
MODEL AND USAGE OF A CORE MODULE FOR

AXMEDIS/MPEG-21 CONTENT MANIPULATION TOOLS

P. Bellini, P. Nesi, L. Ortimini, D. Rogai, A. Vallotti

DSI-DISIT, Department of Systems and Informatics, University of Florence

Via S. Marta, 3 - 50139 Florence, Italy

nesi@dsi.unifi.it, http://www.disit.dsi.unifi.it

ABSTRACT

Despite the relevance of the MPEG-21 standard, little has

been done about the modeling of authoring tools and players

for the production/consumption of MPEG-21 digital objects.

The design and implementation of MPEG-21 tools present

several critical points to be solved at the architectural level,

so as to ensure security and provide a suitable support and

the requested flexibility for manipulating any kind of digital

resource, according to the spirit of MPEG-21 standard. This

paper presents the AXMEDIS core model and components

for MPEG-21 content authoring tools and players. The

proposed architecture provides both data manipulation

flexibility and a high level of security when digital resources

are used. The same architecture can be used to develop any

other MPEG-21 DI tools. The architecture presented has

been adopted to build authoring and player tools developed

for the AXMEDIS IST FP6 R&D European Commission

project (http://www.axmedis.org).

1. INTRODUCTION

The state of the art of multimedia content modeling,

packaging, protection and distribution is based on

file/stream formats. At present, there is a large number of

content formats ranging from basic digital resources

(documents, video, images, audio, multimedia, etc.) to

integrated content packages such as MPEG-21 [1] and

WEDELMUSIC [2], TV-AnyTime, etc. These integrated

models wrap any kind of digital resource in a container with

the related information (e.g., content metadata), thus making

them ready for delivery (streaming or download), even in

some protected form. Those solutions are enabling a large

range of business and transaction models, supporting them

with DRM (Digital Rights Management).

The typical scenario which synthesizes the packaged

content lifecycle is shown in Fig.1. The content author has

to embed raw digital resources in order to produce a

package for the distribution (e.g., WEDELMUSIC,

OpenSky package, MPEG-21, photo collection of cameras,

etc.). He can decide to protect the produced package and to

grant the access to some consumers with a specific license.

Once the content has reached the consumer, the player gets

access to the license and if authorized, some keys are

received to unpack the content and render it according to

what is allowed by the license.

The following issues arise in the above scenario:

modeling and defining the content package, which has to

be known from both authoring and player tools, not

restricted to any specific content and metadata formats;

handling the content package, manipulating the structure

(i.e., content organization) in an easy way and the digital

resources together with their metadata for both

rendering/modifying (authoring, editing);

accessing to content under DRM rules, preventing from

unauthorized manipulation of packaged content, while

providing transparent means to get the allowed

resources;

Figure 1 – Scenario on content package and its usage

Other software engineering requirements have to be

considered in order to implement reusable components to be

used in different tools. The produced tools have to be easily

extendable in order to accept quickly new types/models of

content and/or metadata. The player can be hosted by

different HW/SW platforms, therefore portability of content

manipulation software is a key issue. Since a subset of

functionalities are needed in both authoring and playing

tools, a common core module should be designed addressing

package model, manipulation and access control.

MPEG-21 Digital Item [3], DI, has been selected as the

underlying packaging model; indeed MPEG-21 provides a

unique multimedia framework to address packaging,

distribution, adaptation, protection and licensing.

The implementation of a MPEG-21 core module for

authoring/playing is a very complex task since it has several

5771424403677/06/$20.00 ©2006 IEEE ICME 2006

critical points. In fact, this module has to assure at the same

time (i) easy and fast access at the modeled information and

resources; (ii) high security level enforcing the DRM on the

digital resources usage. These requirements lead the design

towards opposite directions (accessibility vs. security),

therefore it is difficult to solve easily both aspects within a

unique solution.

This paper reports the architecture of a core module to

develop MPEG-21 compliant tools which cover the above

mentioned problems. The latter are not solved at MPEG

standard level, since such standard only specifies the

formats for packages and metadata, but it defines neither

tool design nor system architecture for distribution,

production and consumption of digital goods. The proposed

architecture is currently used for implementing the

AXMEDIS tools.

