
FEMA: A Fast Expectation Maximization Algorithm based on Grid and PCA

Zhiwen Yu
Department of Computer Science
City University of Hong Kong
yuzhiwen@cs.cityu.edu.hk

Hau-san Wong
Department of Computer Science
City University of Hong Kong

cshswong@cityu.edu.hk

Abstract

EM algorithm is an important unsupervised clustering algo-
rithm, but the algorithm has several limitations. In this paper, we
propose a fast EM algorithm (FEMA) to address the limitations of
EM and enhance its efficiency. FEMA achieves low running time
by combining principal component analysis(PCA), a grid cell ex-
pansion algorithm(GCEA) and a hierarchical cluster tree. PCA
and multi-dimensional grid are applied to find a set of ”good” ini-
tial parameters for the EM algorithm, while the hierarchical clus-
ter tree deals with the case where the cluster is concave by making
use of a merging algorithm. The experiments indicate that FEMA
outperforms EM by reducing 45% of the CPU time.

1. Introduction
EM algorithm is a fundamental unsupervised learning algo-

rithm in pattern analysis, machine learning, data mining, data-
base, multimedia and human motion analysis ([1], [2], [3], [4],
[5], [6],[7]). Unfortunately, EM algorithm has several limitations:
(i) the number of the clusters has to be pre-determined; (ii) the ini-
tial parameters of EM influences the performance of the algorithm;
(iii) it does not work as well for the concave clusters. To solve case
(i), EM algorithm first selects a large number of clusters. Then, it
combines with an agglomerative clustering strategy to estimate the
actual number of clusters based on measures such as the Minimum
Description Length (MDL). To solve case (ii), subsampling, vot-
ing and two-stage clustering ([6]) are proposed to find ”good” ini-
tial parameters of EM. Rough-set theory([7]) has also been applied
to obtain the parameters of the mixture model. To solve case (iii),
the minimal spanning tree(MST) is applied to merge the clusters
according to the Mahalanobis distance. But few previous works
consider the three limitations of EM algorithm at the same time. In
this paper, we propose a fast EM algorithm (FEMA) which com-
bines principal component analysis, a grid cell expansion algo-
rithm(GCEA) and a hierarchical cluster tree to address the limita-
tions of EM algorithm. PCA and GCEA are applied to find a set of
”good” initial parameters for EM algorithm, while the hierarchi-
cal cluster tree deals with the case where the clusters are concave
by applying a merging approach.

2. Overview of the algorithm
The objective of fast expectation maximization algorithm

(FEMA) is to alleviate the above limitations of the EM algorithm.

Figure 1 illustrates the framework of FEMA. FEMA first trans-
forms the data points from high dimension to low dimension by
PCA. Then, the data points are clustered by a grid cell expan-
sion algorithm(GCEA) in an approximate way. In the third step,
EM algorithm is applied to estimate the parameters of the mix-
ture models according to the initial parameters obtained by
GCEA. At the last stage, a hierarchical cluster tree is pro-
posed to manage the clusters.

Point set

PCA
Hierarchical

cluster tree

Clusters

Fast Expectation

Maximization Algorithm

GCEA EM

Figure 1. The framework of FEMA

2.1. Principal component analysis

The data points in a point set P are first transformed from
a high dimensional space to low dimensional space by principle
component method(PCA) as described in Figure 2 (where d is the
original number of dimensions of the data points and l is the re-
duced number of dimensions. The output of the PCA algorithm is
the input of the grid cell expansion algorithm.

Algorithm PCA(Point set P , the dimensions l)
1. Compute the d × d covariance matrix of P;
2. Obtain the eigenvectors and eigenvalues of the covariance matrix;
3. Transform the data points to a new coordinate system which consists of

the l eigenvectors with the maximum eigenvalues;

Figure 2. PCA algorithm

2.2. Grid cell expansion algorithm

In order to reduce the running time of EM algorithm, the initial
parameters of the mixture model should be close to the actual pa-
rameters. A grid cell expansion algorithm (GCEA) is proposed to

19131­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

obtain a set of ”good” initial parameters. Specifically, GCEA ob-
tains the initial parameters by approximately partitioning the data
points into several clusters in an efficient way.

