
PEER-TO-PEER ASYNCHRONOUS VIDEO STREAMING USING SKIP LIST

Dan Wang and Jiangchuan Liu∗

School of Computing Science, Simon Fraser University, Burnaby, BC,
V5A 1S6, Canada, Email: {danw, jcliu}@cs.sfu.ca

ABSTRACT
Media distribution through application-layer overlay net-

works has received considerable attention recently, owing to
its flexibility and readily deployable nature. On-demand stream-
ing with asynchronous requests, and in general, with VCR-
like interactions, nevertheless remains a challenging task. In
this paper, we introduce the Skip List, a novel randomized
and distributed structure that inherently accommodates dy-
namic and asynchronous clients. We demonstrate a practi-
cal skip list based streaming overlay with typical VCR oper-
ations. Our simulation results show that the skip list based
overlay is highly scalable, with smooth playback for diverse
interactivities, and low overheads.

1. INTRODUCTION

The widespread penetration of broadband access has made the
Internet of today a popular vehicle for real-time media distri-
bution. Recently, overlay streaming [3][11] has emerged as
a promising scheme for scalable streaming to a large client
population. In a peer-to-peer overlay network, each node re-
ceives media data from certain neighboring nodes; the data
are cached in its local buffer, and then relayed to other neigh-
bors, eventually realizing a multicast distribution. All these
operations are implemented in the application layer, which
means the system is highly flexible and readily deployable.

A key challenge in an overlay streaming system is to con-
struct a data distribution structure among the collaborative
nodes. This structure should be capable of accommodating
the autonomous nodes that join or leave the overlay at will
or even crash without notification. The problem is further
complicated when introducing on-demand playback requests,
and, more general, such VCR interactions as pause/resume,
random-seek, fast-forward, and rewind. These services, though
attractive to clients and content providers alike, call for an
additional indexing structure to locate the expected data seg-
ments with asynchronous playback offsets. This is difficult to
achieve through a centralized entity, because VCR operations
are more frequently invoked than node joining or leaving, and
often persist a long duration. Thus, the VCR operations have
seldom been incorporated in existing systems.

* J. Liu’s work was supported in part by a Canadian NSERC Discovery
Grant 288325, an NSERC Research Tools and Instruments Grant, a Canada
Foundation for Innovation (CFI) New Opportunities Grant, a BCKDF Match-
ing Grant, and an SFU President’s Research Grant.

Several pioneering works on peer-to-peer on-demand stream-
ing use a centralized server [4] to accommodate all asyn-
chronous requests. This server, however, becomes a bottle-
neck when frequent VCR operations are introduced. In [12]
the nodes are organized into a linear/tree structure with the
playback offset being an indexing key. A linear or tree struc-
ture, however, can not achieve asynchronous accesses in sub-
linear time and require complicated rebalancing operations.
Moreover, neither of them supports fast-forward and rewind.

To this end, we propose the Skip List, a novel data struc-
ture that effectively realizes the above demands. Basic skip
list is first introduced in [7] and its extensions have recently
been applied to practical network applications [2][6]. Specif-
ically, Harvey et al. [6] have shown a scalable peer-to-peer
network using SkipNet. Their focus is mainly on file index-
ing service as well as content and path locality. The objective
and hence solutions are different from the on-demand stream-
ing applications targeted in our study.

We demonstrate a practical overlay network that seam-
lessly integrates indexing and data distribution through a skip
list, and discuss the key issues involved in realizing this skip
list based overlay. Our simulation shows that the skip list
based streaming overlay achieves a reasonably stable stream-
ing rate with a low control overhead. More importantly, it
effectively supports diverse VCR operations at a reasonably
low costs, which is difficult to achieve in existing systems.

2. OVERVIEW OF SKIP LIST

A skip list [7] is a randomized ordered list of keys with addi-
tional, parallel links. Each key is first inserted into the base
layer (layer 0), and then randomly promotes itself to the up-
per layer with probability 1

2 . If successful, the key will leave
a logical node copy in the previous layer, and try to promote
itself again in the new layer until it fails or a MaxLayer is
met. Assuming it stops at layer l, it will then connect to all
the neighbors from layer 0 through layer l. In this layered
representation, a single key in the list is mapped into multiple
logical nodes along the same column. Since the parallel links
in higher layers skip geometrically more than those in lower
layers, a key search is started from the highest layer, so as to
quickly skip unnecessary parts, and then progressively move
to lower layers until it hits a logical node having the key. An
example of skip list with 16 nodes is shown in Fig. 1.

