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ABSTRACT 

Image retrieval has been widely used in many fields of science and 

engineering. The semantic concept of user interest is obtained by a 

learning process. Traditional techniques often assume the images 

are from certain distribution and all images from the same class are 

visually similar. Our study shows that those assumptions are 

inappropriate in many cases. To solve this problem we model the 

images as lying on non-linear subspaces embedded in the high 

dimensional space. We also find that a set of low-level feature 

subspaces may correspond to one high-level semantic concept. 

Unlike most unsupervised subspace learning techniques, we 

propose to intelligently use the semantic similarity and 

dissimilarity information provided by user in discovering the 

discriminant structure of image subspaces in respect to 

classification. Theoretical study shows that our methods converge 

to Linear Discriminant Analysis if certain criteria are met. 

Extensive experiments are designed to evaluate the performance of 

our method and compare it to other state-of-the-art techniques. The 

results show the superior performance of our proposed method. 

1. INTRODUCTION 

With the development of digital imaging technology, more and 

more information is conveyed in the form of digital images or 

video clips. The rich context of an image makes the understanding 

of its semantic meaning very difficult.  

Image retrieval aims at automatically retrieving the images of 

user interest from large databases based on their visual content. 

The user interest could be summarized by a high-level semantic 

concept while the visual content of the images could be 

represented by low-level features such as color, texture and shape. 

Machine learning techniques are used to bridge the gap between 

the semantic concept and image features. During this process the 

user gives semantic information on a few sample images by 

labeling them. Then a statistical model of the images with same 

semantic meaning could be estimated based on the labeled training 

set.

Because the dimensionality of feature space is usually very 

high, ranging from tens to hundreds, direct model estimation in the 

high dimensional feature space can fail easily. Dimension 

reduction is used to map the original space to a low dimensional 

space. The concept learning is conducted in that projected space. 

During that process a projection that facilitates the learning is 

difficult to obtain when few samples are used for training purposes. 

However, in most image retrieval applications labeling the images 

requires human effort involved and is computational inefficient. 

Thus the small training set problem along with the high 

dimensionality problem become two major challenges for image 

retrieval. 

Traditional techniques, such as Principal Component Analysis 

[1] and Linear Discriminant Analysis [2], assume image data are 

from certain distribution model (in most cases a Gaussian Mixture). 

Recently more and more attention has been drawn on modeling the 

data as lying on a subspace which is embedded in high 

dimensional space. The intrinsic structure of the subspace could be 

discovered and preserved in a low dimensional space by using 

subspace learning techniques. Because the global structure of the 

subspaces could be inferred from the local neighborhood 

information, no assumption on the data distribution is needed. 

2. SEMANTIC CLASS AND GEOMETRIC 

SUBCLASS IN IMAGE RETRIEVAL 

2.1. Semantic Class and Geometric Subclass 

As we mentioned in the introduction, in image retrieval the images 

are often represented by feature vectors, which correspond to 

visual content such as color, texture and shape. Although the 

subject of a single image could be complex and ambiguous, a set 

of images that share certain visual similarity could correspond to a 

geometric subclass in the feature space. The set of images 

therefore may correspond to a simple semantic subject, e.g. apple 

or banana. In that case capturing the structure of that geometric 

subclass is sufficient to learn the semantic subject of the images.  

For a particular image retrieval application, the user’s interest, 

a high-level semantic concept, is the prime target to learn by a 

classifier. Although in some cases the learning is conducted on the 

visually similar images, we find the human judgment on the 

semantic subject of an image may be from non-visual knowledge 

and consequently the one-to-one relation between geometric 

subclass and semantic class doesn’t exist. For instance, one may be 

interested in fruit images which contain images of bananas and 

apples. Visually those images may be quite different and share 

little geometric correlation between data from the two subclasses. 

The fact that one semantic class may contain multiple geometric 

subclasses introduces a more challenging problem. If we are given 

enough training samples, a novel classifier is expected to learn that 

the user is interested in images from certain subclasses and, 

without supervision, generalize the query concept.  

