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ABSTRACT 

Supervised and semi-supervised learning are frequently 

applied methods to annotate videos by mapping low-level 

features into semantic concepts.  Due to the large semantic 

gap, the main constraint of these methods is that the 

information contained in a limited-size labeled dataset can 

hardly represent the distributions of the semantic concepts.  

In this paper, we propose a novel semi-automatic video 

annotation framework, active learning with semi-supervised 

ensembling, which tries to tackle the disadvantages of 

current video annotation solutions.  Firstly the initial 

training set is constructed based on distribution analysis of 

the entire video dataset. And then an active learning scheme 

is combined into a semi-supervised ensembling framework, 

which selects the samples to maximize the margin of the 

ensemble classifier based on both labeled and unlabeled 

data. Experimental results show that the proposed method 

performs superior to general semi-supervised learning 

algorithms and typical active learning algorithms in terms of 

annotation accuracy and stability. 

1. INTRODUCTION 

Video annotation aims at extracting metadata for describing 

the video content at both syntactic and semantic levels. It is 

an important step for fast and robust search of video or 

video clips in large video collections. Generally, to achieve 

good generalization ability, typical learning-based methods 

need a large labeled corpus to build statistic models for the 

semantic concepts, in which intensive manual labeling is 

required.  On the contrary, unlabeled samples are plentiful 

and easy to be obtained via diverse ways. Thus semi-

supervised learning techniques, which exploit unlabeled 

data as well, are proposed to improve the performance of 

annotation especially in case that the labeled dataset is 

limited. Existing approaches include semi-supervised 

ensemble methods [2][3], co-training[4], etc.  

Ensemble methods, as the frequently-applied adaboost 

[5], use a base learning mechanism to iteratively construct a 

weak classifier and add it to the current ensemble classifier 

with an appropriate scalar multiplier (step-size).  It is known 

that such algorithms are actually performing gradient 

descent of an error function in a function space [6].  

D´Alch´e Buc et al [2] showed that the error function can be 

extended and applied in the case of semi-supervised 

learning. K.P.Bennett [3] further proposed the ASSEMBLE 

algorithm, which works with any cost-sensitive base learner 

and at the same time has a simple, adaptive step-size rule.  

Although semi-supervised ensemble methods perform well 

in the empirical tests on both two-class and multi-class 

problems, they fail on complex dataset [2], where the 

labeled data will really bring crucial information that can’t 

be obtained in unlabeled data such as the case in video 

dataset.

To tackle this issue, in the novel framework presented 

in this paper, we argue that firstly the training set should be 

carefully constructed to ensure the performance of the initial 

classifier. That is, according to the distribution analysis of 

the entire video dataset, a “skeleton” of the semantic 

prototypes can be obtained in an initial training set 

represented by a limited number of samples. Then the active 

learning scheme is further introduced, which improves the 

performance by adding the informational details with least 

manual labeling.  

The initial training set can be obtained by exploiting the 

clustering information, which is extracted  according to the 

following observation on a large video collections (i.e., 

typically a semantic concept and its corresponding feature 

variation within a same video are relative smaller than those 

among different videos, as well as the concept drifting is 

gradual in most cases [1]). Thus, firstly the video shots are 

pre-clustered in an over-segmentation manner based on 

visual similarity and temporal order [9]. And then the initial 

training set is constructed by selecting samples according to  

the clustering information.  

Generally, active learning is a repetitive process 

comprising two primary components: a sample selection 

engine and a learning engine. In one round of an active 

learning process, the sample selection engine selects 

samples from unlabeled sample pool and requests user to 

label them before passing to the learning engine. The 

learning engine then uses a supervised learning algorithm to 

train or update the classifier with these newly labeled 

samples. In practice, most of active learning methods 

empirically apply “closest-to-boundary” criterion to choose 

the most uncertain samples [7][8]. The major limitation of 

existing active learning algorithms on video annotation is 

that the “closest-to-boundary” sample selection criterion 
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may not be able to tackle the large variations and 

complexity of typical semantic concepts in videos.  

