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ABSTRACT

In this paper we present a clustering-based method for representing

semantic concepts on multimodal low-level feature spaces and study

the evaluation of the goodness of such models with entropy-based

methods. As different semantic concepts in video are most accu-

rately represented with different features and modalities, we utilize

the relative model-wise confidence values of the feature extraction

techniques in weighting them automatically. The method also pro-

vides a natural way of measuring the similarity of different concepts

in a multimedia lexicon. The experiments of the paper are conducted

using the development set of the TRECVID 2005 corpus together

with a common annotation for 39 semantic concepts.

1. INTRODUCTION

The predominant approach to producing large-scale semantic con-

cept models for multimedia data is to treat the problem as a generic

learning problem in which training data is used to learn models of

different concepts over low-level feature distributions. The set of

semantic concepts covered by such models generally form part of a

larger ontology and are built independently of each other. This ap-

proach is scalable which is a requirement as a comprehensive mul-

timedia lexicon needs to have models for hundreds or thousands of

concepts. However the definition of which semantic features are to

be modeled tends to be done in terms of information science prin-

ciples and irrespective of the discriminative power of the semantic

concepts. This means that the set of concepts in an ontology may be

appealing from an ontological perspective but may contain concepts

which have little difference in their discriminative power or there

may be large ‘gaps’ in the resulting overall concept space.

For building concept models, one popular approach is to use dis-

criminative approaches such as support vector machines to classify

between positive and negative examples of a certain concept [1]. An

alternative is to take a generative approach in which the probability

density function of a semantic concept is estimated based on exist-

ing training data. In this paper, we follow the latter approach and

use global low-level features extracted from the video data, audio

track, and keyframe for video shot representation. We study how

multimedia concept models built over a clustering method can be

interpreted in terms of probability distributions and how the good-

ness of such models can be assessed with entropy-based methods

used in [2]. This approach can also be used for other image or video

representations, e.g. latent variable models of local appearance de-

scriptors [3]. The entropy of a certain feature vector’s distribution is

a measure of how uniformly the used feature distributes the concept

over the clusters [4]. We make the assumption that a good model is
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such that the distribution is heavily concentrated on only a few clus-

ters, resulting in a low value of entropy. In addition, the similarity

of two distributions can be used to measure the overlap of the cor-

responding concepts. This enables us to produce a similarity matrix

for all concepts in an ontology in order to study the inter-concept

relations in the lexicon and help us determine the goodness of the

overall set of concepts. Inter-concept interaction has been previously

studied e.g. in a factor graph framework [5].

The shape of the distribution of a semantic concept over a low-

level feature space mapped on a set of clusters depends on factors

like the distribution of the original data in the very-high-dimensional

pattern space, the feature extraction technique in use, the overall

shape of the training set after it has been mapped to the feature

space, and the distribution of the studied concept relative to the over-

all shape of the feature vector distribution. If the feature extraction

stage works properly, semantically similar patterns will be mapped

in the feature space nearer to each other than semantically dissimilar

ones. In the most advantageous situation, the pattern classes might

even match clusters in the feature space, i.e. there would exist a one-

to-one correspondence between feature vector clusters and pattern

classes. With real-world data, this situation is, however, exceedingly

rare and the task becomes to measure how well the concept is con-

centrated in a small cluster subset.

2. CLUSTER ENTROPY AND PERPLEXITY

Given a set of k cluster centroids, we can in theory calculate the a

priori probability of each cluster being the best match for any vector

x of the feature space. This is possible if the probability density

function (pdf) p(x) is known. The a priori probability of cluster i is

Pi = P (x ∈ Vi) =

Z
Vi

p(x) dx , (1)

where Vi is its surrounding Voronoi region. With discrete data, we

replace the continuous pdf with a discrete probability histogram.

Without danger of confusion, the probability can still be denoted

as Pi:

Pi = P (x ∈ Vi) =
#{ j | xj ∈ Vi }

N
, (2)

where #{·} stands for the cardinality of a set, and N is the size of

the training data set whose members are xj , j = 0, 1, . . . , N − 1.