� � � � �

� �

� �

� �

� � � 	 �

�
 � 	 �

� � � 	 �

� � �
 �

� � �
 �

�
 � � � �
 �
 �

� � � � �

� �

� �

� �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

(a) Wrong clustering (b) Neighboring expansion

� � � !

" #

" $

" %

� & ' ! � &) !

* + , + -

. /

. 0

. 1

(c) Expansion rule (d) Clustering

Figure 3. Grid cell expansion algorithm

Figure 3 illustrates an example of applying the grid cell ex-
pansion algorithm. The algorithm first (i) determines the cells
which correspond to the seeds (a seed is a grid cell which con-
tains more points than its neighboring cells). There are three seeds
c(4, 6), c(1, 4), c(6, 1) (The triangles in Figure 3(a)) in the exam-
ple. Then, it considers these three seeds one by one. The first seed
is the grid cell c(4, 6). The algorithm (i) initializes a heap H, (ii)
performs the assignment c(4, 6).seed = s3(where .seed stores
the cluster which the grid cell belongs to, c(4, 6).seed = s3 de-
notes the cell c(4, 6) belongs to the cluster s3), (iii) inserts
the cell c(4, 6) with cardinality |c(4, 6)| into H. It then per-
forms a de-heap operation recursively. The first de-heaped entry
is the cell c(4, 6). The cell c(4, 6) determines which neigh-
boring cells cj (the blue cells in Figure 3(a)) should be ex-
panded (The expansion implies that the neighboring cells now
belong to the same cluster with the cell c(4, 6)). There are con-
straints to restrict the expansion: (i) cj should not be empty; (ii)
|cj | ≤ |c(4, 6)|; (iii) |cj .pre| < |c(4, 6)| (For the case where
every cell is expanded by several cells, cj .pre records the cell
which has maximum cardinality among these cells by cj .pre).
Only the neighboring cells which satisfy the expansion condi-
tions can be expanded. The cells c(3, 6) and c(5, 6) satisfy the
conditions. As a result, c(3, 6).seed = s3, c(5, 6).seed = s3,
c(3, 6).pre = c(4, 6), c(5, 6).pre = c(4, 6). The algorithm in-
serts the cells c(3, 6) and c(5, 6) into the heap H. The next
de-heaped entry is the cell c(5, 6). The above operations are re-
peated in the case of the cell c(4, 6). The loop terminates when
H is empty. When H is empty, the cluster s3 includes the cells
c(6, 6), c(5, 6), c(4, 6), c(3, 6), c(2, 6), c(1, 6), c(1, 5)(The
blue cells in Figure 3(b)). The next cell c(1, 4) with
c(1, 4).seed = s1 is then expanded. Its neighboring cell

c(1, 5) in the Figure 3(c) changes its owner from s3 to s1 since
|c(1, 4)| > |c(1, 5).pre| = |c(1, 6)|(In other words, the cell
c(1, 5) satisfies the expansion conditions). After these three cells
c(4, 6), c(1, 4), c(6, 1) are expanded, all the non-empty grid cells
have their owners(seeds). The points in the grid cells are as-
signed to the owners that the grid cells belong to. At last,
the points are divided into three clusters as shown in Fig-
ure 3(d).

Figure 4 provides an overview of the grid cell expansion al-
gorithm. GCEA distributes the data points into several clusters in
an approximate way, which becomes the input of EM algorithm.
Note that, the user can control the final number of clusters by the
seed number parameter k. If the user does not provide the value of
k, the algorithm finds all possible clusters.