In this paper, a novel active learning scheme, 

ALBoostU, is proposed, which combines the two primary 

components of active learning into a semi-supervised 

ensembling framework. ALBoostU inherits good properties 

of ASSEMBLE (i.e. the unlabeled data can be assimilated 

into margin cost sensitive ensemble algorithms etc.[3]). 

Moreover, it takes advantages of active learning to 

accelerating the converging speed of the learning process.  

Based on the relationship between the margin of the 

ensemble classifier and the upper bound of the 

generalization error, the efficiency of the selected samples 

and learning process can be evaluated theoretically.  

The rest of this paper is organized as follows. Section 2 

introduces the proposed framework. In Section 3, the 

criterion of dynamic construction of the initial training is 

presented.  In section 4, the proposed active learning 

algorithm with ASSEMBLE is detailed.   Experiment results 

are presented in Section 5, followed by concluding remarks 

and future work in Section 6. 

2. FRAMEWORK 

Figure.1 illustrates the flow of video dataset pre-processing. 

Firstly, each video is segmented into shots according to 

timestamp (for DVs) or visual similarity (for analog videos). 

Each shot is represented by a certain number of frames 

uniformly excerpted from the shot.  And then all the shots 

are time-constrained clustered, which is same as [9]. In the 

following process, each cluster is represented by the shot 

closest to its center in feature space and one cluster is 

regarded as one sample of dataset. 
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Figure.1. Pre-processing of the video dataset 

As shown in Figure.2, the semi-automatic annotation 

process consists of two primary steps including 

Construction of Initial Training Set and Active Learning 

with ASSEMBLE.

The initial training set is constructed by selecting the 

“representative” samples (clusters) from dataset. And the 

initial prediction of unlabeled part of dataset is obtained by 

the Gaussian-RBF kernel SVM trained on the constructed 

dataset for multiple-class problems and is used in 

ASSEMBLE. Then, in active learning with ASSEMBLE, 

the base learner ft is firstly trained on current labeled and 

unlabeled data (with initial prediction). Then the sample 

selection and learning process is embedded to further 

maximize the margin of the ensemble classifier. After that, 

the initial prediction of the unlabeled part will be updated 

according to current ensemble F. This learning process will 

iterate for several rounds.  

As the dataset is consisted of the cluster centers, it is 

necessary to extend the annotation result of each sample to 

each shot in video dataset.  Here, we simply make the shots 

in a cluster to take the same label as the label of the cluster 

center. 
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Figure.2. Framework of semi-automatic annotation process 

3. CONSTRUCTION OF INITIAL TRAINING SET 

As aforementioned, the initial training set is constructed to 

roughly represent the prototypes of the semantic concepts to 

be modeled from the video collections. As the distribution 

of these prototypes is locally consistent and globally 

dispersive in the low-level feature space, we propose to use 

the following properties, Salience and Dispersiveness to 

measure the representativeness of the training set. 

The Salience property measures the local consistency of 

clusters. That is, the clusters with relatively large number of 

video shots should be selected firstly. The Dispersiveness

property is defined from the intuition that as the clusters are 

obtained in an over-segmentation manner [9], the two salient 

clusters close to each other in temporal order may belong to 

the same concept with high probability. So generally 

selecting one of them is enough.  That is to say, the sample 

to be selected should distribute dispersively through the 

whole video dataset thus more prototypes of the semantic 

concept can be included in training set. 

The final criterion for constructing the initial training 

set is a linear combination of the Salience and 

Dispersiveness properties under the constraint of the fixed 

size of initial training set.  In implementation, a heuristic 

searching scheme is used. Firstly, we select the samples 

according to their cluster size. If there are samples lying 

close to each other in temporal order, only one of these 
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samples is selected. This selecting and removing iteration 

will continue until the fixed size of training set is obtained.  

4. ACTIVE LEARNING IN SEMI-SUPERVISED 

ENSEMBLE FRAMEWORK 

In this section, firstly we will briefly introduce the criterion 

of training new weak learner ft+1 in ASSEBLE[3], and then 

detail the proposed active learning with ASSEMBLE, 

ALBoostU, which is based on the formal one. 

