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ABSTRACT 

This paper proposed an objective video quality metric designed 

for automatically assessing the perceived quality of digitally 

compressed multimedia videos using H.264 video compression.  

The rationale in proposing perceptual-based metric is because 

traditional measure, peak signal-to-noise ratio (PSNR), has been 

found to correlate poorly with subjective quality ratings, 

particularly at much lower bit rates.  In this paper, computational 

models have been applied to emulate human visual perception 

based on a combination of local and global modulating factors.  

The proposed video quality metric has been tested on CIF and 

QCIF video sequences compressed using H.264 video 

compression technique at various bit rates (24-384 Kbps) and 

frame rates (7.5-30Hz).  Performance of the proposed metric 

with respect to subjective scores will be reported and a 

comparison with PSNR and also the video structural similarity 

method (being one of the best video quality metric for high bit 

rate videos recently reported in the literature) will also be 

provided in this paper.   

1. INTRODUCTION 

Visual quality (or distortion) evaluation plays an important and 

determinative role in shaping most algorithms for image/video 

manipulations, visual quality control within an encoder, and 

distortion assessment for decoded signal.  Since human eyes are 

the end receiver of most decoded images/videos, it is desirable to 

develop visual quality metrics that correlate better with human’s 

visual perception than the conventional PSNR measure, which 

has been found to correlate poorly with subjective quality ratings 

[3].   

For better prediction of the quality for decoded visual signal, a 

number of approaches have been tried to model the temporal, 

spatial and masking characteristics of human vision [7, 9, 14, 17, 

18], to evaluate common coding artefacts [5, 19], and also to 

combine these two paradigms [13, 20].  However, the evaluation 

so far has been concentrated in TV types of signal (e.g., [14]).  

Characteristics of human vision have also been modelled for 

image and video compression [2, 4]).   

Although the literature contains large number of perceptual-

based video quality metrics, none of these have demonstrated 

their use for videos compressed with low bit rates, small frame 

size (e.g. QCIF video format), and low frame rates.  However, 

there are numerous published works [7, 17, 13, 19, 20, 16, 18] 

(including those in VQEG [14]) that have been designed for TV-

sized videos at much higher bit rates and full TV frame rates.  In 

[16], a method known as video structural similarity (VSSIM) 

method has been demonstrated to perform better than the best 

method reported in VQEG [14] for TV-sized videos.  

There will be increasingly more applications and services of 

mobile visual signals, particularly with the migration of mobile 

services from 2G to 3G that is able to provide video 

streaming/transmission/reception and mobile video conferencing, 

and therefore this creates the need for measuring/monitoring the 

quality of video coded at low bit rates and frame rates, 

particularly by the content service providers during the creation 

of the digital content to be archived and streamed.  Exploration 

of objective video quality metrics for such “multimedia (MM)” 

videos is currently in progress in VQEG [15].   

In the rest of this paper, Section 2 presents a description of the 

proposed perceptual video quality metric, Section 3 presents the 

results, while the last section concludes this paper.   

2. PROPOSED PERCEPTUAL QUALITY METRIC 

2.1. Perceptual Video Quality Metric 

The overall objective video rating for a colour video sequence, Q,

is given by a weighted averaging of the objective video quality 

rating for each colour’s qj(t), for j=1,…,n, where n is the 

maximum number of colour components:  
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where j denotes the weighting for each colour components, N is 

the total number of frames in the original video sequence, 

rft ffNN  is the total number of frames in the coded 

video sequence, fr is the frame rate at which the video is being 

coded, ff is the full frame rate of the original video sequence, and 

qj(t) is the objective video quality rating for colour component of 

each frame:  

)().().()( ,, tFtFtDtq jRFjBIjj

where D is the distortion-invisibility (derived from spatial-

textural, colour and temporal maskings), FBF is the block-

fidelity, and FRF is the content richness fidelity.  The latter two 

terms are global measures that modulate the final distortion-

invisibility value to give the video quality measure for each 

frame.  These global measures are being introduced because it 

has been observed that the pictorial quality perceived by human 

visual system is also affected by the overall general impression 

of the viewed video stream on humans.  In addition, recent 

studies have shown that human visual system awards higher 

response to more salient image locations and features [6].   
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2.2. Distortion-Invisibility 

The distortion-invisibility feature measures the average amount 

of distortion that may be visible at each pixel with respect to a 

visibility threshold.  The distortion-invisibility measure, D(t), for 

each frame t of the video is given by:  
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),,( tyxT is the visibility threshold at a particular pixel location 

