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Abstract

We compare three Computer Vision approaches to 3-D
reconstruction, namely passive Binocular Stereo and ac-
tive Structured Lighting and Photometric Stereo, in appli-
cation to human face reconstruction for modelling virtual
humans. An integrated lab environment was set up to simul-
taneously acquire images for 3-D reconstruction and corre-
sponding data from a 3-D scanner. This allowed us to quan-
titatively compare reconstruction results to accurate ground
truth. Our goal was to determine whether any current Com-
puter Vision approach is accurate enough for practically
useful 3-D facial surface reconstruction. Comparative ex-
periments show the combination of Structured Lighting with
Symmetric Dynamic Programming based Binocular Stereo
has good prospects due to reasonable processing time and
sufficient accuracy.

1. Introduction

Seeing and interacting with faces is commonplace in a
person’s everyday life. The areas of application for facial
modelling to create virtual humans are wide and varied, ap-
pearing in such areas as security, the entertainment industry,
and medical visualisation. Faces are highly emotive and
consequently virtual humans are a powerful tool, often a
necessary one in a variety of multimedia applications.

Vision based 3-D facial reconstruction approaches are
appealing due to their general low-cost usage of off the shelf
hardware. Three of the most popular approaches chosen for
study are Binocular Stereo, Structured Lighting, and Pho-
tometric Stereo. Their usability for creating realistic virtual
humans is the main objective of this work. The performance
of Binocular Stereo is of particular interest as it is a passive
technique, whereas the other two actively project light onto
the scene.

Due to the familiarity of faces we are very sensitive to
any nuances or oddity that could appear in a virtual repre-
sentation. This specificity presents a unique challenge for

3-D reconstruction. The form of the face can generally be
defined as a near-homogeneous curvilinear surface. Pas-
sive image based techniques must deal with large regions
of lowly textured skin regions. Subsequently, knowledge of
facial properties can improve reconstruction accuracy.

The subsurface scattering of light within the skin and the
anisotropic reflection and specularity of hair proves a diffi-
cultly for Photometric Stereo. Such photo-inconsistencies
manifest as noise in the correspondence process of Binocu-
lar Stereo, or code errors in Structured Lighting.

Section 2 below overviews the current state-of-the-art in
facial reconstruction techniques. Accuracy criteria relevant
to face reconstruction and vision based 3-D reconstruction
techniques are summarised in Section 3. The lab setup is
given in Section 4, and Sections 5 and 6 discuss results.

2. Previous Work

Facial reconstruction is a very specific task. Image based
3-D reconstructions appear most accurate when viewed un-
der directions similar to that in which they were acquired.
Rotations to novel views of the 3-D data often reveal the
most prominent flaws in a reconstruction. However, the ma-
jority of analysis on vision based reconstruction has focused
on general performance for arbitrary scenes [13].

Computer vision based facial reconstruction reduces
modelling time and allows for a personalised result. There
exist many successful yet manually involved reconstruction
techniques, e.g. [7, 12]. Currently automatic techniques
that are both robust and accurate are still in their infancy.
Almost all vision based techniques leverage the use of a
generic face model that is warped to the raw data. The pri-
mary difference involves what information is obtained from
any input image(s) and how this is used to alter the generic
model. Often these methods leverage statistical or heuristic
knowledge of faces to aid in their operation.

Successful techniques such as those in [10] and [16] use
data obtained from a 3-D scanner. Unfortunately the price
of 3-D scanning equipment makes this impractical for most
lab situations.
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Among the Computer Vision techniques, purely feature
based ones have been pursued that obtain a sparse data set.
3-D information is then inferred through considering 3-D
edge features [4], feature assignments in video streams [11]
and orthogonal views [9]. Binocular stereo producing a
dense 3-D data set has been applied for faces in [3, 14].

3-D databases of heads have been used to understand the
statistical variance of facial proportions. A 3-D model can
then be obtained from features of a single image [5].

3. Reconstruction Algorithms for Testing

In comparing to known work, we focus on more strin-
gent error analysis and criteria for face reconstruction. The
characteristic face feature areas such as the eyes, mouth,
nose, are especially important for reconstruction. These ar-
eas carry most of the audio-visual information expressed by
humans and their known locality should be considered in
any technical evaluation. However, previously conducted
anthropometric quantitative analysis has been inconclusive
[1].

The accuracy in surface normal reconstruction, one
which is often neglected in existing analysis, is an important
indicator of quality when a surface area exhibits an overall
shift in depth but retains a low comparative depth variance
measure. We include this measure to provide an extended
reconstruction error analysis.

Due to a rich variety of Computer Vision based algo-
rithms for 3-D reconstruction, we test a few most popular
techniques in each of the chosen domains.