4.1. Criterion of training new weak learner 

In ASSEMBLE [3], let Ft represents the ensemble classifier 

after adding the t-th component classifier. The weak learner 

ft+1 is trained to minimize the margin cost function for 

labeled and unlabeled data as follows 

( ) ( ( )) (| ( ) |)i i t i j t j

i L j U

C F M y F x M F x         (1) 

where ai,aj are weights of labeled and unlabeled samples, L

and U are labeled and unlabeled dataset and M(z)=e-z is the 

cost function. And the label for unlabeled data is 

yi=sign(F(xi)).  Finding a possible new base classifier ft+1 to 

minimize the margin cost function  is equivalent to 

maximize the inner product J(F,f) = – C(F), f . Thus the 

criterion of training new weak learner is 

arg max ( , )

( ) '( ( )) ( ) '( ( ( )) ( ))

opt
f

i i i i i i i i i i

i L i U

f J F f

a y f x M y F x a y f x M sign F x F x

   (2) 

where M’(z) is the derivative of the margin cost function 

with respect to variable z.  As C(F) for unlabeled data is not 

differentiable, the sub-gradient of C(F) is defined as 

C(Ft(xi))=aiyiM’(F(xi))   for xi U          (3) 

4.2. Active learning with ASSEMBLE 

Generally, the performance of ASSEMBLE is constrained 

by the labeled dataset and the complexity of the semantic 

concepts. To further improve the performance, active 

learning is introduced. For comparison, we firstly propose a 

straightforward active learning scheme, NALBoostU (Naïve 

Active Learning with AdaBoostU), which takes the closest-

to-boundary criterion to select the most “informative” 

samples. However, this scheme does not take advantage of 

the margin cost function in ASSEMBLE.  

To tackle this issue, we propose a novel active learning 

scheme, ALBoostU, which starts from the idea that the 

selected samples and the corresponding new weak learner 

should further minimize the margin cost function in 

equation(4). For simplicity, we take two-class problem as 

example to derive the sample selection and learning criterion. 

And this criterion can be generalized to the multiple-class 

problem by the schemes that use multiple two-class 

classifiers to solve multiple class issues. 

In one round of active learning, a sample xj, j U is 

selected to be labeled. From equation(2), the unlabeled 

sample and corresponding base learner are selected to 

maximize the gradient of the cost function. That is  

, ,

, ,

{ }

( , , ) arg max( ( , , , ))

arg max[ ( ) '( ( ))

( ) '( ( ( )) ( ))

( ) '( ( ( )) ( ))]

j j

j j

j

opt j j opt j j
f x y

i i i i i
f x y i L

j j j j j

i i i i i

i U x

f x y J F f x y

a y f x M y F x

a y f x M sign F x F x

a y f x M sign F x F x

             (4) 

where ai is the sample weights. The optimal solution may be 

obtained by searching through the base learner’s function 

space and the unlabeled samples’ feature space, which is a 

computation extensive process.  Here, we take an iterative 

process similar to EM (Expectation Maximization) to find 

the suboptimal solution. As the samples in dataset are the 

clusters, the cluster size should be considered in the 

following EM-like process. 

E-Step: In ASSEMBLE algorithm, the base learner f is

trained according to current labeled and unlabeled dataset.  

We calculate the increment of expectation on the inner 

product by adding an unlabeled sample xj with all possible 

label yj
r, according to current ensemble classifier F and base 

learner f. The unlabeled sample is selected as follow,

,

,

( , ) arg max [ ( , , , ) ( , )]

arg max [( ( ) '( ( ))

sgn( ( )) ( ) '(sgn( ( )) ( ))]

j j

j j

r

j j j j
x U y

r r

j j j j j j
x U y

j j j j

x y E J F f x y J F f

n a E y f x M y F x

F x f x M F x F x

            (5) 

where nj is the number of shots that the j-th cluster contains.   