(x,y) and time interval t, W and H are width and height of the 

video frame respectively, 1 and 2 are included to prevent 

possible division by zero in the equation.  Also,  
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where s is the soft-criterion to avoid clipping of the difference 

data near the visibility threshold T, and d(x,y,t) is the difference 

between a frame in the test video Id and the reference video Io at 

the same pixel location (x,y) and time t and is defined as:  
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The visibility threshold T is given by:  
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The visibility threshold T(x,y,t) provides an indication of the 

maximum allowable distortions at a particular pixel in the image 

frame which will still not be visible to human eyes.  Here, 

Ml(x,y,t), Ms(x,y,t) and Mt(x,y,t) can be regarded as effects due to 

colour masking, spatial-textural masking, and temporal masking 

respectively at a particular pixel located at position (x,y) in the 

image frame at time interval t in the video sequence, while Cls is 

a constant term which accounts for the overlapping effect in 

masking.  Masking is a very important visual phenomenon which 

explains why similar artefacts are disturbing in certain regions of 

an image frame while they are hardly noticeable in other regions.   

The temporal masking Mt attempts to emulate the effect of 

human vision’s characteristic of being able to accept higher 

video-frame distortion due to larger temporal changes:  
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where df(x,y,t) is the inter-frame difference at a particular pixel 

location (x,y) in time t between a current frame Io(x,y,t) and a 

previous coded frame Io(x,y,t-ff/fr) and is mathematically 

expressed as:  

),,(),,(),,( rfoof fftyxItyxItyxd

Here, fr is the frame rate at which the video has been 

compressed, ff is the full frame rate of the original sequence, fs is 

a scaling factor, and Tmd is the profile for all possible inter-frame 

colour difference used [11].   

The colour masking Ml [11] attempts to emulate the effect of 

human vision’s characteristic of being able to accept higher 

video-frame distortion when the background colour is above or 

below a certain mid-level threshold.   

The spatial-textural masking Ms attempts to emulate the effect of 

human vision’s characteristic of being able to accept higher 

video-frame distortion when the particular point has richer 

texture or spatial profile:  
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Here, 1, 2, 3, and 4 are constants used to determine the exact 

profile of the spatial-textural masking.   

In the spatial-textural masking, m(x,y,t) is the weighted average 

colour gk(x,y) in four different orientations (weighted by weight 

values w1 and w2) and it attempts to capture the textural-masking 

characteristic of the small local region centred on pixel (x,y,t)

and can be defined as:  
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The different weightings (w1 and w2) given to the horizontal and 

vertical directions and the diagonal directions are for taking into 

consideration the difference in sensitivity of the human visual 

system to different spatial orientations.   

Also, gk(x,y,t) is the average colour around a pixel located at 

position (x,y) of a frame in the original reference video sequence 

at time interval t and is computed by convolving a 7x7 mask, Gk,

with this particular frame in the original reference video 

sequence:
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The four 7x7 masks, Gk, for k={1,2,3,4}, are four differently 

oriented gradient masks used to capture the strength of the 

gradients around a pixel located at position (x,y,t).   

Here, b(x,y,t) is the average background colour around a pixel 

located at position (x,y) of a frame in the original reference video 

sequence at time interval t and is computed by convolving a 7x7 

low-pass filter mask, B, with this particular frame in the original 

reference video sequence:  
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In addition, W(x,y,t) is an edge-adaptive weight of the pixel at 

location (x,y) of a frame in the original reference video sequence 

at time interval t, and it attempts to reduce the spatial-textural 

masking at edge locations because artefacts that are found on 

essential edge locations tend to reduce the visual quality of the 

image frame.  Previous research findings have reported that edge 

information is found to be of primary importance in visual 

perception [12, 8].  Edge is directly related to the image content 

that demarcates object boundaries, surface crease, and other 

important visual events.  Distortion at an edge is easier to be 

noticed than that in other textured regions because edge structure 

attracts more visual attention from human visual system [8].  

Thus, for more accurate visibility threshold estimation, spatial-

textural masking in edge and non-edge regions has to be 

distinguished, as adopted here.   

2.3. Block-Fidelity 

The block-fidelity feature measures the amount of distortion at 

block-boundaries in the test video when compared to the original 

reference (undistorted) video.  The blocking effect is one of the 
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significant coding artefacts that often occur in video 

compression.  The block-fidelity measure for each individual 

frame of the video is defined as:  
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where the subscript o refers to the original video sequence, d

refers to the test video sequence, fBF is a constant, and:  
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),,( tyxI  denotes the colour value of the input image frame I at 

pixel location (x,y) and time interval t, H is the height of the 

image, W is the width of the image, ],1[ Wx , ],1[ Hy ,

],1[ Nt , and N is the total number of frames in the video 

sequence.  )(tBv  and tyxd v ,,  can be computed in a similar way 

except in the y-direction.   