Considering a concept Cm instead of all training data, the probability

histogram will be

P m
i = P (x ∈ Vi | x ∈ Cm) =

#{ j | xj ∈ Vi,xj ∈ Cm }
#{ j | xj ∈ Cm } . (3)

A simple and commonly used measure for the randomness of a sym-

bol distribution is entropy. In our case, the cluster indices for the
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vectors of the training set play the role of symbols. The entropy H
of a distribution P = (P0, P1, . . . , Pk−1) is

H(P ) = −
k−1X
i=0

Pi log Pi , (4)

where k is the number symbols in the alphabet of the stochastic in-

formation source. Pi is the probability of cluster i being the correct

one for an input vector, as defined before. Usually logarithm base of

two is used.

If we assume that each of the k clusters is equally probable as the

correct one for an input vector, we get the theoretical maximum for

the entropy of a clustering Hmax∗ = log k. In the discrete case, the

above definition for the maximum entropy to hold assumes that N is

divisible by k. In general this is not the case but the produced error is

insignificant with sufficient amount of data, i.e. if N � k. This can

generally be assumed when studying the whole database since the

overall aim of clustering is to reduce computational requirements of

the retrieval algorithm. With a concept having only a small number

of examples available the difference may, however, be considerable

so instead of Hmax∗ , we calculate the empirical entropy maximum,

Hmax, for each concept by spreading its distribution over the k clus-

ters as uniformly as possible and using Eq. (4).

Instead of using entropy directly, often a more illustrative mea-

sure is perplexity PPL = 2H , commonly utilized e.g. in speech

recognition. Perplexity can be considered as the weighted number

of equal choices for a random variable; i.e. in this setting, the aver-

age number of equivalent clusters that have to be considered given

the distribution. Thus, if entropy had its theoretical maximum value

Hmax∗ , the perplexity of a clustering would equal the total num-

ber of clusters, PPLmax∗ = k. A suitable performance indicator

for feature extraction and the associated clustering methods can be

formed by the ratio of perplexity and its maximum value, denoted

here as normalized perplexity

PPL =
PPL

PPLmax
=

2H

2Hmax
, (5)

which is non-negative and ≤ 1 in all cases. In general it can be

assumed that clustering distributes the input vectors roughly evenly

over the clusters and the normalized perplexity of the whole data

should thus be near unity. On the other hand, images with semantic

similarity should be mapped to a small cluster subset, provided that

the feature extraction and clustering methods have been favorable to

that specific concept. In this case, PPL should be � 1.

A straightforward application of PPL is use it as a weight of

the corresponding distribution in feature fusion. Different multime-

dia concepts are best represented using multiple features and com-

bining their outputs. A small value of PPL corresponds to a well-

concentrated distribution, so the relative weight of the corresponding

feature should be increased. For example using softmax scaling on

the inverse of PPL, the weight of the ith feature becomes

wi =
exp(1/PPLi)P
j exp(1/PPLj)

. (6)

3. INTER-CONCEPT SIMILARITY

When considering the multiple concepts in a lexicon, an interesting

question is the similarity between two concepts. Continuing with

the information-theoretic approach, a natural measure of two con-

cepts’ similarity is their mutual information. Let us denote by P m

and P n the probability distributions of concepts Cm and Cn. As

entropy measures the randomness of a distribution, mutual informa-

tion I(P m, P n) can be used for studying the interplay between two

distributions

I(P m, P n) =

k−1X
i=0

k−1X
j=0

P mn
ij log

P mn
ij

P m
i P n

j

, (7)

where P mn is the estimated joint probability of the two concepts.

Using mutual information as a measure of similarity for different

feature extraction methods was examined in [4].