In the AXMEDIS project, an additional abstraction has

been conceived to simplify for the author content packaging,

since MPEG-21 has a very flexible structure providing a

high granularity of content organization. AXMEDIS Data

Model is also presented. This model is compliant with

MPEG-21 and satisfies the requirements gathered by the

partners of the AXMEDIS Consortium. AXMEDIS defines

a specific structure for the DIs, i.e., how digital resources

should be nested, etc. It also defines relevant metadata

which have to be included in a DI, without restricting the

usage of any additional metadata. An MPEG-21 DI which

fulfils the AXMEDIS Data Model is called AXMEDIS

Object.

The paper is organized as follows. Section 2 gives a

short overview of MPEG-21. An overview of the

AXMEDIS Object Manager (AXOM) is reported in section

3. Conclusions are drawn in Section 4.

2. MPEG-21 FEATURES

MPEG-21 is mainly focused on the standardization of

the DRM aspects and packaging. In particular, MPEG-21

scope is mainly related with the content and metadata

formats leaving completely undefined system architectures,

business models, etc. The standardization process of MPEG-

21 is still under completion; at present some parts are

mature, whereas others are under evolution. Two parts of the

standard are the most relevant to this work: “Digital Item

Declaration” (DID) and “Intellectual Property Management

and Protection” (IPMP). As to the capability of the

authorizing access to content, other parts of the standard

have to be considered: Rights Expression Language (REL)

and Right Data Dictionary (RDD).

The DID defines how DIs have to be represented. A DI

is a structured digital object and it is the fundamental unit of

distribution and transaction within the MPEG-21

framework. A DI is a package for digital resources and

related metadata. A DI is represented as an XML document

which fulfils the DI Declaration Language (DIDL) schema.

DIDL provides placeholders for metadata that can contain

any other XML format. In particular, some metadata of

general purpose (such as identification, rights description,

format description, etc.) have been considered relevant and

included in the standard.

IPMP provides the means to include protected content

inside a DI. Every DIDL element (i.e., XML element) can

be replaced by a protected version: an IPMP element. The

latter contains the original DIDL element in a protected

form together with the required information to perform un-

protection (i.e., applied protection tools, etc.) [4].

Some other parts of the standard define XML schemas

to represent important metadata. They are not relevant to the

work presented in this paper, and yet they have been taken

into account, for the sake of completeness, during core

module design in order to guarantee extensibility for a later

inclusion of such parts.

3. AXMEDIS OBJECT MANAGER

The core module, which addresses MPEG-21 and other

additional requirements, as already stated, has been

developed and is called AXMEDIS Object Manager

(AXOM) [5]. The AXOM is currently used to develop all

the tools of the AXMEDIS architecture which handle DIs

and, in particular, with AXMEDIS Objects. Moreover, the

AXOM could be used to develop any other application

which manages MPEG-21 DIs.

In order to build a reusable technology, the

responsibility separation is a mandatory requirement. For

such reasons, the AXOM has been decomposed in five parts

as shown in Fig.2. They are better analyzed as follows.

Figure 2 – AXOM layering

One of the most import tasks of the AXOM is to

provide the means to create a trusted environment. That is, it

has to guarantee that the system is controllable w.r.t. the

user actions on any AXMEDIS Object. Different actions on

the model should require different grants (i.e.,

authorizations). Actions can target the content structure, the

resources and the metadata. Therefore a unique flow has

been conceived in order to handle verification of any action

behavior performed on the content.

At the outer level a controller class called

AxObjectManager has been realized and the Command

pattern [6] has been applied to its design. It is an

intermediate layer between the application views and the

object models (i.e., the working document). An application

578

view does not manipulate the object model (AXMEDIS or

MPEG-21), while it issues commands to the controller class

and the latter is in charge of performing the requested

actions on the model. An extensible architecture for

manipulating AXMEDIS objects or MPEG-21 DIs (from

now on simply referred as “content”) under DRM

enforcement has been realized, allowing the creation of new

commands. The controller exposes governed functionalities

for:

creating new content;

opening existing content by indicating a URI;

browsing content structure;

accessing metadata and resources embedded or referred

to by the content;

manipulating content structure, metadata and resources.

Each conceivable command has been realized as a class

which models execution behavior and required grants to

allow such execution. In that way, the controller is able to

handle generically the request received by the user

respecting governance. Please note that the controller is not

in charge of verifying the grants, since it has been designed

to provide hooks, thus enforcing easily control mechanisms.