Binocular Stereo After comparing a set of implemented
dense two-frame stereo algorithms, we have chosen the al-
gorithms in Table 1 to provide a cross-section of local and
global techniques. Global algorithms incorporate an optimi-
sation process over the entire domain and produce smoother
results, but usually at the sacrifice of speed in execution
time.

The trade-offs between accuracy and time complexity
are of importance when dealing with large images. For ex-
ample, top-performing graph cut based techniques have no-
tably higher time complexity, and this is an important issue
when dealing with the issue of practicality for the size of
images dealt with in this study (see Sections 4 and 5).

This set is currently being expanded upon to incorporate
more of the latest Binocular Stereo algorithms. For a review
of the presented algorithms see [8, 13].

Structured Lighting Structured Lighting techniques use
active illumination to code visible 3D surface points. Re-
construction time depends on a compromise between the
number of images required (for the case of complex coding

Table 1. Tested Binocular Stereo Techniques
’Winner Takes All’ Sum of Absolute Differences (SAD)1 - local
Dynamic Programming Method (DPM)1 - global
Symmetric Dynamic Programming Stereo (SDPS)2 - global
BVZ (Graph Cut based algorithm)1 - global
Belief–Propagation (BP)3 - global
Chen and Medioni (CM)2 - local

1 from http://cat.middlebury.edu/stereo/code.html
2 our own implementation
3 from http://people.cs.uchicago.edu/∼pff/bp/, [17]

strategies) and subsequent uniqueness in pixel code. From
Table 2, the Gray Code algorithm matches codes whereas
both of the direct coding techniques project a light pattern
that aids the correspondence process in a standard Binocu-
lar Stereo algorithm.

Table 2. Structured Lighting Methods to Test
Time-multiplexed Structured Lighting using Gray Code
Direct Coding with a Colour Gradation Pattern
Direct Coding with a Colour Strip Pattern

The interest here is to see whether a simpler single light
projection coupled with a traditional stereo algorithm is
competitive with a more complex coding scheme such as
using a Gray Code constructed from multiple projections. A
more detailed description of the presented Structured Light-
ing techniques can be found in [2].

Photometric Stereo An Albedo Independent Approach
[6] with three light sources is used in this experiment. The
focus in this paper is on comparing the gradient field inte-
gration component of Photometric Stereo. The algorithms
were chosen to present both local and global algorithms.
Global algorithms incorporate an optimisation process over
the entire field and produce smoother results. The presented
gradient field integration techniques are described in more
detail in [15].

Table 3. Photometric Techniques to Test
Frankot-Chellappa Variant (FCV) - global
Four-Scan Method - local
Shapelets (9 scales) - local

4. Lab and Experiment Setup

A pair of Canon EOS 10D cameras with a measured fo-
cal length of 52 mm were used for high resolution image ac-
quisition (an effective 6.3 megapixel resolution). The same
cameras are used for both Binocular Stereo and Structured
Lighting. The classic standard stereo geometry is used for
the cameras. The baseline separation between the two cam-
eras is 175 mm. The test subject is placed approximately
1200 mm horizontally away from the cameras. This sys-
tem geometry was empirically chosen after extensive ex-
perimentation. The facial region was cut from the images
to produce an 800 × 700 pixel region for comparison.
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Figure 1. Reconstruction examples: a)
Ground Truth, b) Gray Code, c) FCV, d) SAD,
e) SDPS, f) BVZ, g) CM.

A cube shaped calibration object with 63 markings was
used to calibrate the cameras.

An Acer LCD Projector (model PL111) was used to
project structured light into the scene. The device is ca-
pable of projecting at a resolution of 800 × 600 pixels and
has a focal length of 21.5 ↔ 28 mm.

Figure 2. a) Textured Gray Code and b)
Ground Truth visualisations.

The Photometric Stereo system geometry with three light
sources is utilised [6] using 150W light bulbs and a JVC KY-
F55B camera controlled automatically by a switching de-
vice. A calibration sphere is used to analytically determine
the directions to the lights from an arbitrary scene origin.

A Solutionix Rexcan 400 3-D scanner was used to simul-
taneously obtain the ground truth data for each test subject
(an example is shown in Fig. 2).

5. Experimental Results

Experiments were conducted on a Pentium 4 3.4 GHz
machine with 2 Gigabytes of RAM. Comparisons are made
between the resultant face reconstructions and a ground
truth of the test subject. A set of 15 subjects were used for
comparative analysis (this will be increased in the near fu-
ture). Data alignment is conducted using a semi-automatic
process involving 3-D object rigid transformations. The re-
construction accuracy is evaluated with the percentage of
pixels with absolute depth errors less than two disparity
units (P<2), the mean (emn) absolute pixel depth error, the
standard deviation (σe) of errors, and the mean cosine error
(MCE). Central differencing is used to estimate surface nor-
mals, and the MCE measures the quality of reconstruction

of surface normals:

MCE =

∣∣∣∣∣∣
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where M,N are the image dimensions, ni,j and n∗
i,j are

the reconstructed surface and ground truth normals, respec-
tively, and “•” denotes the dot product of two vectors. The
MCE indicates how close the reconstructed surface normals
are to the ground truth, in particular, MCE = 0 if ni,j = n∗

i,j ,
1 if ni,j ⊥ n∗

i,j , and 2 if ni,j and n∗
i,j are collinear but with

opposite directions.
All presented algorithms were run with their given de-

fault parameter settings. However, it is notable that some
tuning of parameters may give better accuracy for each al-
gorithm.

