
MULI-ISSUE MULTI-THREADED STREAM PROCESSOR

Somayeh Sardashti, Hamid Reza Ghasemi, Omid Fatemi

Multimedia Processing Laboratory, Department of Electrical and Computer Engineering, University of

Tehran, 14399 Tehran, Iran

ABSTRACT

The MISP Processor is a programmable media processor which

supports multi-issuing, multi-threading and stream processing

techniques. MISP executes applications that have been mapped to

the stream programming model. The stream model decomposes

applications into a set of computation kernels that operate on data

streams. This mapping exposes the inherent locality and

parallelisms in media applications.

MISP exploits thread level (TLP), data level (DLP), sub-word

(SP) and instruction level (ILP) parallelisms inherent in media

applications. Full simulator of MISP has been implemented and

several media workloads composed of EEMBC benchmarks have

been applied [1]. Also we applied test programs on Imagine stream

processor [2]. The simulation results show MISP gains IPC of

more than 2.08 times and performance of more than 1.86 times

over Imagine. The synthesis results show area overhead per thread

addition in MISP is about 7% without changing clock frequency.

1. INTRODUCTION

Stream processors are a kind of digital signal processors (DSPs)

targeted for high-performance embedded applications [2]. They try

to exploit the locality and concurrency inherent in media

applications using stream programming model. Stream

programming organizes data as streams and all computations as

kernels. Stream processors directly execute applications mapped to

this programming model. They contain clusters of functional units

and provide a memory hierarchy, supporting hundreds of

arithmetic units. They exploit ILP and SP within a cluster and DLP

across clusters [2]. However, they can not exploit the thread level

parallelism existing among kernels in the stream programs.

In this paper, we present a multi-threaded multi-issue VLIW

stream processor called MISP. In MISP stream processor,

multithreading technique is used to extract TLP among kernels as

long as ILP, DLP, and SP which are extracted because of stream

processing architecture. Also MISP supports multiple issuing of

stream instructions.

The organization of the paper is as follows. Section 2 reviews

related work on multithreading, stream and vector processors.

Section 3 explains stream processing. Our proposed stream

processor is presented in section 4 followed by the simulation

results in section 5. In section 6, the hardware implementation

results are presented. Finally, section 7 concludes the paper.

2. RELATED WORK

Originally, simultaneous multithreading (SMT) technique has been

introduced to permit multiple independent threads to issue

instructions to a superscalar’s functional units in a clock cycle [3].

Later, Simultaneous multithreading method has been applied to a

VLIW processor [4] which results in significant improvement of

operation throughput by allowing interleaved execution of

operations from multiple threads.

In another work, multithreading support has been integrated

into a VLIW processor [5] to hide run-time latency effects that

cannot be determined by the compiler. SYMPHONY [6], a media

processor, attempts to exploit ILP, DLP, and TLP using SMT

method along with SIMD structure. PLASMA, a multimedia

vector processor presented in [7], exploits data, instruction, and

thread level parallelisms. This processor combines multithreading

and VLIW methods. These media processors can not support

programmability. The demand for flexibility in media processing

motivates the use of programmable processors.

Recently, a programmable stream processor named Imagine

[2] has been presented which exploits data, instruction, and sub-

word parallelisms inherent in media applications. However, thread

level parallelism is not possible to be exploited in this processor

resulting in the performance degradation and low utilization of the

functional units. Furthermore, Imagine does not support multiple

issuing of the stream instructions and therefore the utilization of

chip modules and the performance are degraded more [8].

In this paper, we proposed a new programmable media

processor, MISP, which uses streaming architecture to exploit

locality and concurrency of media applications efficiently. MISP

applies multithreading and multiple issuing techniques to its

streaming architecture to improve performance. The streaming

architecture of MISP exploits principle ideas of Imagine

architecture [2].

3. STREAM PROCESSING

Stream processing is a new trend in computer architecture which

fills the gap between inflexible special-purpose media

architectures and programmable architectures with low

computational ability for media processing. Stream processors are

designed for computationally intensive media applications which

have high data parallelism, producer-consumer locality, and little

global data reuse [2].