However, when using mutual information in estimating inter-

concept similarities, sparse data can be a problem. In order to obtain

an accurate enough model of a concept, k has to be relatively large,

resulting in a sparse joint probability matrix P mn unless we have a

lot of training data. Therefore, we take a different approach and use

a bin-to-bin histogram distance measure in estimating the concept

similarities. A number of such measures are available, including

intersection, Euclidean distance, χ2-statistic, and Kullback-Leibler

divergence. In this paper, we use Jeffrey divergence [6]

dJD(P m, P n) =

k−1X
i=0

„
P m

i log
P m

i

P̂i

+ P n
i log

P n
i

P̂i

«
, (8)

where P̂ = (P m+P n)/2 is the mean distribution, as it is symmetric

and numerically stable with empirical distributions.

4. EXPERIMENTS

In the following experiments, we use the development set of the

TRECVID 2005 [7] corpus consisting of about 80 hours of TV news

recorded in November 2004. After automatic shot boundary detec-

tion [8], the data set contains 43 907 shots. A joint effort to the

TRECVID participants was organized to annotate the whole devel-

opment set for 39 semantic concepts developed in the ARDA/NRRC

workshop on Large Scale Ontology for Multimedia (LSCOM), listed

in Table 1. For more detailed descriptions of the concepts and their

manual annotation see [7] and [9]. Most of the development set was

annotated twice, so we adopted a rule that a shot is considered rele-

vant if either one of the annotations had marked it so.

As low-level features, we used two video features (MPEG-7

Motion Activity (MA) and temporal color moments (CM)), three

MPEG-7 image descriptors calculated from the main shot keyframe

(Color Layout (CL), Edge Histogram (EH), and Homogeneous Tex-

ture (HT)), and one audio feature (Mel-scaled cepstral coefficient

(CE)). For more details on these, see [10]. We used the Self-Orga-

nizing Map (SOM) [11] as the clustering method with k = 256
(16×16 map units) for all features. This was purely for convenience

as we used the same clustering runs in [10], and any hard clustering

method would be applicable. In fact, since the SOM algorithm is a

trade-off between clustering and preserving topology, common clus-

tering algorithms such as k-means often perform slightly better than

the SOM when map topology is ignored [2].

4.1. Normalized perplexity

The lowest and highest PPL values of the six features for the 39

LSCOM concepts are listed in Table 1. Examining these we can

see that on concepts boat/ship, desert, maps, snow, and animal, dis-

tributions of the best features are most concentrated. On the other

hand, concepts with the most uniformly distributed best clusterings

are person, face, outdoor, walking/running, and building. Overall,
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concept rel. size PPL feat. PPL feat.