Table 4. Average accuracy on the database
and running time for all tested techniques.

Method P<2, max emn σe MCE Time,
% sec

Gray Code 96.6 7.8 0.6 0.6 0.014 4.0
SDPS 88.5 13.0 1.0 0.9 0.092 6.0
SDPS + Gradation 89.8 12.7 1.0 1.0 0.111 .
SDPS + Strip 93.4 9.4 0.8 0.7 0.085 .
DPM 79.1 19.4 1.4 1.6 0.235 6.0
DPM + Gradation 84.3 13.3 1.2 1.2 0.246 .
DPM + Strip 92.4 12.6 0.8 0.8 0.138 .
BVZ 77.2 42.0 1.8 3.4 0.120 3517.0
BVZ + Gradation 82.9 30.5 1.3 1.5 0.092 .
BVZ + Strip 91.5 39.6 0.9 1.6 0.090 .
SAD 79.7 42.3 1.8 3.4 0.167 1.7
SAD + Gradation 84.9 32.0 1.2 1.7 0.158 .
SAD + Strip 93.1 35.1 0.8 1.3 0.089 .
BP 73.1 27.2 2.1 3.0 0.182 180.0
BP + Gradation 76.6 20.8 1.8 2.3 0.161 .
BP + Strip 88.5 17.6 1.0 1.2 0.162 .
CM 88.1 19.5 1.0 1.1 0.091 30.0
CM + Gradation 88.5 21.7 1.2 1.4 0.126 .
CM + Strip 92.1 20.7 0.9 1.1 0.098 .
PSM FCV 69.1 13.5 1.7 1.7 0.086 4.0
PSM Four-path 53.5 12.9 2.4 2.0 0.045 37.0
PSM Shapelet 71.2 11.6 1.7 1.7 0.036 153.0

Gradation and Strip refer to active projection of a Colour Gradation
or Colour Strip pattern, respectively, on the object.

6. Conclusion and Future Work

Experimental results in Table 4 show that active recon-
struction techniques consistently perform better than purely
passive ones. Passive Binocular Stereo is greatly improved
by supplementing the process with only a single light pat-
tern (indicated as Gradation and Strip in Table 4).

The performance of a pure Gray Code approach is
clearly ahead of other techniques. This is quantitively
shown in its attainment of the lowest scores for all cate-
gories. Through effective formulation it can handle coding
errors that can happen in problem areas having low albedo
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or strong specularities, such as the eye regions [2] where
PSM techniques usually fail.

Our comparative results differ from the universally ac-
cepted in Computer Vision ranking of stereo algorithms
in [13] and the Middlebury Stereo Vision web page
(www.middlebury.edu/stereo/).

It was found that global algorithms based on more com-
plex optimisation techniques such as belief propagation
(BP) and the graph minimum cut (BVZ) did not perform as
well as expected for the case of human faces and relatively
large disparity ranges. Here the accuracy of Dynamic Pro-
gramming based algorithms is similar or even better than
for the much more computationally complex Graph Cut al-
gorithm.

Nonetheless, all tested algorithms show reconstruction
errors that are not of a standard for direct usage in present-
ing virtual humans and this is currently only remedied in
postprocessing steps. Our experiments have shown that er-
rors do not occur in specific areas of the face. Masking
out specific regions that are highly textured, counter lowly
textuered did not show significant alterations in results.

Active methods such as Structured Lighting and Photo-
metric Stereo have problems with specular, shadow and low
albedo regions. Binocular Stereo has problems dealing with
textureless regions of the face which is why the projection
of a colour strip pattern saw a marked improvement in re-
construction result.

Photometric stereo, although active in nature, is unable
to recover true depth measurements due to the required gra-
dient field integration step. None of the tested algorithms
show performance comparable to the best offerings found
in the other two techniques.

Overall, the Gray Code approach provides the expected
best overall results. However, from these results it appears
that the SDPS algorithm coupled with just a single strip pat-
tern is a strong choice in terms of accuracy and time com-
plexity.

Further investigation into the localisation of errors over
the face will be conducted. The inclusion of more algo-
rithms is being undertaken, especially for Binocular Stereo.
Along with this, the creation of a larger database of test sub-
jects is an ongoing and ever increasing project.
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