — along with visibility.

We wish to go to a model that explains the difference in
images formed under different lights by a simple diagonal
3 x 3 matrix. It has been found that this illuminant-change
model holds, and in fact the image-formation description
is greatly simplified, if we make assumptions of Planck-
ian lighting, Lambertian surfaces, and a narrowband cam-
era [14]. In this case, we find that a log-difference image
for flash F' and ambient A images has a very simple form.

With a Dirac delta camera sensor Qx(\) = qrd(A—Ag),
eq. (1) becomes simply

Rk g E()\k)S()\k)qk . (2)

Approximating lighting by Planck’s law, in Wien’s ap-
proximation:

ENT) ~ IkA e 7%, 3)

with constants k; and ks, temperature T' characterizes the
lighting color and I gives the overall light intensity. In this
approximation, from (2) the RGB color Ry, k = 1...3,is
simply given by

k
Re = o I kA% % SOk - )
Define the following short-hand notations:
K = log(Ikio); s = log(S(\); 5)

wy = log(k1\,°qr); er = —ka/ Mk
Taking logarithms, eq. (4) becomes
log Rp(x ) =wi + K(x ) + sp(x) + (1/T(x))er (6)

Here, the 3-vector wy depends on the camera, as does ey, in-
dependent of image location. The intensity and shading, en-
capsulated in K, do depend on location, as does the surface
term sy. Lighting temperature 7" depends on what lighting
the surface point sees and adds up. In shadows, both K
and T are different — the shadow region sees a different
color and intensity of light than does the nonshadowed area.
In this paper, we assume that lighting is effectively inde-
pendent of location @ in each separate region: shadow and
nonshadow.

Using these simplifying assumptions, we will use the
fact that the ambient shadow is removed from the pure-flash
image F' to find the ambient-shadows in A.
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3. NONNEGATIVE SPECTRAL SHARPENING AND
IMAGE DIFFERENCE MODEL

3.1. Spectral Sharpening

The simplified model (4) is more closely followed if Q ()
approximates a Dirac delta. We form an intermediate color
space in which the sensors are optimally combined so as
to form new colors that better approximate color change
induced by illuminant change via a diagonal model using
Spectral Sharpening [15]. This applies a 3 x 3 transforma-
tion matrix M to the sensors, or directly to colors, so as to
better enforce a diagonal model.

Since we mean to take logs, we need nonnegative colors
from the camera data (with zero values treated specially).
To do so, we carry out a “spectral sharpening with positiv-
ity” transform (cf. [16, 17]). Using calibration targets un-
der two different lights, We find M via a novel optimiza-
tion, new to this paper, consisting of a constrained form of
“database sharpening” [15], with hard constraints:

min

M.,D YM DM 'A — B)?

-MA <O
non-negative sensor result,

(N

with constraints

D
3.2. Log Image Difference

= diagonal matrix

From (6), we notice that a difference image in log space
space can remove both a camera term wy, as well as the sur-
face term sy (x ). Let us form a ratio image by a difference
image in log space: subtracting eq. (6) for two images, A
and F', we have
log R{}(xz ) — log RE (z ) @)
+ /T4 ) = 1/T" (2 )]ex
for the difference between log pixel values under light A and
light F', at pixel indexed by « . Notice that the surface term
is entirely removed, leaving a type of intrinsic illumination
difference image. In this image, shadowing will stand out.
The ratio image arises from: (i) the intensity difference
(with shading/visibility), proportional to the basic direction
u = 1/v/3(1,1,1)T; (ii) a term proportional to the camera-
dependent lighting-change 3-vector e;. Notice thateq. (8) is
pixel-wise: the two parts would be different inside a shadow,
if one is present, since the lighting color temperature would
be different there than in the rest of the image, as would the
intensities. For details, including plots showing that eq. (8)
actually obtains in real imagery, please see [18]. We shall
use image Fig. 1 to illustrate the method in the following.

(KA (z) — KF(x)]

4. SHADOW-MATTE ALGORITHM

To find ambient-shadows, we need to find a plane in which
most (non-shadow) pixels live, with basis vectors given by
the (1,1,1) direction u and the lighting-change direction
e ,asineq. (8).

It is easy to find this plane, using SVD. Then we can
best model the log-difference by projecting onto this plane:

d = V(logR”"—-1logRT) )

where V is the 2 x 3 pair of principal component vectors
in the plane: d is 2-dimensional. Projecting discards some
information, but mostly discards noise.

We found that most of the variation in log-difference
magnitude is along the u direction (in the sharpened color



space). Therefore we apprehend shadow formation as a
process that generates large values in the log difference be-
tween Flash and Ambient (i.e., the u direction), as well as
differences in lighting color (the e direction). To take both
into account we simply use the Euclidean magnitude in the
plane. Since the logarithm is monotonic, and we are seek-
ing large differences, this will find outlier values from both
causes.