2.2. Similarity and Dissimilarity 

The visual resemblance between images can be defined as 

similarity and dissimilarity in the geometric space. However for an 

image query the user’s judgment on the semantic similarity and 

dissimilarity between images may not be solely based the 

geometric information. Because of the many-to-one relation 

2931­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006



between geometric subclass and semantic class, we conclude two 

guidelines for intelligent use of the semantic information user 

provides: 

1) It is safe to claim two images are visually dissimilar if the 

user labels them as semantically irrelevant to each other because 

the user must make the judgment based on some visual difference 

between the images. 

2) If the user assigns two images to same semantic category, it 

doesn’t suggest that they must be visually similar because that 

decision may be based on some non-visual prior knowledge. 

From the above two observations we can find the semantic 

dissimilarity information is more important in learning complex 

concepts while the semantic similarity may not correspond to the 

visual similarity. It is desirable to use both semantic similarity and 

dissimilarity information for self-discovery of the geometric 

subclasses.  

2.3. Related Work in Subspace Learning 

To facilitate data exploration, researchers have been trying to 

capture the structure of a correlated data group by mapping the 

original high-dimensional space to a low-dimensional one. Recent 

advances in subspace learning have drawn more and more 

attention. Instead of assuming data are from a particular 

distribution, they could be modeled as lying on a non-linear low-

dimensional subspace embedded in the high-dimensional space. 

The global structure of such a subspace could be inferred by 

gathering local information of every neighborhood on that 

subspace. Local Linear Embedding (LLE) [3] assumes the local 

patch can be approximated by a hyperplane and the linear 

correlation between local neighbors should be preserved in the 

projected space. ISOMAP [4] proposes to use geodesic distance to 

substitute Euclidean distance to reflect the non-linear structure of 

the subspace. Locality Preserving Projection (LPP) [5] treats the 

neighborhood as a cluster and tries to find an optimal projection 

that makes neighbor data close to each other. Those subspace 

learning techniques are unsupervised while supervised or semi-

supervised approaches are further proposed because they are more 

desirable in image retrieval. Supervised LLE (S-LLE) [6] 

incorporate user provided information by tuning a parameter to

control the influence of semantic labeling on the geometric 

structure learnt. Incremental Semi-supervised LPP (I-LPP) [7] tries 

to use user feedback as a semantic relation to add to or override the 

geometric neighbor relation. All these techniques try to cluster 

data but ignoring the relation between semantic concept and 

geometric subspace as discussed in Section 2.1. Furthermore, none 

of them use dissimilarity information to make samples from 

different semantic classes separated in the projected space. Based 

on the above discussion, we propose a novel subspace discovery 

technique that could use semantic information intelligently. 

3. SUBSPACE DISCOVERY FOR CLASSIFICATION 

3.1. Subspace Discovery for Classification 

As we indicate in Section 2, there is a gap between geometric 

structure and semantic similarity. To bridge this gap, we propose a 

novel supervised method called subspace-discovery for 

classification (SDC). It could makes use of user provided semantic 

information and captures the structure of each geometric subspace. 

A brief introduction of the technique is as follows: 

Because the semantic dissimilarity between images must arise 

from visual differences, those images from different semantic 

classes should be as separated as possible in the new space. The 

pair-wise Semantic Dissimilarity information between two samples 

xi and xj can be stored in a matrix SD as in equation (1). It uses 

supervised information to refine the geometric structure discovery. 

otherwise0

classsemanticsame,if1 ji xx

ij
SD                     (1) 

Instead of assuming that each semantic class contains only one 

subspace, we try to discover the global structure of the data by 

preserving locality information in a projected space. The local 

geometric information is first captured by constructing a K Nearest 

Neighbor graph: 

otherwise0

oodneighbourhsother'achwithin,if1 ji e
GeoSimij
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    (2) 

Considering that some visually similar, that is, geometrically 

close, image data may be from semantically different classes, we 

incorporate the semantic information into the geometric structure 

discovered and get a new Geometric-Semantic Similarity Matrix: 

ijijij
GeoSimANDSDGSSim                                 (3) 

Because each neighborhood may contain a different number of 

samples, the Geometric-Semantic Similarity Matrix is normalized 

for each row. 

i
ijijij GSSimGSSimGSSim /                               (4) 

In the above matrix, the semantic dissimilarity is considered 

for classification purpose and geometric neighborhood information, 

along with semantic similarity information, is used to discover 

image subspaces.  

