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ABSTRACT

The MISP Processor is a programmable media processor which 

supports multi-issuing, multi-threading and stream processing 

techniques. MISP executes applications that have been mapped to 

the stream programming model. The stream model decomposes 

applications into a set of computation kernels that operate on data 

streams. This mapping exposes the inherent locality and 

parallelisms in media applications. 

MISP exploits thread level (TLP), data level (DLP), sub-word 

(SP) and instruction level (ILP) parallelisms inherent in media 

applications. Full simulator of MISP has been implemented and 

several media workloads composed of EEMBC benchmarks have 

been applied [1]. Also we applied test programs on Imagine stream 

processor [2]. The simulation results show MISP gains IPC of 

more than 2.08 times and performance of more than 1.86 times 

over Imagine. The synthesis results show area overhead per thread 

addition in MISP is about 7% without changing clock frequency. 

1. INTRODUCTION 

Stream processors are a kind of digital signal processors (DSPs) 

targeted for high-performance embedded applications  [2]. They try 

to exploit the locality and concurrency inherent in media 

applications using stream programming model. Stream 

programming organizes data as streams and all computations as 

kernels. Stream processors directly execute applications mapped to 

this programming model. They contain clusters of functional units 

and provide a memory hierarchy, supporting hundreds of 

arithmetic units. They exploit ILP and SP within a cluster and DLP 

across clusters  [2]. However, they can not exploit the thread level 

parallelism existing among kernels in the stream programs.

In this paper, we present a multi-threaded multi-issue VLIW 

stream processor called MISP. In MISP stream processor, 

multithreading technique is used to extract TLP among kernels as 

long as ILP, DLP, and SP which are extracted because of stream 

processing architecture. Also MISP supports multiple issuing of 

stream instructions. 

The organization of the paper is as follows. Section 2 reviews 

related work on multithreading, stream and vector processors. 

Section 3 explains stream processing. Our proposed stream 

processor is presented in section 4 followed by the simulation 

results in section 5. In section 6, the hardware implementation 

results are presented. Finally, section 7 concludes the paper. 

2. RELATED WORK

Originally, simultaneous multithreading (SMT) technique has been 

introduced to permit multiple independent threads to issue 

instructions to a superscalar’s functional units in a clock cycle  [3]. 

Later, Simultaneous multithreading method has been applied to a 

VLIW processor  [4] which results in significant improvement of 

operation throughput by allowing interleaved execution of 

operations from multiple threads.  

In another work, multithreading support has been integrated 

into a VLIW processor  [5] to hide run-time latency effects that 

cannot be determined by the compiler. SYMPHONY  [6], a media 

processor, attempts to exploit ILP, DLP, and TLP using SMT 

method along with SIMD  structure. PLASMA, a multimedia 

vector processor presented in [7], exploits data, instruction, and 

thread level parallelisms. This processor combines multithreading 

and VLIW methods. These media processors can not support 

programmability. The demand for flexibility in media processing 

motivates the use of programmable processors. 

Recently, a programmable stream processor named Imagine  

[2] has been presented which exploits data, instruction, and sub-

word parallelisms inherent in media applications. However, thread 

level parallelism is not possible to be exploited in this processor 

resulting in the performance degradation and low utilization of the 

functional units. Furthermore, Imagine does not support multiple 

issuing of the stream instructions and therefore the utilization of 

chip modules and the performance are degraded more [8]. 

In this paper, we proposed a new programmable media 

processor, MISP, which uses streaming architecture to exploit 

locality and concurrency of media applications efficiently. MISP 

applies multithreading and multiple issuing techniques to its 

streaming architecture to improve performance. The streaming 

architecture of MISP exploits principle ideas of Imagine 

architecture [2]. 

3. STREAM PROCESSING 

Stream processing is a new trend in computer architecture which 

fills the gap between inflexible special-purpose media 

architectures and programmable architectures with low 

computational ability for media processing. Stream processors are 

designed for computationally intensive media applications which 

have high data parallelism, producer-consumer locality, and little 

global data reuse  [2]. 