Algorithm GCEA(Point set P , seed number k)
1. Initialize an empty Max-heap H and a seed list L;
2. Hash all the points into the grid G;
3. Calculate the number of the points (|cj |) in each grid cell cj ;

(1 ≤ j ≤ nc, nc is the number of the grid cells)
4. Insert all the grid cells cj with cardinality |cj | into the heap H;
5. While (H is not empty or |L| < k)
6. get the next entry c of H;
7. flag = true;
8. For each neighboring cell ci of c
9. If (|ci| > |c|) flag = false;
10. If(flag) add c into L;
11. For each grid cell ci in L
12. Initialize an empty Max-heap H;
13. ci.seed = si;
14. Insert the cell ci into H;
15. Repeat
15. get the next entry c from H;
16. For each neighboring cell cj of c;
17. If (|cj | �= 0 && |cj| ≤ |c| && |cj .pre| < |c|)
18. cj .seed = c.seed; cj .pre = c;
19. Insert cj into H;
20. Until H is empty;
21. Assign the data points in the grid cells to the clusters

which the grid cells belong to;

Figure 4. Grid cell expansion algorithm

2.3. Expectation Maximization algorithm

Table 1 illustrates the parameters of the EM algorithm. EM al-
gorithm(Figure 5) first initializes the parameters of the mixture
model according to the approximate clusters which is obtained
through GCEA. In the first iteration(t=1), π

(1)
j and µ

(1)
j are com-

puted by Eqs. (1) and (2) respectively, while the entries of Σ
(1)
j are

evaluated based on Eq(3).

π
(1)
j =

|cj|
2 nc

j=1(|cj |)
(1)

µ
(1)
j =

2
x∈cj

x

|cj|
(2)

Covj(k, l) =

2
x∈cj

(xk − xk)(xl − xl)

|cj |
(3)

1914

Parameter Meaning
xi The ith data point
|cj| The cardinality of the cluster cj

nc The number of the clusters in the initial step
πj Mixing proportion of the cluster cj

µj the mean vector of the cluster cj

Σj covariance matrix of the cluster cj

Covj(k, l) covariance between k and l dimension of the cluster cj

xk the average value of the data points in the kth dimension
θ the parameters to be estimated
t the tth iteration
n the cardinality of the point set P

Table 1. The parameter of the EM algorithms

After that, the algorithm performs the E-step. The probability that the
data point xi belongs to the cluster cj in the tth iteration is computed by
the Bayes rule as follows.

p(t)(cj |xi) =
p(xi|cj)

� nc
l=1 p(xi|cl)

(4)

p(t)(xi|cj) =
1�

(2π)d|Σi|
e[− 1

2 (xi−µj)T (Σj)−1(xi−µj)] (5)

The sum of the probabilities is given by:

s
(t)
j = �

x∈P

p(xi|cj)
� nc

l=1 p(xi|cl)
(6)

During the M-step, the parameters of the mixture model are updated
by

π
(t+1)
j =

s
(t)
j

n
(7)

µ
(t+1)
j =

1

s
(t)
j

n

�
i=1

xi · p(t)(cj |xi) (8)

Σ
(t+1)
j =

1

s
(t)
j

n

�
i=1

(p(t)(cj |xi))(xi − µ
(t+1)
j)(xi − µ

(t+1)
j)T (9)

The algorithm performs the operations of E-step and M-step alternately
until the change of log likelihood of the mixture model (|Lt+1(θ|P) −
Lt(θ|P)|) is smaller than a threshold ε, where

L(θ|P) = �
x∈P

log(

nc

�
j=1

πj · p(x|cj)) (10)

Finally, the algorithm assigns the data points to their corresponding
clusters.

Algorithm EM(Data point set P , threshold ε)
1. Initialize the parameters of mixture models;
2. Repeat
3. E step: Calculate the likelihood;
4. M step: Update the parameter of the mixture model;
5. Until |Lt+1(θ|P) − Lt(θ|P)| < ε
6. Assign the data points to the corresponding clusters;

Figure 5. EM algorithm

2.4. Hierarchical cluster tree

If the user does not provide a specific value k (k is the number
of the clusters), EM generates a set of small clusters since the ini-
tial k value of EM is determined by GCEA. If the size of the grid
cell is small, the number of clusters is large. To organize the clus-
ters in a more orderly way, hierarchical cluster tree is proposed to
index the clusters.

