
ONLINE MINING OF RECENT MUSIC QUERY STREAMS

Hua-Fu Li∗a, Chin-Chuan Hoa, Man-Kwan Shanb, and Suh-Yin Leea

a Department of Computer Science, National Chiao-Tung University, Hsinchu 300, Taiwan
b Department of Computer Science, National Chengchi University, Taipei 116, Taiwan

{hfli, sylee, hocc}@csie.nctu.edu.tw; mkshan@cs.nccu.edu.tw

∗ Corresponding author. Email:hfli@csie.nctu.edu.tw

ABSTRACT

Mining multimedia data is one of the most important issues in data
mining. In this paper, we propose an online one-pass algorithm to
mine the set of frequent temporal patterns in online music query
streams with a sliding window. An effective bit-sequence
representation is used to reduce the processing time and memory
needed to slide the windows. Experiments show that the proposed
algorithm only needs a half of memory requirement of original
music query data, and just scans the data once.

1. INTRODUCTION

In recent years, several emerging applications warrant mining and
discovering frequent patterns in data streams, e.g., sensor data
generated from sensor networks, online transaction flows in retail
chains, streaming Web click-sequences and records in Web
applications, performance measurement in network monitoring and
traffic management, and inventory stock monitoring. Data streams
are characterized by two features [2] [4]:

� The volume of a continuous data stream over its lifetime
could be huge and fast changing.

� The queries require timely answers, and the response
time is short.

 These features raise new challenges for mining data streams,
such as it is not possible to store all the streaming data in main
memory or even in secondary storage. This motivates the design
for in-memory summary data structure with small memory
footprints that can support both one-time and continuous queries.
Furthermore, an online method for mining data streams has to
sacrifice the correctness of its analysis results by allowing some
counting errors, i.e., it generates approximate results, and only has
one pass over the data.
 Mining music data is one of the most important research issues
of multimedia data mining. Although several techniques have been
developed recently for discovering and analyzing the content and
usage of static music data [3][5][6][9][10], new techniques are
needed to analyze and discover the content and usage of streaming
music data. The problem of mining streaming music data comes
from the context of online music-downloading services (such as
iTunes, Kuro [11] and KKBOX [12]), where the streams in
question are streams of queries, i.e., music-downloading requests,
sent to the server, and we are interested in finding the useful music
melody structures requested by most customers during some period
of time. With the processing model of music query streams
presented in Figure 1, the melody stream processor and the

summary data structure are two major components. The user query
processor receives user queries in the form of <Timestamp,
Customer-ID, Music-ID>, and then transforms the queries into
music data (i.e., melody sequences) in the form of <Timestamp,
Customer-ID, Music-ID, Melody-Sequence> by querying the music
database. Note that the component Buffer can be optionally set for
temporary storage of recent music melody sequences from the
music query streams.
 Recently, Li et al. [7][8] proposed the novel online algorithms to
find the complete set of maximal frequent melody structures and
closed frequent melody structures over the entire history of a
continuous music query stream. Generally, knowledge embedded
in a data stream is more likely to be changed as time goes by.
Mining the recent interesting patterns of an online data stream can
provide valuable information for the analysis of the data stream.
Hence, in this paper, we propose a new online algorithm called
FTP-MQS (Frequent Temporal Patterns of Music Query Streams)
to mine the set of frequent temporal patterns, i.e., frequent melody
structures, over a continuous music query stream with a sliding
window. Experiments show that the proposed algorithm is an
efficient online method for mining music query streams.
 The rest of the paper is organized as follows. The problem is
defined in Section 2. In Section 3, we introduce the design of the
proposed algorithm. Experimental results are discussed in Section
4. We conclude the paper in Section 5.