Suppose a projection W map any sample xi in original space to 

a corresponding sample yi in a lower dimension space. 

                             ii W xy                                                  (5) 

Obviously in the local neighborhood, the mean can be 

estimated as: 

j
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And the projected mean can be calculated as follows: 
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Intuitively we propose a new cost function for finding the 

optimal projection: 
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In the above cost function the numerator corresponds to the 

separation between neighbors from different semantic classes. The 

different semantic classes are more far away from each other when 

the numerator gets larger. Note that we don’t use distances 

between class means for numerator as in LDA because there may 

be more than one subclass clusters in one semantic class. The 

denominator describes the preserving of global structure by 

clustering the samples within the same neighbor, which is 

important for data modeling and classification in the projected 

space. Note that by using GSSim, only samples that are both 

semantic and geometric similar are clustered together unlike in 

traditional approaches where all the samples from same semantic 
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classes are forced together. That may result in better discovery of 

the global class structure because all subclasses’ structure is 

preserved. By maximizing the ratio of the numerator and 

denominator we can find an optimal projection that makes the 

subspaces from different semantic classes more separate from each 

other and the samples within same neighborhood clustered 

together.

We denote semantic Dissimilarity Scatter Matrix as follows: 

                      
ji

ij

T

jijiDiss SDmmmmS
,

))((                        (9) 

The Geometric-Semantic Similarity Scatter Matrix can be 

defined as: 
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Consequently the optimal projection can be obtained by 

solving the following optimization problem: 
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The optimal projection W consists of the eigenvectors 

corresponding to the largest eigenvalues of 1

SimGSDiss SS .

Compared to other subspace learning techniques such as LLE, 

LPP and their supervised version, our method is novel in that: i) 

we consider not only preserving the subspaces’ structure after the 

projection but also separating samples from different classes. For a 

classification task the latter obviously can’t be neglected. ii) Our 

method uses the semantic similarity and dissimilarity intelligently 

to refine the local geometric structure while the full supervised S-

LLE and I-LPP tries to use semantic similarity information to 

substitute geometric structure. As we analyze in Section 2 when 

one semantic class corresponds to multiple feature subspaces, the 

semantic similarity can’t guarantee similarity in low-level features. 

Thus clustering all samples from the same semantic class is 

unnecessary and easy to fail. However that problem doesn’t exist 

for our method because our method tries to capture the structure of 

all subspaces from all classes. This is accomplished by clustering 

only samples within a geometric local neighborhood from the same 

class and consequently no effort will be put to cluster samples 

from different subspaces.  

3.2. Relation to LDA 

Linear discriminant analysis has been widely used in image 

retrieval applications. It assumes that one subspace from a 

Gaussian distribution corresponds to one semantic concept. That 

can be generalized as a special case of our proposed method when 

the neighborhood is defined as large enough to cover all images 

from the same semantic class. If we have totally N training 

samples, that condition can be satisfied when NK .

While the Semantic Dissimilarity matrix Diss is the same, 

geometric neighborhood information is omitted in that  

            imagesofpairanyfor1ijGeoSim                          (12) 

Since 
ijijij GeoSimANDDissGSSim , we have 
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Instead of using semantic information together with geometric 

information for subspace discovery, here the semantic information 

overrides the geometric information. Consequently for each 

sample, its neighborhood mean mi becomes its class mean c

iLm )( .
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We denote the label of sample xi as )(iL  and the number of 

samples in class l as ln . 

Thus the Dissimilarity Scatter Matrix converges to Between-

Class Scatter Matrix. It can be proven that (note: we have to omit 

the proof here due to the limited space). 

                       DissDiss SNS 2                                              (15) 

Similarly we can prove WSimGS SS
2

1
(for the same reason, we 

omit the proof here), when the geometric neighborhood is 

overridden by semantic class.  

Thus we have 
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From the above equation we can conclude that, LDA could be 

a special case of a subspace discovery method where each class is 

assumed to contain only one subspace. According to our 

discussion in Section 2, that assumption is inappropriate in many 

cases. Compared to LDA, our method could handle more complex 

situation where multiple subclasses exist in one semantic class. 

Besides, our SDC can capture the structure of the subspaces better 

because geometric neighborhoods can be preserved while only 

semantic similarity is considered in LDA. Thus our proposed 

method could model the real scenario more accurately. 