With stream processing, applications are expressed as stream 

programs. The stream programming model extracts the inherent 

locality and parallelism of media applications. Media applications 

can be modeled as stream programs. A stream program organizes 

data as streams and computing operations as a sequence of kernels. 

Streams contain a set of elements of the same type. Stream 

elements can be simple, such as a single number, or complex, such 

as the coordinates of a triangle in 3D space. Kernels are the 

computational units applied upon streams which access stream 
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elements sequentially.  Figure 1 shows an example of stream 

programming for stereo depth extracting  [2] where arrows 

represent streams and circles represent kernels. 
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4. MISP PROCESSOR  

MISP is a high performance programmable stream processor 

targeted at image and signal processing applications. MISP has a 

three level memory hierarchy, which causes the processor to 

exploit the locality and the concurrency in media applications 

efficiently. This memory hierarchy is partitioned into: 

the operands for arithmetic operations which are stored 

near the functional units in local register files (LRFs) in 

arithmetic clusters; 

the streams of data which are stored in a stream register 

file (SRF) and transfers data to and from LRFs;  

the global data which is stored in an off-chip memory 

which feeds data to SRF. 

MISP processor is a multiple issue, multithreaded stream 

processor. MISP executes application mapped to streams and 

kernels. There are two types of instruction sets in stream 

processors in order to model stream programs: kernel-level and 

stream-level instruction sets. Stream-level instructions control the 

flow of data streams through the system. The main stream 

instructions used in MISP are: 

LOAD; transfers streams from off-chip memory to SRF. 

STORE; transfers streams from SRF to off-chip memory. 

LOAD MICROCODE; loads kernel instructions to the 

microcontroller microcode store. 

CLUST OP; executes a kernel in the arithmetic clusters. 

 Kernel-level instructions control the functional units 

and the register storage within the arithmetic clusters. 

Kernel instructions are packed as VLIW instructions. There 

are separate fields to control each of the cluster functional 

units, cluster stream buffers, and the microcontroller unit. 

4.1. MISP Processor Architecture  

MISP processor is designed to support stream processing as long 

as multi-threading and multiple issuing techniques. MISP 

processor extracts the existing TLP among computational kernels 

by supporting multiple simultaneous executing threads. Each 

kernel of a stream program forms a thread. Independent kernels 

and even sequential kernels running in a pipe manner can be 

scheduled as simultaneous threads in MISP. For example, in the 

stereo depth extraction (Figure 1), the kernel 1 is independent of 

the kernel 3 and the kernel 4. Also considering the program 

execution as a pipeline, the kernel 3 and 4 can be executed 

simultaneously. While the kernel 4 works on the data produced by 

the kernel 3, the kernel 3 produces the new data for kernel 4. 

The MISP architecture is shown in Figure 2. MISP acts as a 

coprocessor for a host processor which controls it by accessing its 

control and status registers. MISP interacts with the host processor 

by handshaking between Host interface and Stream controller. In 

order to access off-chip memory, there is a memory system stream 

controller unit which can support up two memory instructions 

simultaneously. This memory system loads and stores stream 

elements sequentially between off-chip memory and SRF. In the 

following sections, MISP units are discussed in more details. 

Stream Register 

File

Memory System 

Stream Controller

Stream 

Controller

Host Interface

ucode store

Microcontroller

Host 

Processor

Instr

Arithmetic 

Clusters
Arithmetic 

ClustersArithmetic 

Clusters
Arithmetic 

Clusters
Arithmetic 

Clusters
Arithmetic 

ClustersArithmetic 

Clusters
Arithmetic 

Clusters

8

32

32

32

32

PC

Off-chip 

Memory

Figure 2 MISP Architecture 

4.1.1. Microcontroller

The microcontroller fetches VLIW kernel instructions for multiple 

executing threads from a microcode store and sequences and issues 

a mixture of these instructions to all of the arithmetic clusters. The 

execution of the clusters occurs in a SIMD fashion so the same 

microcode instruction is issued to all the clusters simultaneously 

by the microcontroller.  