Figure 1: Computation model for music query streams

2. PROBLEM DEFINITION

In this section, several features of music data are described and the
problem is defined. The basic terminologies on music used in this
paper are referred to [6][9]. A chord is the sounding combination
of three or more notes at the same time. A note is a single symbol
on a musical score, indicating the pitch and duration of what is to
be sung and played. A chord-set is a set of chords.
 Let Ψ = {i1, i2,…, in} be a set of chord-sets, called items for
simplicity. An itemset is a set of items, i.e., a set of chord-sets. A

19851­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

k-itemset is an itemset with k items, denoted as (x1, x2, …, xk). For
brevity, the commas are omitted. For example, a 3-itemset (a, b, c)
is written as (abc). A melody sequence stream, MSS, is a
sequence of incoming melody sequences, [m1, m2, …, mN), where a
melody sequence mi is composed of a melody sequence identifier
(MSID) mi and an itemset, and N is an unknown largest number of
melody sequences that will arrive. The sequence of w recent
melody sequences of MSS is called the sliding window (SW) of
MSS, i.e., SW = [mN−w+1, mN−w+2, …, mN]. The support of an
itemset X, denoted as sup(X), is the number of melody sequences
in SW containing X as a subset. An itemset X is a frequent
temporal pattern (FTP), if and only if sup(X) ≥ s⋅w, where s is a
user-defined minimum support threshold in the range of [0, 1]. An
itemset X is called infrequent temporal pattern (ITP), if and only
if sup(X) � s⋅w.

Problem Definition Given a melody sequence stream MSS, a user-
defined minimum support threshold s, and the size of sliding
window w, the problem of online mining of user-centered music
query streams is to discover the set of frequent temporal patterns
by one scan of the w recent melody sequences of MSS.

Example 1 Let the first four melody sequences in a melody
sequence stream be <m1, (acd)>, <m2, (bce)>, <m3, (abce)>, and
<m4, (be)>, where m1, m2, m3, and m4 are melody sequence
identifiers and a, b, c, d, and e are chord-sets. Let the size of
sliding window w be 3 and the user-defined minimum support
threshold s be 0.6. Hence, the current melody sequence stream
consists of two sliding windows, i.e., SW1 = [m1, m2, m3] and SW2

= [m2, m3, m4], where first window SW1 contains the melody
sequences m1, m2, and m3, and the second window SW2 contains
the sequences m2, m3, and m4. The example is shown in Figure 2.

 Melody Sequence Stream FTPs in SW1 FTPs in SW2

 <m1, (acd) >
 <m2, (bce) >
 <m3, (abce) >
 <m4, (be) >

(a), (b), (c), (e),
(ac), (bc), (be),
(ce), (bce)

(b), (c), (bc),
(be), (ce), (bce)

A melody sequence stream is formed by melody sequences arriving in series

Figure 2: An example melody sequence stream and the frequent temporal
patterns in two consecutive sliding windows

 In Figure 2, the frequent temporal patterns in SW1 are (a), (b),
(c), (e), (ac), (bc), (be), (ce), and (bce), and the frequent ones in
SW2 are (b), (c), (d), (bc), (be), (ce), and (bce). In this example, we
can find that {(a), (e), (ac)} are frequent temporal patterns in SW1,
but are not frequent ones in SW2.

3. ONLINE MINING OF RECENT MUSIC QUERY
STREAMS

3.1. Bit-Sequence Representation of 1-Itemsets
In the proposed algorithm, for each item X in the current sliding
window, a bit-sequence with w bit, denoted as Bit(X), is
constructed. If an item X is in the i-th music sequence of current
sliding window, the i-th bit of Bit(X) is set to be 1; otherwise, it is
set to be 0. The process is called bit-sequence transform.

Example 2 Consider the melody sequence stream in Figure 2 and
assume that the size of sliding window is 3. The sliding window
SW1 consists of three consecutive melody sequences: <m1, (acd) >,
<m2, (bce) >, and <m3, (abce) >, and five items (chord-sets): a, b, c,

d and e. Because item a appears in the 1st and 3rd melody
sequences of SW1, the bit-sequence of a, Bit(a), is 101. Similarly,
Bit(b) = 011, Bit(c) = 111, Bit(d) = 100, and Bit(e) = 011.

3.2. The Proposed Algorithm FTP-MQS
In this section, based on the representation of appearing items, an
efficient algorithm FTP-MQS is introduced. FTP-MQS consists of
three phases: window initialization phase, window sliding phase,
and frequent temporal patterns generation phase.

3.2.1. Window Initialization Phase
The phase is activated while the number of melody sequences
generated so far in the melody sequence stream is less than or
equal to a user-predefined sliding window size w. In this phase,
each item in a new incoming melody sequence is transformed into
its bit sequence representation.