2.4. Content Richness Fidelity 

The content richness fidelity feature measures the fidelity of the 

richness of test video’s content when compared to the reference 

video.  This feature closely correlates with human perceptual 

response which tends to assign better subjective ratings to more 

lively and colourful images.   

The image content richness fidelity feature for each individual 

frame of time interval t of the video can be defined as:  
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Here, i is the colour value, N(i) is the number of occurrence of i

in the image frame, p(i) is the probability or relative frequency 

of i, and fRF is a constant.   

3. PERFORMANCE OF PROPOSED METRIC 

3.1. Test Conditions and Subjective Test Method 

Ninety test video sequences are generated by subjecting 12 

different original undistorted CIF and QCIF video sequences 

(“Container”, “Coast Guard”, “Japan League”, “Foreman”, 

“News”, and “Tempete”) to H.264 video compression with 

different bit rates (from 24 kbps to 384 kbps) and frame rates 

(from 7.5Hz to 30Hz).  The bit rates under test are much lower 

than those used in [14] after the image size factor has been offset.  

Each of the video sequence consists of 250 frames.   

The subjective video quality tests of the test video sequences 

have been carried out as the tests conducted in [1], using 

Double-Stimulus Impairment Scale variant II (DSIS-II) 

subjective test method and performed by 20 subjects.  The 

decoded sequences with frame rate lower than 30 fps are 

displayed with repeated frames on the 30 Hz display device.   

3.2. Performance 

Performance is measured by comparing the metric output Q with 

the subjective rating of subjective tests between the original and 

distorted sequences.  Two performance measures have been used 

for comparison here (as in [14]): (1) Pearson correlation 

coefficient (rp), and (2) Spearman rank-order correlation 

coefficient (rs).  In the case of ideal match between a metric’s 

outputs and subjective ratings, rp = 1 and rs = 1. 

Pearson correlation, which measures the prediction accuracy, is 

defined as:  
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where q  and MOS  are means of q and MOS, and k is the index 

for the video under test.  Spearman rank-order correlation, which 

measures the prediction monotonicity, is defined as:  
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where
k

 is the rank of qk and 
k

 is the rank of MOSk in the 

ordered data series, and  and  are the respective midranks.  

Table 1 shows the results of the proposed metric with respect to 

PSNR.  The upper bound (UB) and lower bound (LB) of Pearson 

correlation were obtained with a confidence interval of 95%.  

Figure 1 shows the scatterplot of subjective ratings versus the 

PSNR values, Figure 2 shows the scatterplot of subjective ratings 

versus the video quality ratings estimated using our proposed 

metric, while Figure 3 shows the scatterplot of subjective ratings 

versus the VSSIM output.  In these two figures, the middle solid 

line portrays the logistic fit using the 4-parameter cubic 

polynomial [14], while the upper dotted curve and the lower 

dotted curve portray the upper bound and lower bound 

respectively obtained with a confidence interval of 95%.   

From Table 1 and Figure 1, 2, and 3, it can be seen that the 

proposed video quality metric performs much better than the 

PSNR.  Our proposed method also out-performs the VSSIM 

method.  However, this is not surprising as it should be noted 

that VSSIM method is not designed for low bit rate videos.   

rp rp UB rp LB rs

PSNR 0.701 0.793 0.578 0.676

Proposed metric 0.916 0.944 0.875 0.920

VSSIM 0.593 0.713 0.440 0.599

Table 1: Performance of proposed video quality metric, VSSIM 

method, and PSNR 

Figure 1: Scatterplot of subjective ratings vs PSNRs 
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Figure 2: Scatterplot of subjective ratings vs proposed metric’s 

output 

Figure 3: Scatterplot of subjective ratings vs VSSIM’s outputs 

5. CONCLUSION 

This paper describes an objective perceptual video quality metric 

to automatically assess the perceived quality of a stream of video 

images compressed using H.264 video compression.  The 

proposed method attempts to emulate human visual perception 

by introducing computational models based on block-fidelity, 

content richness fidelity, spatial-textural, colour, and temporal 

maskings.  This method has been tested on H.264 digitally coded 

CIF and QCIF video sequences (at 24~384 Kbps and 7.5~30Hz) 

and shown to achieve significantly better correlation with 

subjective viewing results when compared to the PSNR and the 

video structural similarity (VSSIM) measure (being one of the 

best perceptual video quality metric (for high bit rate videos) that 

has been recently reported in the literature).  Such an objective 

video quality metric will be extremely useful as it can replace 

the use of performance measure such as the traditionally used 

PSNR which has been found to correlate poorly with subjective 

quality ratings and also subjective tests which is not only time-

consuming but also tedious and expensive to perform.   
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