The hierarchical clustering tree is constructed through a merg-
ing approach. In the first step, the merging algorithm measures the
similarity of the clusters by the evaluation function sim(ci, cj):

sim(ci, cj) = ω1 · d(ci, cj) + ω2 · o(ci, cj) (i �= j) (11)

d(ci, cj) = (µi − µj)
T (Σi + Σj)

−1(µi − µj) (12)

o(ci, cj) =

d−1

�
l=0

(cl
i.orientation − cl

j .orientation)2 (13)

where µi, µj , Σi, Σj are the means and variances of the clusters
ci and cj . d(ci, cj) is the Mahalanobis distance between the clus-
ters ci and cj , and o(ci, cj) denotes the similarity of the orienta-
tion of the clusters. The orientation of the cluster is defined as the
orientation with the maximum variance which is computed by Sin-
gular Value Decomposition(SVD). l denotes the l-th dimension.

The merging algorithm merges the two clusters (c∗i , c∗j) with
the minimum value sim(ci, cj) in the second step, i.e.

(c∗i , c∗j) = argminci,cj sim(ci, cj) (i �= j) (14)

1 ≤ i ≤ nc, 1 ≤ j ≤ nc (15)

where nc is the number of the clusters. It performs the above oper-
ations repeatedly until there is only one cluster left. Figure 6 il-
lustrates an example hierarchical cluster tree (here we assume k
= 5). The circles denote the clusters, while the red dotted lines
denote the process of merging. Cluster c4 and cluster c5 in Fig-
ure 6 are first merged by the algorithm based on their similarity
to form the new cluster c6. In a similar way, we obtain the fol-
lowing merged cluster pairs are {(c2, c3), (c7, c6), (c1, c8)}. The
algorithm repeats this process until a single cluster c9 is created
which is the root note of the hierarchical cluster tree. Note that,
every cluster in the hierarchy tree is only stored once.

1

21

5432

6

81

71

3 6

9

i Cluster i (Node i)

MergingK = 1

K = 2

K = 3

K = 4

K = 5
 Parent Children Period

Node structure:

ID Center Orientation |C|

Figure 6. Hierarchical cluster tree

The node structure of the hierarchical cluster tree is shown in
the lower right corner of Figure 6. The node stores the id, the cen-
ter, the orientation, and the cardinality|C| of the clusters. It also
stores the pointer to the parent and the children respectively. The
element Period stores the valid range of k values of the cluster. For
example, the period of the cluster c4 is [5, 5], which means that if
the user wants to obtain 5 clusters, c4 will be one of the clusters.

1915

Similarly, the period of the clusters c1 and c6 are [2, 5] and [3, 4]
respectively. The user can retrieve arbitrary set of k clusters effi-
ciently based on the hierarchical cluster tree (1 ≤ k ≤ Kmax,
Kmax is 5 in Figure 6). The algorithm only traverses the hierar-
chical cluster tree once and returns all the clusters whose periods
intersect with k value (e.g., if the user gives k = 2 in Figure 6,
only the cluster c1 with period [2, 5] and c8 with period [2, 2] sat-
isfy the requirement).

3. Experiment
All the experiments presented are executed with a Pentium

2.8 GHz CPU with 1 GByte memory. We generate two 3D data
sets(10000 points) with arbitrary shapes of the distribution in the
unit space [0, 10000]3 by a Gaussian random variable genera-
tor (The centers and the standard deviations of the clusters are
randomly selected). ”Gaussian(10)” denotes the dataset with 10
Gaussian clusters with randomly selected centers and standard de-
viations. We apply FEMA and EM to cluster the color of the pix-
els for image segmentation. The images come from the bird(600
images) and butterfly(619 images) categories in the ponce group
database [8]. The grid cell size is 400 × 400 × 400 for the gen-
erated dataset and 5 × 5 × 5 for image segmentation. The top
row in Figure 7 shows a set of synthetic datasets generated by the
gaussian generator and some images, while the bottom row illus-
trates partial segmentation results of the bird and butterfly dataset.
It can be observed that the segmentation based on FEMA and EM
are indistinguishable, while FEMA results in a significant reduc-
tion in computation time.