With stream processing, applications are expressed as stream

programs. The stream programming model extracts the inherent

locality and parallelism of media applications. Media applications

can be modeled as stream programs. A stream program organizes

data as streams and computing operations as a sequence of kernels.

Streams contain a set of elements of the same type. Stream

elements can be simple, such as a single number, or complex, such

as the coordinates of a triangle in 3D space. Kernels are the

computational units applied upon streams which access stream

20411424403677/06/$20.00 ©2006 IEEE ICME 2006

elements sequentially. Figure 1 shows an example of stream

programming for stereo depth extracting [2] where arrows

represent streams and circles represent kernels.

Right

cam era

im age

Depth

M apSAD

Kernel 1 Kernel 2

Kernel 4Kernel 3

Kernel 5

Convolution

7*7

Left

cam era

im age

Convolution

3*3

Convolution

3*3

Convolution

7*7

Output data

Input data

Figure 1 Stereo Depth Extraction

4. MISP PROCESSOR

MISP is a high performance programmable stream processor

targeted at image and signal processing applications. MISP has a

three level memory hierarchy, which causes the processor to

exploit the locality and the concurrency in media applications

efficiently. This memory hierarchy is partitioned into:

the operands for arithmetic operations which are stored

near the functional units in local register files (LRFs) in

arithmetic clusters;

the streams of data which are stored in a stream register

file (SRF) and transfers data to and from LRFs;

the global data which is stored in an off-chip memory

which feeds data to SRF.

MISP processor is a multiple issue, multithreaded stream

processor. MISP executes application mapped to streams and

kernels. There are two types of instruction sets in stream

processors in order to model stream programs: kernel-level and

stream-level instruction sets. Stream-level instructions control the

flow of data streams through the system. The main stream

instructions used in MISP are:

LOAD; transfers streams from off-chip memory to SRF.

STORE; transfers streams from SRF to off-chip memory.

LOAD MICROCODE; loads kernel instructions to the

microcontroller microcode store.

CLUST OP; executes a kernel in the arithmetic clusters.

 Kernel-level instructions control the functional units

and the register storage within the arithmetic clusters.

Kernel instructions are packed as VLIW instructions. There

are separate fields to control each of the cluster functional

units, cluster stream buffers, and the microcontroller unit.

4.1. MISP Processor Architecture

MISP processor is designed to support stream processing as long

as multi-threading and multiple issuing techniques. MISP

processor extracts the existing TLP among computational kernels

by supporting multiple simultaneous executing threads. Each

kernel of a stream program forms a thread. Independent kernels

and even sequential kernels running in a pipe manner can be

scheduled as simultaneous threads in MISP. For example, in the

stereo depth extraction (Figure 1), the kernel 1 is independent of

the kernel 3 and the kernel 4. Also considering the program

execution as a pipeline, the kernel 3 and 4 can be executed

simultaneously. While the kernel 4 works on the data produced by

the kernel 3, the kernel 3 produces the new data for kernel 4.

The MISP architecture is shown in Figure 2. MISP acts as a

coprocessor for a host processor which controls it by accessing its

control and status registers. MISP interacts with the host processor

by handshaking between Host interface and Stream controller. In

order to access off-chip memory, there is a memory system stream

controller unit which can support up two memory instructions

simultaneously. This memory system loads and stores stream

elements sequentially between off-chip memory and SRF. In the

following sections, MISP units are discussed in more details.

Stream Register

File

Memory System

Stream Controller

Stream

Controller

Host Interface

ucode store

Microcontroller

Host

Processor

Instr

Arithmetic

Clusters
Arithmetic

ClustersArithmetic

Clusters
Arithmetic

Clusters
Arithmetic

Clusters
Arithmetic

ClustersArithmetic

Clusters
Arithmetic

Clusters

8

32

32

32

32

PC

Off-chip

Memory

Figure 2 MISP Architecture

4.1.1. Microcontroller

The microcontroller fetches VLIW kernel instructions for multiple

executing threads from a microcode store and sequences and issues

a mixture of these instructions to all of the arithmetic clusters. The

execution of the clusters occurs in a SIMD fashion so the same

microcode instruction is issued to all the clusters simultaneously

by the microcontroller.