1397
1­4244­0367­7/06/$20.00
©2006 Canadian Crown Copyright ICME 2006

5

4

5

4

3 31292523157 564843 8765 90

7 25 29 43 56 65 90

7 25 43 56

23

90

25 56 90

0

3

2

1

0

3

2

1

25

25

90

10399 110

110

Fig. 1. A Skip List of 16 nodes.

Compared to other typical indexing structures, such as an
AVL tree or a B+ tree, a randomized skip list is significantly
easier to implement and generally faster. More importantly,
its probabilistic nature eliminates the need for costly rebalanc-
ing operations after each key insertion, making it an attractive
solution for distributed applications.

3. SKIP LIST BASED ASYNCHRONOUS OVERLAY

The playback offset of a client serves as its key in the skip list,
and all logical nodes associated with this key map to the client
node in the overlay. The key is updated over time according
to the playback progress. Since the playing speed is identical
for all the normal clients, their relative playback distances and
hence the skip structure will not change over time, unless a
client joins, leaves, or crashes, or a VCR operation is invoked.
In addition, the client also maintains the logical links in the
skip list. We detail the construction and maintenance of a skip
list based overlay and the practical issues toward supporting
all the typical VCR operations.

3.1. Join, Leave and Failure Recovery

We assume that there is a content server serving as an anchor
node in the overlay. When a new client is to join the overlay,
it first contacts the content server, which redirects the client to
the top-layer node. The new client then performs a top-down
search to insert itself into the base layer, and chooses the left
neighbor (which has an earlier playback time) as its supplier
in the overlay. It goes on to conduct the bottom-up random
promotion, and set up its links to the corresponding neighbors
in each layer. In this process the potential neighbors across all
the layers can be recorded and a few are selected to serve as
multi-partners for this new client.

Theorem 1 The complexity of the join operation is O(log N)1.

A client that is scheduled to leave the overlay should first
notify its neighbors in the skip list, such that they can re-
connect with each other to form new neighborships.

Theorem 2 The expected message cost for a graceful client
departure is O(1).

1The proofs of all lemmas and theorems can be found in [9].

Intuitively, this constant amortized cost holds because the
number of nodes with O(log N) neighbors is quite small.
Most of the nodes have far fewer neighbors in the skip list,
and hence lower costs. A similar argument suggests that while
the maximum extra neighborhood information kept at a client
node is O(log N), the average is O(1) only.

Every client periodically exchanges echo messages with
its neighbors in the skip list, enabling an abrupt client failure
to be easily detected. The parallel links in the skip list help the
affected neighbors perform local repairs. This is a variation
of the search operation and the cost is at most O(log N).

3.2. VCR-like Interactions

Since the cost for a leave and then re-join with a new play-
back offset is only O(log N), this combination can be used to
implement most typical VCR operations.

1. Pause and Resume The client can simply stop playback,
but still stay in the overlay, accepting and supplying data at
the normal speed. If the pause time is very long and its buffer
overflows, it temporarily leave the overlay. Once the resume
command is given, it rejoins with the original offset.

2. Random-seek The client can simply leave and then re-
join the overlay with the new offset after seeking.

3. Fast-forward and Rewind Assume the speed of fast-
forward or rewind is v, which can be realized by playing one
segment out of v segments [10]. This can be implemented
through random seek; however, since a fast-forward or rewind
movement generally consists of a long series of such jump
operations, more efficient solutions are expected.

Given that an overlay node has a size-limited buffer, af-
ter jumping v − 1 segments, the fast-forwarding or rewinding
client has to move from its current supplier to a new one. The
key issue of a jump operation is thus to locate the suppliers
with the expected segments in time. Skip list provides effec-
tive support toward this operation through its horizontal links,
which enable a client to skip unnecessary nodes (and hence
segments) at a fairly stable speed. We now analyze the cost
of the jump operations for fast-forward. The analysis also ap-
plies to rewind movements after a symmetric transform.

We assume that the playback offsets of two consecutive
nodes in the overlay differ d segments on average, and the
client can retrieve n data segments from its supplier with VCR
speed v. Then following lemma gives the nodes to be skipped.

Lemma 3 The number of logical nodes to be skipped ahead
is n(v−1)

d for each jump operation.

Theorem 4 Each jump operation for fast-forward is O(1).

Intuitively, the client needs to follow layer log(n(v−1)
d) in

the skip list. The above theorem suggests that the cost for
a jump operation is independent of the overlay size, nor the
fast-forwarding/rewinding speed.