4. EXPERIMENTS AND ANALYSIS

4.1. Test on Benchmark Datasets 

The first experiment is designed to evaluate the performance of our 

proposed method on some benchmark datasets. Different setting of 

neighborhood size (K) is tested to find the optimal setting. The 

benchmark datasets tested are the heart and breast-cancer (B.C.) 

datasets from UCI repository. In all the experiments we run the 

program 20 times to get average performance. 

Figure 1. Test Neighborhood size on Benchmark Dataset 

From the result in above table we can find the size of 

neighborhood does have an influence on the classification 

performance. However we find it is stable between 10 to 30 and 

the smallest error rates lie in that range. This may be used as 

guideline for the future settings. It is clear that our proposed 

method performs better than LDA in most settings and will 

converge to LDA when the neighborhood size gets larger and 

contains all the training samples. 
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4.2. Comparison to State-of-the-Art 

In this experiment, we test the performance of our proposed 

method and compare it to the state-of-the-art techniques discussed 

in Section 2.3: LDA, LLE, S-LLE, LPP and I-LPP. ISOMAP is not 

tested because it’s computational expensive to calculate the global 

geodesic distance. K is set to 20 for our proposed method 

according to the previous experiment. Best performance for S-LLE 

is listed by searching for optimal  from 0 to 1 with step size 0.01. 

For simplicity, nearest neighbor classifier is used in the projected 

space.

We first apply those methods on face identification on three 

popular databases: Harvard, ATT and UMIST facial image 

databases [8]. Harvard Face Image Database consists of grayscale 

images of 10 persons. Each person has totally 66 images which 

were classified into 10 sets. The ATT Face Image Database 

consists of 400 images for 10 persons. The UMIST Face Database 

consists of 564 images of 20 people. In all three experiments 67% 

of the images are randomly picked up as the training sample and 

the rest is used for testing. 

Figure 2. Comparison to the State-of-the-Art 

From the results in Figure 2 we find that our proposed method 

performs best on all three databases. Because the facial image of 

one person could be well modeled by a subspace, this problem of 

face identification can be considered as a learning semantic 

concept from multiple image subspaces. 

4.3. Test on Image Classification 

In the final experiment, we test our proposed method and the state-

of-the-art techniques on a real image classification application. 

The dataset used is the COREL image database. It contains color 

images which are roughly categorized into 10 classes. For 

simplicity we randomly pick up two classes of images to conduct 

the training and testing. Only supervised techniques are compared 

since they are more suitable for classification.  The performance of 

these techniques is illustrated in Precision-Recall graph. 

Figure 3. Precision-Recall graph for test on COREL database 

From Figure 3 we can conclude that the new technique 

outperforms other state-of-the-art techniques in this experiment. 

Considering the rich background of images in COREL database, it 

shows that our method not only discovers the subspaces within 

semantic class but also capture the most discriminant features of 

the images to facilitate classification. 

5. CONCLUSIONS AND FUTURE WORK 

The mapping between semantic concept and geometric subclasses 

is the main object of the learning process in image retrieval. 

Traditional approaches assume image data are from certain 

distribution model and correspond to one semantic class. Due to 

the rich visual content of images, it is more appropriate to model 

the images as lying on a non-linear subspace embedded in the 

feature space. Besides, we find that user’s semantic interest may 

arise from non-visual knowledge and consequently one semantic 

class may contain multiple image subspaces which have different 

geometric structures. In that sense dissimilarity relation between 

images is more important for classification purpose while the 

geometric structure of the subspaces can only be captured by self-

discovery method. Based on above analysis we propose a new 

technique that infers the global structure of subspaces from 

neighborhood information and intelligently use semantic 

information to find the optimal projection that facilitates 

classification. Theoretical analysis shows that our proposed 

method converges to well-known LDA when one semantic class 

corresponds to one geometric subspace.  Experiments are 

conducted on benchmark datasets and two image retrieval 

applications. Our proposed method outperforms other state-of-the-

art techniques in these tests.  

This research work will be continued in two directions: 1) 

selecting unlabeled data that is useful for classification based on 

subspace structure and 2) connecting local neighborhood into 

meaningful cluster to avoid tuning parameter K.
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