In the microcontroller, Figure 3, there is a microcode loader

unit per thread which handles the loading of kernel instructions

from the SRF to the microcode storage. The microcode storage

holds the microcode instructions which are to be issued by the

control unit to the arithmetic clusters. The control unit is

subdivided to the stream buffer controllers, the cluster controller,

and the microcontroller microcode controllers. Each stream buffer

controller is associated to a thread and controls its related cluster

stream buffers according to the fields of VLIW instructions related

to stream buffers. If there is an instruction to read or write to a

stream buffer and that buffer is not ready to use, executing the

related thread will be stopped.

Also there is a microcontroller microcode controller per

thread which executes the fields of VLIW instructions which are

related to the microcontroller. The cluster controller gets the

cluster fields of the instructions from all threads, and sends a

combination of the operations from active threads to the clusters.

Each thread has a priority number which is assigned statically

by the programmer via the stream instructions. In order to merge

operations from multiple threads, cluster controller starts with the

operations of active threads with higher priorities. It assigns a

needed functional unit to a thread if that unit has not been assigned

to another thread with higher priority. So, it is possible that the

operations of some threads not to be issued completely. In this

case, the remainder of the instructions will be issued next cycles.

After the issuing an instruction of a thread is completed, a new

instruction will be fetched for that thread from microcode storage.

In order to protect the microcontroller to starve some of the

threads, aging technique is used. If none of the needed functional

units is assigned to a thread, its priority number will be

2042

incremented. So, there will be higher chance of issuing in the next

cycles for that thread.

Using multithreading technique, the unused cluster functional

units for an executing kernel will be used by another kernel. This

results in the improvement of cluster utilization and so, total

execution time of a stream program is decreased.

Also, there are one microcontroller register file (UCRF) and

one microcontroller condition register file (UCONDRF) for each

thread. These register files keep data that is needed during kernel

execution.

Microcode

Loader 1
Microcode

Store

UCONDRF

1

UCRF 1

Data 1
Adr 1

T
o

 C
lu

s
te

rs

Cluster Control

Signals

Stream

Buffers

Controller 1

Cluster

Controller

uc

Controller 1

Control

Unit

Microcode

Loader N Data N
Adr N

UCONDRF

N

UCRF N

VLIW

Instruction 1

VLIW

Instruction N

Stream

Buffers

Controller N

uc

Controller N

Cluster Condition

Codes

MPC 1

MPC N

To SRF

To &

From SRF

Figure 3 Microcontroller Architecture

4.1.2. Arithmetic clusters

There are 8 arithmetic clusters, Figure 4; each contains 6

functional units (3 adders, 2 multipliers, and a divide/square root

module), one scratch pad unit per thread, which is a runtime

addressable register file, and one communication unit per thread

which handle inter-cluster communications of each thread. All of

these units are fully pipelined.

ALU

Unit

ALU

Unit
SP COMM

Intra-cluster Switch

To/

from

SRF

To/from

other

clusters

ALU

Unit
MUL

Unit

MUL

Unit

DIV

Unit

Figure 4 Arithmetic Clusters

In functional units, there are separate LRFs connected to their

input lines per each executing thread to keep data during kernel

execution. Also there is a separate output bus per thread, so a

functional unit executing an operation from a thread, places the

result on the thread associated output bus.

Data is exchanged between FUs via the intra-cluster switches.

There is a switch per thread to transfer data for that thread. These

switches are implemented as full crossbars where each FU

broadcasts its result bus associated to a thread to the input of every

LRF associated to that thread, in an arithmetic cluster.

4.1.3. Stream Register File

The stream register file (SRF), provides on-chip data storage for

streams. SRF unit is partitioned into SRF storage, stream buffers,

and a controller which controls transferring data between SRF

storage and stream buffers. Producer-consumer locality of media

application is exposed efficiently by SRF. Data is exchanged

among kernels using SRF.