1398

In practice, log(n(v−1)
d) might not be an integer. In this

case, the client can temporarily move along higher or lower
layer links, or adaptively set n; i.e. stay for a longer or shorter
period with the current supplier, to achieve an average speed
of v. We now derive the range for n, the number of segments
to be retrieved from a supplier at a fast-forwarding speed v,
and the maximum speed that the overlay can support.

We consider the following physical constraints, which are
adapted from [8]: B, the buffer size of each client; T , the con-
nection time from one client to the other; t, the playing time
for each data segment. We also assume that the downloading
time of each segment is smaller than t.

Lemma 5 For fast-forwarding speed v, the number of data
segments that a supplier can provide is [T

t , B(B−v)
vB−B].

Theorem 6 The maximum speed that the system can provide
is no higher than tB2−TB

TB−tB .

Although the VCR speed of the system has a upperbound
limited by the system constraints, a speed of no more than
32x can be easily achieved even in a small to medium skip
list overlay (say, less than 500 nodes), and, as investigated in
[10], a higher speed is rarely perceived as useful by users, nor
is it supported in most commercial VHS or DVD players.

4. PERFORMANCE EVALUATION

In this section, we present a few representative results of our
simulation. For a complete version, please refer to [9].

We used the GT-ITM topology generator to produce a
1000-node networks. The streaming rate was 256Kbps and
the length of the stream 150 minutes. The default size of
the client-side buffer was 15Mbytes. We adopted Segment
Missing Rate (SMR) as the major criterion for evaluating the
streaming quality. A data segment is considered missing if it
is not available to client till the play-out time, and the SMR
for the whole system is the average ratio of the missed seg-
ments across all the participating clients. For comparison, we
also simulated an existing on-demand overlay streaming sys-
tem, oStream [4] which employs a tree structure. Each client
node caches played-out data and relays to its children, which
may have asynchronous playback offsets. A centralized di-
rectory server is used to maintain the global information of
the overlay, which facilitates client join or failure recovery.

4.1. Streaming Quality

Fig. 2 plots the segment loss rates (SMRs) for 1000-node
skip list and oStream overlays during a 4500-sec simulation
with cross traffic. It can be seen that the loss rate of skip list
is generally less than 0.1, which is not only lower than oS-
tream, but also more stable. From a video decoding point of
view, such a loss can be effectively masked by interleaving
or error-concealment techniques. On the other hand, the loss

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

5 10 15 20 25 30 35 40 45

S
M
R

Time(x100 seconds)

oStream
DSL

Fig. 2. Segment missing rate (SMR) for DSL (skip list) and oStream
with local bandwidth fluctuation.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

10 15 20 25 30 35 40

S
M
R

Duration(%)

oStream(Enhc)
DSL(Rnd Seek)
DSL(Original)

Fig. 3. Segment missing rate as a function of VCR duration for
DSL (skip list) and oStream.

rate of oStream greatly fluctuates over time, with a peak value
as high as 0.35, resulting in poor video quality. This is mainly
because oStream relies on a specific tree structure for stream-
ing, so bandwidth reduction at an internal link of the tree, and
particularly at those close to the root, could result in severe
loss across many descendants.

4.2. Impact of VCR Interactions

The current version of oStream does not support these oper-
ations. To enable comparison, we implemented an enhanced
oStream, in which a jump operation is realized by moving
through the links in the tree structure either in the direction of
the parent (for fast-forward) or the descendant (for rewind).
This distributed search avoids repeated contacts with the server,
which is clearly non-scalable for frequent VCR operations.

We randomly picked up 10% of clients to perform fast-
forward or rewind operations with 2x speed. The duration of
each VCR operation varied from 5% of the stream length to
40%. Fig. 3 shows streaming quality for the skip list and
the enhanced oStream overlays. Clearly, skip list outperforms
oStream, and its quality is almost independent of the dura-
tion of the VCR operations. On the other hand, the quality of
the enhanced oStream quickly becomes worse as duration in-
creases, and is generally unacceptable for a duration of greater

1399

than 20% of the stream length. Intuitively, for a tree overlay
like oStream, the node initiating fast-forwarding or rewinding
may still find the expected data segments in the buffers of its
parent or close ancestors, but such an inefficient linear search
will soon cause it to suffer from buffer outage.

As mentioned before, each jump can be implemented through
a random-seek operation as well. To show its (in)effectiveness,
we also plotted streaming quality in this implementation. As
shown in Fig. 3, its performance is generally acceptable with
short VCR durations, but becomes worse with increased du-
ration. This is mainly because random-seek needs a much
higher cost and hence longer time to identify subsequent sup-
pliers, and the lag accumulates over time.