We use a robust method [19] (Least Median of Squares—
LMS) to find flash-shadows and specularities from || F'||, us-
ing a 1D location mode-finder. The LMS gives outliers au-
tomatically, and these are shown in Fig. 2(a) and In general,
outliers will be either in flash-shadows, or in specularities,
with outliers on the dark side of the mode and specularities
on the bright side. We include both kinds of outliers in a
“flash-shadow/specularity”” mask since we wish to exclude
them both.

Then we derive a magnitude 7 in the plane as Z = ||d ||.
Again we use the LMS, and the resulting ambient-shadow
mask (excluding the flash-shadows) is shown in Fig. 2(b).

As an auxiliary step, we additionally produce a cleaner shadow

mask by applying a Mean-Shift segmentation [20] to the 7
image, before finding outliers.
5. SHADOW-FREE AMBIENT IMAGE RECOVERY

Finding the ambient-shadow mask takes us most of the way
toward recovery of a shadowless ambient image. To pro-
ceed, we first map flash-image pixels to pixels in the am-
bient image, inside the shadow mask. To do so, we first
regress on pixel values not in either the ambient shadow or
flash shadow/specularities, from F' to A. Then we use the
resulting 3 x 3 matrix T to take flash pixels over to am-
bient ones. Then a straightforward approach would join
the regressed F'(in ambient shadow) and A(out of ambient
shadow).

However, this does not entirely eliminate the ambient
shadows. This is because (i) the regression does not give
perfect color mapping from F'to A; and (ii) A has illumina-
tion discontinuities that do not usually exactly coincide with
the mask boundary. But we may note that edges are not
discontinuous in each image F' and A inside the ambient-
shadow mask. Therefore, to seamlessly join the two parts,
we can blend the image edges from F' and A by combin-
ing their gradient fields: if S is the shadow mask, then we
define a new field log C via

ViegC[S] = V(log F[S]T) (10)
Vieg C[-S] = V(log A[-S])

Taking another gradient and inverting Poisson’s equa-
tion to recover log C' will blend the two gradient fields.
We can simply use a Fourier transform on the entire im-
age to re-integrate, a very fast method, using homogeneous
Neumann boundary conditions. As well, in order to com-
bine the Ambient and Flash gradients such that integrabil-
ity is preserved, we project the combined set of edges onto
an integrable convex set in the Fourier domain, before re-
integrating via inverse Fourier transform [21, 22]. The re-
integrated ambient image for our example image is shown
in Fig. 2(c); the 3D plot of pixels in feature space shwon in
Fig. 2(d). Additional results are shown in [18].

Altogether, the algorithm for ambient-shadow removal
is as follows:

Algorithm:
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Find sharpening matrix M from camera calibration.

Transform to sharpened color space:

A'=M A;B* =M B, F* = B — A"

Form logs, and log-difference log F'* — log A*.

Find best 2D plane for log-difference feature: basis V' .

Project log-difference into 2D d : eq. (9).

Find flash-shadow/specularity mask Sp=
outliers LMS(||F'||).

Apply mean-shift filtering to ||d ||.

Find ambient-shadow mask S 4= outliers LMS(]|d ||).

Combine masks: S =S4 N (=SF).

Copy color from A into F, to set scale for flash image
edge map:

P =LS(F[-(SaUSFr)],A[-(Sa USF)]),
where LS is least-squares regression; then I’ = P F.

Dilate S.

Form combined log-image edge map log C' via eq. (10).

In each color channel, we effectively take another
derivative in the Fourier domain via a phase shift,
and then project onto an integrable edge
map whilst undoing the Laplacian.

The inverted Poisson equation is unique only up to an
additive constant, which we fix by regressing back to
the ambient image log A, in (=5).

Exponentiate to recover non-log image.

6. CONCLUSION

We present a method of removing shadows from ambient
images for ambient/ambient+flash pairs. The method relies
on determining an illumination-field image from the log-
difference of the pure flash and ambient images. This image
removes the surface-reflectance, yielding intrinsic illumina-
tion and shading information. In an ambient shadow region,
the difference between the two is large, from an intensity
difference or a lighting-color difference or both, so finding
the shadow area is straightforward. Copying flash-image in-
formation over to the ambient image, flash and ambient in-
formation is blended such that the resulting integrable edge
field generates a shadowless, ambient-lighting, result.
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Fig. 2. (a): Flash-shadow mask. (b): Shadow mask for am-
bient shadows. (c): Re-integrated image without ambient
or flash shadows. (d): Pixels identified as ambient-shadow
(red) and flash-shadow (black); the coordinate axes are also
shown, along with the perpendicular to the plane which the
data inhabit (green vector).