SRF storage consists of 128K bytes of memory. The stream

buffers are employed to interface between SRF storage and SRF

clients (i.e. arithmetic clusters, the memory unit, the

microcontroller, and the host interface). Each stream is supported

by a 64-word (each word is 4 bytes) stream buffer. There are eight

stream buffers for communicating with the arithmetic clusters per

each thread. Each of these stream buffers is able to transfer 8

words per cycle (1 word per cluster) in parallel to the clusters for a

combined peak rate of 64 words per cycle. Also there is one buffer

for transferring kernel instructions to the microcontroller per

thread. There are two buffers which are used to transfer data

between SRF and the memory.

4.1.4. Stream Controller

The stream controller handles the data flow between and control of

all of the modules on the chip. It accomplishes this by controlling

which stream instructions to issue and when they are executed.

The stream controller consists of the Scoreboard and Issue

units. The Scoreboard keeps track of all operations waiting to

execute and in flight. It also examines the dependencies each

operation has on other operations and on hardware resources and

sends ready instructions to the Issue unit. The Issue Unit is a state

machine that will set all the correct control signals in order to start

the execution of a given stream instruction.

In a conventional stream processor like Imagine, there is just

one global control bus. So it is not possible to issue more than one

command to the chip modules. This causes slow startup of the

instructions and increases idle time of the modules. In MISP

processor, there is a separate control bus for each chip module.

This enables the stream controller to issue multiple stream

instructions at every clock cycle. The Issue unit structure is a

distributed state machine model that there is a separate controller

for each stream instruction type. In this model, it takes only one or

two clock cycles to issue a stream instruction.

5. SIMULATION RESULT

In order to evaluate the new design, we developed a cycle

accurate simulator which models MISP processor. Using

this simulator, we have evaluated MISP performance under

several multimedia benchmarks- a subset of the EEMBC

suite and four practical micro-benchmarks for different

number of active threads. We compared MISP with Imagine

stream processor using Imagine programming tool set. We

used ISim cycle accurate simulator to evaluate Imagine [2].

Table 1 Simulated Benchmarks

Benchmark Comments

RGB CMYK Color-conversion

RGB YIQ Color-conversion

Gray Filter 3*3 Convolution

Autocorrelation Series of dot-products

Sort Bitonic Sort – Series of comparisons

Vector Addition][][][iBiAiC

Vector Multiplication][][][iBiAiC

Multiply-Accumulate

i

iBiAR][][

Table 1 presents the simulated benchmarks. The first four

kernels are taken from EEMBC [1]. Vector Addition and Vector

Multiplication are commonly used micro-benchmarks

characterized by low computational rate relative to memory

requirements. Bitonic Sort benchmark evaluates the processor

when there is much amount of inter-cluster communication.

2043

Multiply-Accumulate benchmark is also a commonly used

function in media applications.

We run different combinations of 2-thread, 4-thread, and 8-

thread tests in order to show the improvements. Each combination

includes various floating point, integer, memory bound and

computational bound test cases. We considered that the

simultaneous executing threads are independent.

In order to compare our results with a single-threaded stream

processor, we applied our test programs to Imagine stream

processor too. To demonstrate MISP improvements, we have

measured two parameters, IPC (Instructions per Cycle) and

processor performance (1/Total Executing Cycles) with different

number of active threads. The overall results are shown in Figure

5. In this figure we showed the average improvements gained over

Imagine which is a single-threaded stream processor. For two

active threads, MISP improves IPC about 2.08 times, and total

performance about 1.86 times. MISP gains higher improvements

with 4 and 8 active threads.

0

0.5

1

1.5

2

2.5

3

IPC Performance

M
IS

P
 I
m

p
ro

v
e

m
e

n
ts

Imagine

MISP - 2 Threads

MISP - 4 Threads

MISP - 8 Threads

Figure 5 MISP Improvements

Figure 6 shows MISP IPC improvement for various 2-thread

test combinations in comparison with Imagine in more details.

