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ABSTRACT 

In this paper, a high-level optimization methodology is applied 
for the implementation of the well-known Convolutional Face 
Finder (CFF) algorithm for real-time applications on cellular 
phone, such as teleconferencing, advanced user interfaces, 
pictures indexing and security access control. This face detector is 
based on a feature extraction and classification technique which 
consists in a pipeline of convolutions and subsampling operations. 

Design of embedded systems must find a good trade off 
between performance and code size due to the limited amount of 
resource available. We propose a methodology to cope with the 
main drawbacks of the CFF original implementation like floating-
point computation and memory allocation, to allow parallelism 
exploitation and perform algorithm optimizations. Results show 
that our embedded face detection system can accurately locate 
faces with less computational load and memory cost. It runs on a 
275MHz Starcore DSP at 9 QCIF images/s with state-of-the-art 
detection rates and very low false alarm rates. 

1. INTRODUCTION 

When embedding new services on mobile devices, one of the 
strongest constraints is the limited computational resources. Low 
memory capacities, low CPU frequency and lack of specialized 
hardware like floating point unit are some of the major differences 
between a PC and an embedded platform. Unfortunately, advanced 
algorithms are usually developed on PC without any 
implementation restriction in mind. Thus, porting application on 
power-constrained embedded systems is a challenging task and 
requires strong algorithmic, memory and software optimizations. 

Advanced user interface, security access control, model based 
video coding, image and video indexing are some of the 
applications that rely on face detection. In recent years, numerous 
approaches for face detection have been proposed. A survey was 
published by Yang et al. [1] in 2002. In this paper, face detection 
techniques are classified in three main categories:

• feature invariant approaches [2], 
• template matching methods [3], 
• appearance-based methods [4]. 

A recent technique that belongs to the third category, called 
Convolutional Face Finder (CFF) has been introduced by Garcia 
and Delakis [5] which leads to the best performance on standard 
face databases. The CFF is an image-based neural network 
approach that allows robust detection, in real world images, of 
multiple semi-frontal faces of variable size and appearance, rotated 

up to +/- 20 degrees in image plane and turned up to +/- 60 
degrees. 

Addressing both face detection performance and 
implementation on embedded system has been considered in recent 
years by Tang et al. [6] for cascade adaboost classifiers [7] on 
ARM based mobile phones. The Adaboost technique was also used 
in [8] for implementing a hybrid face detector on a TI DSP. 
Another way to achieve resource constrained implementation is to 
design dedicated hardware for face detection. In [9], the authors 
proposed an ASIC implementation of the face detector introduced 
by Rowley et al [10]. 

However, in real time embedded implementations one often 
has to trade off among high detection rates, fast run time and small 
code size. In most cases, the side effect of embedding a face 
detector is the reduction of the algorithm efficiency. We will show 
that we have achieved both efficiency and speed objectives (10 
images/s) with our CFF implementation. 

The remainder of the paper is organized as follows. An 
overview of the Convolutional Face Finder technique is given in 
Section 2. Section 3 presents the methodology used for embedding 
such an algorithm. Section 4 details this methodology on the CFF 
case study. Experimental results for DSP (Starcore SC140) and 
RISC (XScale) based platforms are provided in section 4. Finally, 
conclusions and perspectives are drawn in section 5. 

2. CFF ALGORITHM OVERVIEW

Fig.1. Convolutional Face Finder pipeline. 

The Convolutional Face Finder was presented in [5] and relies on 
Convolutional Neural Networks introduced and successfully used 
by LeCun and al. [11]. It consists in a pipeline of convolutions and 
subsampling operations (Fig. 1). This pipeline performs automatic 
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feature extraction in image areas of size 32x36, and classification
of the extracted features, in a single integrated scheme. In [5], the 
authors present both the training methodology to learn the 
coefficients using back propagation, and the face localization 
process when training has been completed. In this paper we will 
only consider the face localization process. Fig. 2 presents in detail 
the steps of this face localization process: 
• A coarse detection is first performed as follows. The CFF is 

applied on a pyramid of scaled versions of the original image 
(Fig. 2-1) in order to handle faces of different sizes: each scale 
produces a map of faces candidates (Fig. 2-2) which is fused 
back to the input image resolution and produce clusters of 
positives answers (Fig. 2-3). For each cluster a representative 
face is computed as the centroid of its candidate face centers and 
sizes weighted by their individual network responses (Fig. 2-4). 

• Then a fine detection takes those candidates as input and applies 
locally the CFF on a small pyramid around the face candidate 
center position. The volume of positive answers is considered to 
take the classification decision of face or non-face (Fig. 2-5). 
Finally, overlapping candidates are fused to remove multi 
detections of the same face.  

Fig. 2. The different steps of the process of face localization. 

3. PORTING CFF TO EMBEDDED PLATFORMS: 
MAIN ISSUES AND METHODOLOGY 

In order to implement complex algorithm on embedded target 
processor, compilers are the tools to optimize the instructions flow. 
In the last decade, many research activities have been carried out in 
instruction-flow optimizations [12] and optimizing compilers [13], 
and some have led to industrial products such as the Metrowerks 
compiler for SC140 [14]. However, compilers can only cope with 
the instructions flow optimization and parallelization. 