In the microcontroller, Figure 3, there is a microcode loader 

unit per thread which handles the loading of kernel instructions 

from the SRF to the microcode storage. The microcode storage 

holds the microcode instructions which are to be issued by the 

control unit to the arithmetic clusters. The control unit is 

subdivided to the stream buffer controllers, the cluster controller, 

and the microcontroller microcode controllers. Each stream buffer 

controller is associated to a thread and controls its related cluster 

stream buffers according to the fields of VLIW instructions related 

to stream buffers. If there is an instruction to read or write to a 

stream buffer and that buffer is not ready to use, executing the 

related thread will be stopped. 

Also there is a microcontroller microcode controller per 

thread which executes the fields of VLIW instructions which are 

related to the microcontroller. The cluster controller gets the 

cluster fields of the instructions from all threads, and sends a 

combination of the operations from active threads to the clusters. 

Each thread has a priority number which is assigned statically 

by the programmer via the stream instructions. In order to merge 

operations from multiple threads, cluster controller starts with the 

operations of active threads with higher priorities. It assigns a 

needed functional unit to a thread if that unit has not been assigned 

to another thread with higher priority. So, it is possible that the 

operations of some threads not to be issued completely. In this 

case, the remainder of the instructions will be issued next cycles. 

After the issuing an instruction of a thread is completed, a new 

instruction will be fetched for that thread from microcode storage. 

In order to protect the microcontroller to starve some of the 

threads, aging technique is used. If none of the needed functional 

units is assigned to a thread, its priority number will be 
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incremented. So, there will be higher chance of issuing in the next 

cycles for that thread.  

Using multithreading technique, the unused cluster functional 

units for an executing kernel will be used by another kernel. This 

results in the improvement of cluster utilization and so, total 

execution time of a stream program is decreased. 

Also, there are one microcontroller register file (UCRF) and 

one microcontroller condition register file (UCONDRF) for each 

thread. These register files keep data that is needed during kernel 

execution.
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4.1.2. Arithmetic clusters

There are 8 arithmetic clusters, Figure 4; each contains 6 

functional units (3 adders, 2 multipliers, and a divide/square root 

module), one scratch pad unit per thread, which is a runtime 

addressable register file, and one communication unit per thread 

which handle inter-cluster communications of each thread. All of 

these units are fully pipelined. 
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In functional units, there are separate LRFs connected to their 

input lines per each executing thread to keep data during kernel 

execution. Also there is a separate output bus per thread, so a 

functional unit executing an operation from a thread, places the 

result on the thread associated output bus. 

Data is exchanged between FUs via the intra-cluster switches. 

There is a switch per thread to transfer data for that thread. These 

switches are implemented as full crossbars where each FU 

broadcasts its result bus associated to a thread to the input of every 

LRF associated to that thread, in an arithmetic cluster. 

4.1.3. Stream Register File

The stream register file (SRF), provides on-chip data storage for 

streams. SRF unit is partitioned into SRF storage, stream buffers, 

and a controller which controls transferring data between SRF 

storage and stream buffers. Producer-consumer locality of media 

application is exposed efficiently by SRF. Data is exchanged 

among kernels using SRF. 

SRF storage consists of 128K bytes of memory. The stream 

buffers are employed to interface between SRF storage and SRF 

clients (i.e. arithmetic clusters, the memory unit, the 

microcontroller, and the host interface). Each stream is supported 

by a 64-word (each word is 4 bytes) stream buffer. There are eight 

stream buffers for communicating with the arithmetic clusters per 

each thread. Each of these stream buffers is able to transfer 8 

words per cycle (1 word per cluster) in parallel to the clusters for a 

combined peak rate of 64 words per cycle. Also there is one buffer 

for transferring kernel instructions to the microcontroller per 

thread. There are two buffers which are used to transfer data 

between SRF and the memory. 

4.1.4. Stream Controller

The stream controller handles the data flow between and control of 

all of the modules on the chip. It accomplishes this by controlling 

which stream instructions to issue and when they are executed. 

The stream controller consists of the Scoreboard and Issue 

units. The Scoreboard keeps track of all operations waiting to 

execute and in flight. It also examines the dependencies each 

operation has on other operations and on hardware resources and 

sends ready instructions to the Issue unit. The Issue Unit is a state 

machine that will set all the correct control signals in order to start 

the execution of a given stream instruction. 