0

2

4

6

8

10

12

14

C
M

Y
K-Y

IQ

C
M

YK
-H

P
F

H
PF-A

C
R

S
or

t-
V
ec

tA
dd

Y
IQ

-V
ec

tA
dd

A
C
R
-V

ec
tA

dd

AP
-C

M
YK

A
P
-V

ec
tA

dd

M
A
C
-A

C
R

M
A
C
-Y

IQ

A
ve

ra
ge

In
s
tr

u
c
ti

o
n

s
 P

e
r

C
y
c
le

 (
IP

C
)

MISP - 2 Threads

Imagine

Figure 6 IPC Improvement for 2 Threads

6. HARDWARE IMPLEMENTAION

In this section, we briefly describe the overhead due to adding

multi-threading and multi-issuing to a stream processor in terms of

area and delay. First, we have implemented MISP without

supporting multi-threading and multi-issuing techniques. In this

manner, MISP acts as a single-threaded stream processor. Then,

we have implemented MISP processor supporting 2 active threads

and multi-issuing technique. For these two models, MISP is

implemented and synthesized in a 0.25u ASIC (TSMC25)

technology. The difference between the areas of these models

shows how adding one thread and multi-issuing can affect area of

the stream processor. Table 2 shows the result of this comparison

in terms of area.

The clock frequency of both single-threaded and double-threaded

MISP are the same.

Table 2 Area Overhead of double-thread vs. single-threaded MISP

Units Area Overhead (%)

SRF 1%

Memory Controller 0.1%

Ucontroller 3%

Clusters 49%

Stream Controller 37%

Host interface 0%

Total 7%

7. CONCLUSION

In this paper, we have proposed a new media processor named

MISP. This processor is a stream processor which is featured by

multithreading and multi issuing techniques.

Double-threaded MISP gains IPC of 2.08 times and

performance of 1.86 times over Imagine processor. MISP gains

higher improvements with 4 and 8 active threads. The area

overhead per thread addition in MISP is about 7% while the clock

frequency is constant.

8. REFERENCES

[1] EEMBC (EDN Embedded Microprocessor Benchmark

Consortium) Benchmark Suite - www.eembc.org.

[2] Brucek Khailany, William J. Dally, Scott Rixner, Ujval J.

Kapasi, Peter Mattson, Jinyung Namkoong, John D. Owens,

Brian Towels, and Andrew Chang, “Imagine: media

processing with streams,” IEEE Micro, March/April 2001.

[3] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy,

“Simultaneous Multithreading: maximizing on-chip

parallelism,” In Proceedings of the 22nd Annual International

Symposium on Computer Architecture, Santa Margherita

Ligure, Italy, June 1995.

[4] H. Pradeep Rao, S.K. Nandy, and M.N.V. Satya Kiran,

“Simultaneous MultiStreaming for complexity-effective

VLIW architecture,” In Asia-Pacific Computer Systems

Architecture Conference, Aizu-Wakamatsu, Japan, September

2003.

[5] Emre Ozer, Thomas M. Conte, and Saurabh Sharma, “Weld: a

multithreading technique towards latency-tolerant VLIW

processors,” In Proceedings of the 8th International

Conference on High Performance Computing (HiPC’01),

Hyderabad, India, December 2001.

[6] S. Balakrishnan, S.K. Nandy, “Multithreaded architecture for

media processing,” In Proceedings of the 1st Workshop on

Media Processors and DSPs (MP-DSP), Haifa, Israel,

November 1999.

[7] F. Mombers and D. Mlynek, “A multithreaded multimedia

processor merging on-chip multiprocessors and distributed

vector pipelines,” In Proceedings of the International

Symposium on Circuits and Systems ISCAS 1999, Orlando,

USA, June 1999.

[8] Jung Ho Ahn, William J. Dally, Brucek Khailany, Ujval J.

Kapasi, and Abhishek Das, “Evaluating the Imagine stream

architecture,” ISCA 2004, Munich, Germany, June 2004.

2044