Even if these compilers avoid mostly any human assembly 
programming, many optimizations have to be done by manual 
high-level code-rewriting.  

Our approach is based on iterations of high-level code 
optimizations and profiling to focus first on the most CPU resource 
consuming functions. When dealing with an algorithm such as 
CFF, the first step towards an embedded implementation is to 
avoid floating point calculation. This step is done thanks to a 
fractional transformation in accordance with data dynamics and 

processor data paths. This also requires a strong verification of the 
accuracy of these transformations which can otherwise lead to 
incorrect results. The next steps of the methodology are iterations 
of a tri-optimization flow (code, memory and algorithm) controlled 
by an on-target profiling (fig. 3). 

Profiling tools depend on the target platform: for instance, we 
use the VTune software on Xscale based platform to profile the 
compiled code directly on target, and global timing information to 
evaluate the speed up factor after each optimization iteration. 

Fig. 3. Diagram of followed methodology. 

We will illustrate our methodology on the CFF 
implementation, which starting point was a floating point 
arithmetic version and required a memory allocation of 3.8 MBytes 
to process a QCIF format image (176x144 pixels). The reference 
complexity analysis of the floating point version of the CFF shows 
that it requires 3s to compute a single QCIF image on a 624MHz 
Xscale processor. Hereafter, we present in detail each step of this 
methodology and the achieved performance results.  

4. OPTIMIZING THE CFF ALGORITHM 

4.1. Fractional transformation 

The reference software of the CFF was entirely written using 
floating point arithmetic. Mobile embedded target platforms lack 
floating-point hardware accelerator for power consumption 
reasons. Floating-point computations are usually implemented by 
software, but these are high CPU consuming functions. The first 
step towards embedding the algorithm is to transform the floating 
point computations into fractional ones. Since one of our target 
platforms was the 16 bits DSP Starcore SC140, fractional Q15 
arithmetic [15] was required (Q31 arithmetic may be used when 
more precision is needed).  

The main advantage of the CFF algorithm is that the results of 
the subsampling layers S1 and S2 pass through a hyperbolic 
tangent function, thus reducing the risk for common issues of fixed 
point computations such as arithmetic dynamic expansion and 
saturation. A simple methodology was used to normalize and 
transform each stage coefficient in fixed-point arithmetic and 
compare the results with the floating point version. 
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The main constraint of this transformation was to keep the 
efficiency of the face detector. The benchmarking was done on 
different test sets of images, including the CMU Test Set (the most 
widely used data set in the literature). Table 1 gives the detection 
rates of the floating and fixed point versions for different 
configurations of the CFF (varying output threshold and minimum 
faces detection size).  

TABLE 1: results of CFF on different test sets for the floating 
and fixed point versions 

The comparison of the floating point and fixed point versions 
shows up no significant loss in efficiency, and detection rates are 
equivalent to the previously published ones in [5]. They are even 
slightly better on part of the selected test sets. What is especially 
noticeable about CFF efficiency is the low level of false alarms and 
even after the fractional transformation. 

4.2. Memory optimization 

Due to the computational redundancy in the CFF algorithm, the 
reference software was processing layer by layer on the whole 
image (or scaled versions of the original image). This configuration 
is not suitable for an embedded platform since even for small QCIF 
images, 3.8 MBytes were allocated (for instance, the targeted 
SC140 DSP platform embeds only 512kB of SRam). 

In order to reduce this memory allocation without increasing 
the required amount of computations, a study was made on the data 
dependency in the algorithm. Fig. 4a shows the amount of data 
needed in each layer in order to compute a single output of each 
neuron layer N1. This figure is similar to Fig.1 restricted to one 
feature map by layer. 

Fig. 4b illustrates the differential computation between two 
neighbouring outputs (south side) of neuron layer N1. Slashed 
(resp. unslashed) grey parts are unused (resp re-used) previously 
computed data, whereas dark rectangle are newly computed data. 

Since Fig. 4b shows that intermediate computation from 
previous line has to be kept as input of the layer C2 and N1, the 
maximum gain in terms of memory footprint is achieved for a line 
by line processing of the output of N1 layer. Thus, in the final 
implementation, in order to compute one output line of the layer 
N1, we use 7 input lines of this layer. These input lines can be 
computed line by line in layer S2 using two output lines of layer 
C2. These two output lines require four input lines for the layer 
C2. Two of these four output lines are common with the previously 

computed lines, and the two others require four output lines of the 
layer C1. To end with, these four output lines are computed using 
eight lines of the input image. 

Fig. 4. CFF data flow. a) amount of data needed in each layer, 
b) differential computation between two neighbouring outputs 

(south side). 
CFF algorithm analysis for the full image processing (resp. the 

line by line processing) shows that memory allocation is about 
10.25*W*H+… (resp. 66*W+…), W and H being the width and 
height of the input image. 

For a QCIF image the gain in memory footprint is about 21. 
Other memory allocation optimizations (e.g. on scaled image 
computation) have been made on the reference software leading to 
a memory footprint of 220kB compared to the 3.8 Mbytes of the 
original version. 