In a conventional stream processor like Imagine, there is just 

one global control bus. So it is not possible to issue more than one 

command to the chip modules. This causes slow startup of the 

instructions and increases idle time of the modules. In MISP 

processor, there is a separate control bus for each chip module. 

This enables the stream controller to issue multiple stream 

instructions at every clock cycle. The Issue unit structure is a 

distributed state machine model that there is a separate controller 

for each stream instruction type. In this model, it takes only one or 

two clock cycles to issue a stream instruction. 

5. SIMULATION RESULT 

In order to evaluate the new design, we developed a cycle 

accurate simulator which models MISP processor. Using 

this simulator, we have evaluated MISP performance under 

several multimedia benchmarks- a subset of the EEMBC 

suite and four practical micro-benchmarks for different 

number of active threads. We compared MISP with Imagine 

stream processor using Imagine programming tool set. We 

used ISim cycle accurate simulator to evaluate Imagine [2]. 

Table 1 Simulated Benchmarks 

Benchmark Comments 

RGB  CMYK Color-conversion 

RGB YIQ Color-conversion 

Gray Filter 3*3 Convolution 

Autocorrelation Series of dot-products 

Sort Bitonic Sort – Series of comparisons 

Vector Addition ][][][ iBiAiC

Vector Multiplication ][][][ iBiAiC

Multiply-Accumulate 

i

iBiAR ][][

Table 1 presents the simulated benchmarks. The first four 

kernels are taken from EEMBC  [1]. Vector Addition and Vector 

Multiplication are commonly used micro-benchmarks 

characterized by low computational rate relative to memory 

requirements. Bitonic Sort benchmark evaluates the processor 

when there is much amount of inter-cluster communication. 
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Multiply-Accumulate benchmark is also a commonly used 

function in media applications. 

We run different combinations of 2-thread, 4-thread, and 8-

thread tests in order to show the improvements. Each combination 

includes various floating point, integer, memory bound and 

computational bound test cases. We considered that the 

simultaneous executing threads are independent. 

In order to compare our results with a single-threaded stream 

processor, we applied our test programs to Imagine stream 

processor too. To demonstrate MISP improvements, we have 

measured two parameters, IPC (Instructions per Cycle) and 

processor performance (1/Total Executing Cycles) with different 

number of active threads. The overall results are shown in Figure 

5. In this figure we showed the average improvements gained over 

Imagine which is a single-threaded stream processor. For two 

active threads, MISP improves IPC about 2.08 times, and total 

performance about 1.86 times. MISP gains higher improvements 

with 4 and 8 active threads.
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Figure 6 shows MISP IPC improvement for various 2-thread 

test combinations in comparison with Imagine in more details. 
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6. HARDWARE IMPLEMENTAION   

In this section, we briefly describe the overhead due to adding 

multi-threading and multi-issuing to a stream processor in terms of 

area and delay. First, we have implemented MISP without 

supporting multi-threading and multi-issuing techniques. In this 

manner, MISP acts as a single-threaded stream processor. Then, 

we have implemented MISP processor supporting 2 active threads 

and multi-issuing technique. For these two models, MISP is 

implemented and synthesized in a 0.25u ASIC (TSMC25) 

technology. The difference between the areas of these models 

shows how adding one thread and multi-issuing can affect area of 

the stream processor. Table 2 shows the result of this comparison 

in terms of area. 

The clock frequency of both single-threaded and double-threaded 

MISP are the same. 

Table 2 Area Overhead of double-thread vs. single-threaded MISP 

Units Area Overhead (%)  

SRF 1% 

Memory Controller 0.1% 

Ucontroller 3% 

Clusters 49% 

Stream Controller 37% 

Host interface 0% 

Total 7% 

7. CONCLUSION  

In this paper, we have proposed a new media processor named 

MISP. This processor is a stream processor which is featured by 

multithreading and multi issuing techniques.  

Double-threaded MISP gains IPC of 2.08 times and 

performance of 1.86 times over Imagine processor. MISP gains 

higher improvements with 4 and 8 active threads. The area 

overhead per thread addition in MISP is about 7% while the clock 

frequency is constant. 
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