By using model encapsulation, avoiding direct

manipulation from the view, a good level of security has

been achieved in terms of robustness against developer’s

malicious content handling. This feature cannot be

guaranteed if the view obtains at any time references to

content elements in the model. For such reasons, views are

not allowed to target content elements by using pointers.

Command execution may return content elements

information, providing a clone. This avoid accessing via

pointer at the memory of the whole object model. When

digital resources have to be accessed (e.g., for their

rendering) the chain of unprotection tool is activated, thus

allowing to establish a direct stream from the encapsulated

resource and the application view. Command targets have to

be indicated using logical references. In that way, common

cracking activities like memory dump are not useful to

access content data without a proper authorization.

Since the AXOM manipulates MPEG-21 DIs, the

MPEG-21 Object Model has been developed (see Fig.3).

This model consists of a set of class hierarchies, which

represent the standardized XML elements [3]. The design

has been focused on the DIDL hierarchy, as the latter is the

infrastructure the other hierarchies lean upon. Nevertheless,

the model has been designed to be expandable and flexible,

thus allowing to cope with standard metadata.

The main class is MPEG21Element and provides model

expandability. It exposes the basic functions to browse the

model and to manipulate it at a structural level. Moreover,

MPEG21Element declares virtual functions which allow

identifying classes on the basis of the namespace and the

name of the corresponding XML element. Some sub-

hierarchies of MPEG21Element have been already

produced. For example the one which origins from

DIDLElement, to represent DIDL XML elements and the

one which origins from IPMPElement to represent protected

elements standardized in IPMP.

MPEG21ElementCollection has been designed to

provide a common mechanism to manage child elements.

Since each XML element has structural constraints (as

specified in the related XML schema, e.g., of ordering), the

MPEG21ElementCollection provides functions to manage

children, while respecting the given constraints. This class is

used by MPEG21Element to keep references to its children.

The MPEG-21 Object Model provides some listener

interface, i.e., interfaces which have to be implemented by

those classes requesting to be warned every time something

has changed in the DI. In particular, the following events

have been provided: structure event (remove, add, etc.);

property event (attribute value changed); and content event

(text content changed)

Figure 3 – part of AXMEDIS/MPEG-21 object models

Since AXMEDIS Objects have specific features w.r.t. a

generic DIs, AXMEDIS Object Model has been created.

AXMEDIS Data Model main features are as follows: it has

a recursive structure, i.e., an AXMEDIS Object could

contain others AXMEDIS Objects; it could embed or refer

to one or more digital resources; each object has a unique

identifier called AXOID; each object contains Dublin Core

metadata; each object contains business-level metadata

called AXMEDIS Info; any MPEG-7 metadata; etc.

The AXMEDIS Object Model is based on the MPEG-

21 Object Model providing simpler and specific interfaces

to manage AXMEDIS Objects. In fact, the AXMEDIS

Object Model can also be seen as a “simplified view” of the

MPEG-21 Object Model, while it remains structurally a full

MPEG-21 implementation. The AXMEDIS Object Model is

composed by the following classes:

AxMetadata represents generic metadata. It mainly

provides methods to get access to the related XML.

AxInfo, AxDublinCore and AXOID are subclasses of it

and they represent those metadata which are mandatory

in AXMEDIS. Each class provides specific methods to

manage the related metadata;

AxResource represents a digital resource;

AxObject class represents an AXMEDIS Object

therefore it could contain other AxObject, AxResource

579

and AxMetadata, it has to contain an AxInfo, an

AxDublinCore and an AXOID.

All these classes are in charge of synchronizing the

underlying MPEG-21 Object Model every time any action is

made on the AXMEDIS Object Model.

While the AXMEDIS Object Model is based on the

MPEG-21 model, the latter is independent from the former

and it could be reused in other applications. However, this

choice brings forth a hard problem which is the

synchronization of the AXMEDIS Object Model w.r.t.

modification made on the MPEG-21 Object Model. This

problem has been solved according to an event-driven

approach. That is, by exploiting the listener interfaces

provided by the MPEG-21 Object Model, an AXMEDIS

Object is able to modify coherently its structure w.r.t. the

underlying DI. If the DI (e.g., after a modification) does not

match the AXMEDIS Data Model, the AXMEDIS Object

will try to fit the DI as much as possible, discarding those

parts which are not complaint to the model.