Mno002 373×220×3 Owl071 209×192×3Gaussian (10) Gaussian (20)

FEMA FEMAEM EM

Figure 7. Dataset

We (i) perform FEMA and EM on the images, (ii) associate
a hierarchical tree for each image (iii) select the best k value
for each image by minimal description length(MDL). The aver-
age times for processing one image are 27.23(s) and 48.35(s) by
FEMA and EM respectively (here we set the maximum k value to
be equal to 20 for EM). It is obviously that FEMA outperforms its
competitor for all the datasets by reducing 45% of CPU time. Be-
cause the initial parameters of mixture models in FEMA are close
to the actual parameters, (i) the number of iterations decreases and
(ii) the running time of the algorithm is reduced as well. Figure 8
shows the average results for the performance of FEMA and EM
algorithm based on the synthetic datasets and the images in the cat-
egories of Butterfly open, Zebra, Wood duck, Owl in the ponce
group database.

Figure 9 shows the average number of iterations for the dif-
ferent datasets. As expected, the number of iterations in FEMA is

2.63

3.86

5.12

7.52

0

1

2

3

4

5

6

7

8

Gaussian(10) Gaussian(20)

C
P
U

tim
e(

s)

FEMA EM

28.83 26.32 28.03 26.95

50.32
47.12

51.01
47.87

0

10

20

30

40

50

60

Monarch Zebra Wood Owl

FEMA EM
(s)

Butterfly_open Zebra Wood_duck Owl

Figure 8. The running time

smaller than that in EM.

8
9

15
16

0

5

10

15

20

Gaussian(10) Gaussian(20)

N
um

be
r
of

ite
ra

tio
ns

FEMA EM

12
10 11 12

21
18

20 21

0

5

10

15

20

25

Monarch Zebra Wood Owl

N
um

be
r
of

it
er

at
io

ns

FEMA EM

Butterfly_open Zebra Wood_duck Owl

Figure 9. Iterations

The average classification error rates of FEMA and EM on the
synthetic dataset are 5.67% and 5.68% respectively.

4. Conclusion and future work
This paper investigates the problem of reducing the running time of EM

algorithm for data classifi cation. Our contribution is the introduction of a
fast EM algorithm(FEMA) which achieves low running time by combin-
ing PCA, a grid cell expansion algorithm (GCEA) and a hierarchical clus-
ter tree. The objective of FEMA is to reduce the number of iterations by
fi nding initial parameters which are close to the actual parameters. In the
future, we shall combine FEMA with other algorithms to classify the data
in very large datasets.

Acknowledgments
The work described in this paper was partially supported by grants

from the Research Grants Council of Hong Kong Special Administrative
Region, China [Project No. CityU 1197/03E and CityU 121005] and grants
from City University of Hong Kong [Project No. 7001596 and 9360091].

References
[1] Pernkopf, F., Bouchaffra, D.,Genetic-based EM algorithm for learning

Gaussian mixture models, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, Volume 27, Issue 8, Aug. 2005 Page(s):1344 - 1348.

[2] Govaert, G., Nadif, M.,An EM algorithm for the block mixture model,IEEE
Transactions on Pattern Analysis and Machine Intelligence,Volume 27, Issue
4, April 2005 Page(s):643 - 647 .

[3] Anthony K. H. Tung, Xin Xu, Beng Chin Ooi. CURLER: Finding and Visual-
izing Nonlinear Correlated Clusters. ACM SIGMOD Conference. 2005.

[4] Yang Song; Goncalves, L., Perona, P., Unsupervised learning of human mo-
tion,IEEE Transactions on Pattern Analysis and Machine Intelligence,Volume
25, Issue 7, July 2003 Page(s):814 - 827

[5] Bin Luo, Hancock, E.R.,Structural graph matching using the EM algorithm
and singular value decomposition , IEEE Transactions on Pattern Analysis and
Machine Intelligence, Volume 23, Issue 10, Oct. 2001 Page(s):1120 - 1136

[6] M. Meila and D. Heckerman, An experimental comparison of several clus-
tering and initialization methods, Microsoft, Redmond, WA, Microsoft Res.
Tech. Rep. MSR-TR-98-06.

[7] Pal, S.K., Mitra, P.,Multispectral image segmentation using the rough-set-
initialized EM algorithm , IEEE Transactions on Geoscience and Remote
Sensing, Volume 40, Issue 11, Nov. 2002 Page(s):2495 - 2501

[8] http : //www − cvr.ai.uiuc.edu/ponce grp/data/

1916