4.3. Code optimization: parallelism exploitation 

One of our target embedded platforms is a Starcore SC140 DSP 
which has 4 ALUs and Multiplier capabilities. This processor is 
able to load eight 16 bits-words and to compute 4 Multiplication-
accumulations (MACs) in one cycle. The main limitation to take 
advantage of this parallelism is that one needs to satisfy data's 
alignment constraints: the Move.4F instruction which loads four 
16bits-word data is only allowed for an eight bytes aligned pointer 
and can be generated automatically by the compiler by appropriate 
C code re-writing and alignment directive use. 

Let us analyse the first layer (C1) which is pointed out by the 
profiling tool as the most complex step of the CFF algorithm: each 
of the four feature maps of this layer consists in a convolution by a 
5x5 kernel. Without any parallelization one convolution requires 
25 data loads, 25 coefficient loads, 25 MACs instructions and one 
store instruction. Since the Starcore is able to compute four MACs 
in one cycle, the theoretical minimum cycle count for processing 
25 MACs (without load and store count) is [25/4] = 7 cycles. The 
Starcore is able to process two (single or multiple) load 
instructions by cycle (in parallel with the MACs instructions). 
Thus, without aligned loads instructions, one convolution would 
require at least [(25+25+1)/2] = 26 cycles. So, the main goal to 
optimize such a function is to reduce the number of load and store 
instructions by using the Move.4F instruction. 
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CMU 84,89 6 80,12 0 87,99 2 

CINEMA* 87,32 8 82,97 1 82,97 4 
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version 
WEB* 87,98 2 83,97 0 91,98 2 

CMU 86,75 4 81,37 0 88,20 3 

CINEMA* 88,41 6 82,25 3 85,14 9 
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point 

version 
WEB* 88,98 1 86,17 1 92,38 5 

* CINEMA and WEB are test sets of respectively 276 and 499 faces 
kindly provided by C.Garcia [5] 

287



However, the 5x5 convolution processing is done on any image of 
the pyramid whose width is not necessarily multiple of 4. Thus if 
the first top-left pixel in the image is 8 bytes aligned, the first pixel 
on the second line will probably not be aligned preventing from 
any use of  multiple load instruction on these data. 

The proposed solution in order to reduce the number of load 
instructions per convolution consists in factorizing the coefficients 
loads for several processing of the 5x5 convolution (multi-sample 
processing).  

Convolutions are done by 25 iterations on the whole block of 
pixels. At each iteration, groups of four multiplication 
accumulations with a single coefficient are done. This requires a 
temporal store and load of intermediate processing, but, since this 
intermediate matrix can be 8 bytes aligned, four intermediate 
computations can be loaded or saved in a single instruction. As a 
result, the amount of load and store instructions needed for this 
modified version is 25+37.5*S compared to the 51*S instructions 
required for the initial version (where S=(W-4)*(H-4)). 

So, when processing four output line of the layer C1 as 
depicted in the previous paragraph, the gain in terms of load/store 
instructions is 26.4 % for a QCIF image (W = 176, H = 8). 

Since the SC140 compiler achieves the best instruction flow 
parallelization, we get the same gain in term of number of cycles 
by convolution with this factorized version. 

This optimization may also be applied on processors using 
SIMD instructions such as WMMX instructions on Xscale 
embedded processor. The efficiency of this optimization on these 
processors has not been evaluated yet. 

4.4. Performance results 

Table 2 summarizes the speed up factor obtained on a QCIF video 
test sequence (120 first frames of the Mpeg Foreman sequence) 
after several others iterations of the optimization methodology. 

Furthermore, as depicted before, the memory footprint has 
been reduced from 3.8 MBytes to 220 kBytes by the memory 
optimization step. 

TABLE 2: CFF processing speed 

5. CONCLUSION AND PERSPECTIVES 

In this paper, we have presented the implementation of a state-of-
the-art face detector on two kinds of programmable embedded 
platforms. We have shown that both high detection rates and fast 
processing are achieved by applying our optimization flow 
methodology. Memory and code restructuring in conjunction with 
algorithm adaptation lead to significant improvement. Indeed, we 
obtain a speed-up factor of 14 on an Xscale PXA27x based 
platform, and video processing at 9 QCIF fr/s on a Starcore DSP. 
Efficiency is maintained high, with detection rate of 87 % on the 
CMU test set and only 4 false alarms. 

One of our final objectives is to provide an embedded face 
recognition system for biometrics applications. Usually, face-based 

identification systems need precise face detection but also fine 
facial feature localization. The first step depicted in this paper was 
the real time implementation of this face detector by software 
optimizations. The second step is to detect facial features, and we 
are now working on the implementation of a facial feature position 
extractor based on the same principles which is called C3F for 
Convolutional Face Feature Finder [16]. 

Furthermore, this study points out that the pipeline of 
convolutional and subsampling filters denotes high intrinsic and 
hidden parallelisms which will be exploited in future works with 
dedicated hardware implementation of CFF and C3F. 
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