airplane 0.008 0.20 EH 0.46 MA

animal 0.009 0.19 CM 0.46 MA

boat/ship 0.006 0.14 CM 0.38 MA

building 0.073 0.64 CM 0.84 CE

bus 0.003 0.49 CM 0.60 EH

car 0.067 0.58 CM 0.82 MA

charts 0.009 0.23 CM 0.49 CE

computer/tv screen 0.043 0.22 EH 0.54 CE

corporate leader 0.024 0.47 MA 0.65 CE

court 0.003 0.26 CL 0.49 MA

crowd 0.101 0.48 EH 0.80 CE

desert 0.006 0.16 EH 0.36 CE

entertainment 0.115 0.51 CE 0.84 MA

explosion/fire 0.010 0.29 CM 0.57 MA

face 0.632 0.81 MA 0.95 CE

flag us 0.007 0.20 EH 0.44 CE

government leader 0.079 0.59 EH 0.77 CE

maps 0.019 0.16 HT 0.38 CE

meeting 0.041 0.37 MA 0.60 CE

military 0.036 0.42 CM 0.77 MA

mountain 0.013 0.22 EH 0.52 MA

natural disaster 0.006 0.22 CM 0.32 MA

office 0.014 0.41 CM 0.51 CL

outdoor 0.329 0.74 CM 0.92 CE

people marching 0.019 0.26 EH 0.55 CE

person 0.671 0.84 MA 0.96 CE

police/security 0.007 0.32 CM 0.41 EH

prisoner 0.002 0.41 CL 0.70 MA

road 0.064 0.56 CM 0.83 CE

sky 0.085 0.45 CM 0.84 CE

snow 0.003 0.17 CM 0.50 MA

sports 0.040 0.41 CM 0.59 HT

studio 0.116 0.20 CM 0.46 CE

truck 0.008 0.33 EH 0.47 CE

urban 0.087 0.61 CM 0.86 MA

vegetation 0.038 0.51 EH 0.77 MA

walking/running 0.084 0.64 MA 0.86 CE

waterscape/waterfr. 0.033 0.30 CM 0.73 MA

weather 0.014 0.22 CE 0.48 MA

all shots 1.000 0.90 MA 0.97 CE

Table 1. The lowest and highest PPL values for the concepts.

we see that common concepts tend to have higher values of PPL,

which to a certain level is a direct consequence of the larger num-

ber of relevant shots which inhabit more clusters. On the extreme,

67% and 63% of the shots in the collection are relevant for concepts

person and face, respectively, making it extremely hard to build ef-

fective models for such generic concepts. Finally, the PPL results

for all shots show that the assumption that the clustering method dis-

tributes the data evenly is not completely satisfied, with the Motion

Activity feature producing the most nonuniform clustering. Conse-

quently, if the data is very unevenly distributed, it has an effect on

the relative confidence values and should be taken into account in

determining the feature-wise weights.

In addition, Table 1 lists the features that yield the lowest and

highest PPL values. It can be seen that each feature yields the low-

est PPL value for at least one concept, highlighting the need for

using diverse features for modeling multimedia concepts and fusing

information from the multiple modalities of video data.

4.2. Inter-concept similarity

In the second experiment we study the inter-concept similarities of

the 39 LSCOM concepts. We use a linear combination of the six

multimodal features, weighted based on Eq. (6). The similarities be-

tween concepts in the six clusterings are measured using Jeffrey di-

vergence (Eq. (8)). A full matrix of inter-concept similarities would

be difficult to illustrate due to the relatively large number of con-

cepts. Therefore, Table 2 lists instead the five most similar concepts

for each of the 39 concepts and a concept dendrogram built using

weighted pair-group average linkage.

5. CONCLUSIONS

In this paper we present a method for estimating the goodness of

a semantic concept model over a clustering in the low-level feature

space. This can be used directly in assessing the reliability of the

model and the coverage of the set of semantic concepts in terms of

the underlying low-level features. An important aspect of our work is

the fact that we deal with distributions over common feature spaces

and set of clusters instead of common data items, enabling us to

compare concepts trained with different datasets. Extensive annota-

tions over large amounts of multimedia data are rare and laborious

to produce, so it is beneficial to be able to use existing annotated

datasets to analyze also completely new data. On the other hand,

the presented method is readily scalable to large multimedia lexi-

cons as each concept model is represented as a set of distributions

over common clusterings in the used feature spaces. Adding a new

concept thus requires only the estimation of the distributions on the

feature-wise clusterings.

The number of clusters, k, is an important parameter for any

clustering-based method and depends on the task at hand. In this

application, however, finding an optimal value for k is difficult. A

completely objective evaluation of the similarities between semantic

concepts is impossible as everyone has her own subjective views on

different concepts. Producing a useful ground-truth requires the col-

lection of a large amount of questionnaires. Overall, coarser repre-

sentations of concept distributions are useful for concepts for which

less training data are available, for initial feature filtering, and for

measuring similarities between concepts. A larger value for k is

likely to be needed when using cluster distribution models for tasks

like automatic annotation or concept detection.

In future work, an important topic is the utilization of the es-

timated inter-concept relationships in video indexing and retrieval.

Concept models can be effectively used as mid-level features in re-

trieval as they can be trained off-line with considerably more positive

and negative examples than what are typically available on-line for

an ordinary multimedia query. Furthermore, as the presence of a

concept may often reduce the probability of certain other concepts

(e.g. desert and snow), one issue is to study the utilization of the

lack of a concept as well as its presence, either as negative models

or models of semantic concepts’ negatives.
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