M-Step: After adding the newly labeled samples, the 

base learner f will be re-trained as follow 

'

'

arg max [ ( , ', , ) ( , )]

arg max [( ( ) '( ( ))

sgn( ( )) ( ) '(sgn( ( )) ( ))]

opt j j
f

j j j j j j
f

j j j j

f E J F f x y J F f

n a E y f x M y F x

F x f x M F x F x

              (6) 

By this EM-like iterative process, the suboptimal 

solution of (fopt, xj, yj) is obtained, which further maximizes 

the margin of ensemble classifier by sample selection and 

learning process of active learning. The remaining processes 

including prediction of unlabeled data, update of the sample 

weights and choice of step-size of newly obtained base 

classifier etc., are similar as ASSEMBLE [3].  

According to the upper bound of generalization error 

function in terms of the margin of ensemble [10]  

2fP̂r(margin ( , ) ) ( )d

m
x y O                     (7) 

for any 0  with high probability, d is VC-dimension of 

base classifier space and m is the size of training set. The 

effectiveness ALBoostU may be that ALBoostU will reduce 

the first term in equation(7) maximally by adding new 

samples.  

5. EXPERIMENT 

To evaluate the performance of our proposed 

algorithms, we conduct several experiments on real video 

dataset, which contains about 50 videos with a wide variety 
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of contents. After pre-process of the video dataset, about 

6400 shots are obtained. These shots are further pre-

clustered into about 1400 clusters in an over-segmentation 

manner. Each shot is manually labeled as “indoor”, 

“cityscape”, “landscape” and “unknown” according to the 

definitions in TRECVid [12].  The base learner used is MLP 

(Multiple Layer Perceptron) as illustrated in TORCH [11], 

which consists of a linear layer, a tanh layer, a linear layer 

and a log-softmax layer. Low-level feature vector we used is 

90-D, consisting of a 36-D HSV color histogram, a 9-D 

color moment and a 45-D block-wise edge distribution 

histogram [9]. Each shot is represented by a certain number 

(i.e. 10) of frames uniformly excerpted from the shot, and 

the shot closest to the cluster center is taken as the sample to 

form the dataset. 

200 210 220 230 240 250 260 270 280
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

#  of samples labeled

e
rr

o
r 

ra
te

Comparison of different algorithms on video dataset

ASSEMBLE.AdaBoost
NALBoostU 
ALBoostU

(a) 

400 410 420 430 440 450 460 470 480
0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

# of samples labeled

e
rr

o
r 

ra
te

ASSEMBLE.Adaboost
NALBoostU 
ALBoostU

Comparison of different algorithms on video dataset

(b) 

Figure.3. Comparison of different algorithms on video dataset. (a) 

Initial size of training set: 200. (b) Initial size of training set: 400 

 As aforementioned in Section 3, the initial training set 

with 200 and 400 samples is dynamically constructed 

according to representative criterion.  In each round of 

ALBoostU, 8 samples are selected for user to label.  In 

ASSEMBLE algorithm, the samples for labeling are 

randomly selected. In NALBoostU algorithms, the samples 

are selected according to the closest-to-boundary criterion.   

The experiment results are shown in Figure 3, where we can 

see that the proposed ALBoostU performs superior to both 

NALBoostU and ASSEMBLE. In Figure 2, we can also see 

that, when the size of initial training dataset is 200, the error 

rate is about 0.172; while when the size of initial training set 

is 400, the error rate is 0.146.  That is to say, even using the 

representative criterion to constructing training set, adding 

200 more training samples only reduce 0.026 in terms of 

error rate. While after adding 80 samples, the error rates of 

ASSEMBLE, NALBoostU and ALBoostU reduce 0.018, 

0.03 and 0.08, respectively. One possible explanation is that 

by selecting 200 samples, the “skeleton” of the video dataset 

can be well drawn. So adding more such kind of labeled 

samples will be less helpful than those in active learning 

scheme 

6. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a novel semi-automatic video 

semantic annotation framework, ALBoostU, which further 

maximizes the margin of ensemble classifier by labeling 

elaborately-selected new samples.  The experiments on real 

video dataset have shown promising results. This framework 

can be further applied in building semantic indexing for 

large repository of video data on the Internet that enables 

real content-based video search. Future work will be to 

apply this scheme on multiple semantic concepts, more 

types of videos, and larger video database. 
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