5. CONCLUSIONS AND DISCUSSIONS

In this paper, we introduced a skip list, for on-demand over-
lay media streaming. A skip list is a randomized and dis-
tributed structure, which inherently accommodates node dy-
namics and asynchronous requests. We have shown that all
typical VCR operations can be implemented in this overlay
with O(1) or O(log N) message costs.

The performance of the skip list based overlay was exam-
ined under different network and client configurations, and
our preliminary results re-affirm its excellent scalability and
robustness. Its streaming quality is reasonably good with asyn-
chronous requests and frequent VCR operations, while the
latter has seldom been supported in existing overlay systems.

There are difficulties associated with the skip list, how-
ever. For example, the client which unfortunately promotes
itself to the highest layer is responsible for all join dispatches.
This might introduce big burdens for a client machine. The
situation is made worse as the number of client is not deter-
mined in advance, and thus, the MaxLayer discussed in sec-
tion III does not exist, resulting the top layer nodes be pro-
moted excessively. We address these issues in [9] by intro-
ducing a novel dynamic skip list (DSL) structure which can
effectively restrain the layers and balance the overhead. In
DSL, we compress a suitable number of top layers of the skip
list into one layer, which is monitored by the content server.
This top layer is dynamic overtime. We thus design an effi-
cient scheme for the content server to compress the top layers.

In addition to content indexing, content distribution is an-
other important feature for peer-to-peer overlays. As we are
using multi suppliers for robustness, the content distribution
becomes more complicated. In [9], we design a distribution
scheme based on network coding. Network coding [1] is first
considered for improving network throughput. It is used [5]
for content distribution of large files in peer-to-peer networks.
We apply network coding in video streaming for the first time
and give out an optimal content scheduling algorithm.

As a future work, we are interested in investigating the
performance of the DSL-based streaming overlay with more
realistic network configurations and heterogeneous clients, pos-

sibly using the PlanetLab testbed, and compare it with those
overlay systems using advanced structures. We are also in-
terested in incorporating advanced network coding or video
coding algorithms; an example is the Multiple Description
Coding (MDC), which is a good match to the DSL structure
and could further improve its robustness.

6. REFERENCES

[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network
Information Flow”, IEEE Transactions on Information
Theory, vol. 46, pp. 1204-1216, July, 2000.

[2] J. Aspnes and G. Shah, Skip Graphs in Proc. ACM
SODA’03, Baltimore, MD, Jan. 2003.

[3] Y. Chu, S. Rao, and H. Zhang, “A Case for End Sys-
tem Multicast,” in Proc. ACM SIGMETRICS’00, Santa
Clara, CA, Jun. 2000.

[4] Y. Cui, B. Li, and K. Nahrstedt, “oStream: Asyn-
chronous Streaming Multicast in Application-Layer
Overlay Networks,” IEEE Journal on Selected Areas in
Communications, vol. 22, no. 1, pp. 91-106, Jan. 2004.

[5] C. Gkantsidis and P. Rodriguez, “Network Coding for
Large Scale Content Distribution,” in Proc. IEEE IN-
FOCOM’05, Miami, FL, Mar. 2005.

[6] N. Harvey, M. Jones, S. Saroiu, M. Theimer and A. Wol-
man, “SkipNet: A Scalable Overlay Network with Prac-
tical Locality Properties,” in Proc. USITS’03, Seattle,
WA, Mar. 2003.

[7] W. Pugh, “Skip Lists: A Probabilistic Alternative to
Balanced Trees,” Communications of the ACM, vol. 33,
no. 6, pp. 668-676, Jun. 1990.

[8] D. Qiu and R. Srikant, “Modeling and Performance
Analysis of BitTorrent-Like Peer-to-Peer Networks,” in
Proc. ACM SIGCOMM’04, Portland, OR, Aug. 2004.

[9] D. Wang and J. Liu, “A Dynamic Skip List Based Over-
lay for Asynchronous Media Streaming,” Technical Re-
port, Simon Fraser University, May, 2005.

[10] B. Wildemuth, G. Marchionini, M. Yang, G. Geisler, T.
Wilkens, A. Hughes, and R. Gruss, “How Fast is too
Fast? Evaluating Fast Forward Surrogates for Digital
Video,” in Proc. JCDL’03, Houston, TX, May, 2003.

[11] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStream-
ing/DoNet: A Data-Driven Overlay Network for Peer-
to-Peer Live Media Streaming,” in Proc. IEEE INFO-
COM’05, Miami, FL, Mar. 2005.

[12] M. Zhou and J. Liu, “Tree-Assisted Gossiping for Over-
lay Video Distribution,” to appear in Kluwer Multimedia
Tools and Applications, 2005.

1400