The MPEG-21 Loader is in charge of reading the

XML document representing a DI and building the

corresponding object model. Since the MPEG-21 Object

Model is extendable, the MPEG-21 Loader has to be

extendable as well. Moreover, since the same object model

should be used on several types of device (from a personal

computer to a pocket pc, etc.), the SAX2 interface as

defined by the W3C has been selected for loading. In fact,

this approach allows exploiting a larger set of existing XML

parsers (also for resource constrained devices), and it

ensures a less time and memory consuming process than the

DOM approach. SAX2 parsing procedure produces a

straightforward sequence of events, that notifies the

occurrence of XML entities (i.e. elements, characters, etc.),

which has to be managed by a unique handler. When

loading a DI containing an extendable and heterogeneous set

of elements, a general handler cannot cope with all the

situations that can arise. In fact, the insertion of a single

MPEG-21 element in the object model could end up

handling more than one event. To solve this problem, the

object loading has been realized thanks to the collaboration

of different loader classes: a loader, that finds an MPEG-21

element having a loading model which is not directly

manageable, can delegate a suitable loader to handle it. An

abstract base class for loading, which realizes the underlying

collaboration mechanisms, has been developed. Concrete

classes have been implemented, achieving different loading

behaviors. The loading process leans on a factory

mechanism. Abstract Factory pattern [6] has been used in

conjunction with Factory Method pattern [6] in order to

create elements given a namespace and an element name. In

particular elements of MPEG-21 hierarchies, such as DIDL,

IPMP DIDL, can be created.

The MPEG-21 Saver has the responsibility of writing a

correct XML document on the basis of the current object

model. As to the MPEG-21 Loader, it has to be extendable.

Hence, a hierarchical approach, like that of factories, has

been adopted. Specific classes (writers) are in charge of

knowing how all the elements of the related namespace

should be represented in XML. The stream concept has been

exploited to model the destination of the writing process,

allowing producing DIs to files, strings, network messages,

etc. The writing process is generically managed by

orchestrating all the namespace-dependant writers. It is

worthwhile pointing out that the writers do not have to write

elements directly in XML syntax. In order to prevent them

from such triviality, XMLWriter class has been developed.

This class exposes high level methods which allow

representing elements in XML syntax. In that way, the real

XML writing is hidden and transparent for the element

writers.

4. CONCLUSIONS

A flexible and extendable model to manage MPEG-21 DIs,

while satisfying all the requirements of AXMEDIS tools

have been designed and implemented in C++ for providing

several OS portability (also considering differences among

compilers). It includes classes and infrastructure to load and

save DIs. This solution can be extended according to the

model flexibility and at the same time it assures the needed

protection level. An additional view of the DIs has been

provided considering relevant business metadata and a

simplified content structure. This has allowed a simpler

interaction with the object model. Finally, the AXMEDIS

Object Manager architecture has been realized allowing

embedding control mechanisms for DRM enforcement. To

retrieve additional details on the presented work, please

refer to public reports and deliverables of the AXMEDIS

project [7]. The validation process has consisted in

exploiting the produced core module in AXMEDIS Editor

(authoring tool) and in the AXMEDIS Players.

5. ACKNOWLEDGMENTS

The authors would like to thank all the AXMEDIS project

partners for their contribution and collaboration. A specific

acknowledgment to the EC IST FP6 for partially funding the

AXMEDIS project.

6. REFERENCES

[1] L. Chiariglione, MPEG Group, “The MPEG Home Page”,

www.chiariglione.org/mpeg.

[2] P. Bellini, J. Barthelemy, I. Bruno, P. Nesi, M. Spinu,

“Multimedia Music Sharing among Mediateques, Archives

and Distribution to their attendees”, Journal on Applied

Artificial Intelligence,Vol.17, N.8-9, pp.773-796, 2003.

[3] MPEG Group, “Introducing MPEG-21 DID”,

www.chiariglione.org/mpeg/technologies/mp21-did/

[4] MPEG Group, “Introducing MPEG-21 IPMP Components”,

www.chiariglione.org/mpeg/technologies/mp21-ipmp/

[5] AXMEDIS DE2.1.1A “User Requirements”,
www.axmedis.org/documenti/view_documenti.php?doc_id=1062

[6] E. Gamma, R. Helm, R. Johnson, J.Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley, 1995.

[7] AXMEDIS DE3.1.2A “Framework and Tools Specifications”,
www.axmedis.org/documenti/view_documenti.php?doc_id=1379

580