Figure 3: Bit-sequence representations after window initialization phase

Example 3 Consider the melody sequence stream in Figure 2. The
first sliding window SW1 contains three melody sequences: m1, m2,
and m3. The bit-sequences of items of SW1 in the window
initialization phase are shown in Figure 3.

3.2.2. Window Sliding Phase
The phase is activated after the sliding window SW becomes full.
A new incoming melody sequence is appended to the sliding
window, and the oldest melody sequence is removed from the
current window.

For removing oldest information, an efficient method is used in
the proposed algorithm. Based on the bit-sequence representation,
FTP-MQS uses the bitwise left shift operation to remove the aged
melody sequences from the set of items in the current sliding
window. After sliding the window, an effective pruning method,
called Item-Prune, is used to improve the memory requirement of
FTP-MQS. The pruning approach is that a 1-itemset X in the
current sliding window is dropped if and only if sup(X) = 0.

Figure 4: Bit-sequences of items after sliding SW1 to SW2

Example 4 Consider the melody sequence stream in Figure 2.
Before the fourth melody sequence <m4, (be)> is processed, the
first melody sequence m1 must be removed from the current
window using bitwise left shift on the set of items. Hence, Bit(a) is
modified from 101 to 010. Similarly, Bit(c), Bit(d), Bit(b) and
Bit(e) are modified to 110, 000, 110, and 110, respectively. Then,
the new melody sequence <m4, (be)> is processed using bit-
sequence transform. The result is shown in Figure 4. Note that item
d is dropped since Bit(d) = 000, i.e., sup(d) = 0.

ID Melody Sequences Bit-Sequences

SW1

<m1, (acd) >
<m2, (bce) >
<m3, (abce) >

Bit(a) = 101, Bit(c) = 111, Bit(d) = 100,
Bit(b) = 011, Bit(e) = 011

SW2

<m2, (bce) >
<m3, (abce) >
<m4, (be) >

Bit(a) = 010, Bit(c) = 110, Bit(d) = 000,
Bit(b) = 111, Bit(e) = 111

MSID Melody Sequence Bit-Sequences in current SW1

m1 (acd) Bit(a)=100, Bit(c)=100, Bit(d)=100
m2 (bce) Bit(a)=100, Bit(c)=110, Bit(d)=100,

Bit(b)=010, Bit(e)=010
m3 (abce) Bit(a)=101, Bit(c)=111, Bit(d)=100,

Bit(b)=011, Bit(e)=011

1986

3.2.3. Frequent Temporal Patterns Generation Phase
The phase is performed only when the up-to-date set of frequent
temporal patterns is requested. In this phase, FTP-MQS uses a
level-wise method to generate the set of candidate temporal
patterns CTPk (candidate temporal patterns with k items) from the
pre-known frequent temporal patterns FTPk−1 (frequent temporal
patterns with k-1 items) according to the Apriori property [1]1. The
step is called CandidateGenApriori (Candidate temporal pattern
Generation using Apriori property). Then, the proposed algorithm
uses the bitwise AND operation to compute the support of these
candidates in order to find the frequent ones FTPk. The generation-
then-test process is stopped until no new candidates with k+1 items
(CTPk+1) are generated. FTP-MQS algorithm is shown in Figure 5.

Algorithm FTP-MQS
Input: MSS (a continuous melody sequence stream), s (a user-
defined minimum support threshold), and w (the size of sliding
window).
Output: a set of frequent temporal patterns, FTP-Output.
Begin
 SW = NULL; /* SW consists of w melody sequences */
 Repeat:
 for each incoming melody sequence mi in SW do
 if SW = FULL then
 Do bitwise-shift on bit-sequences of all items in SW;
 end if
 for each item X in mi do
 Do bit-sequence transform(X);
 end for
 end for
 for each bit-sequence Bit(X) in SW do
 if sup(X) = 0 then
 Drop X from SW;
 end if
 end for
/* The following is the frequent temporal patterns generation phase. The phase is
performed only when the up-to-date set of frequent temporal patterns is requested. */
 FTP1 = {frequent temporal 1-itemsets};
 for (k=2; FTPk−1≠ NULL; k++) do
 CTPk = CandidateGenApriori(FTPk−1);
 Do bitwise AND to find the supports of CTPk;
 for each candidate ck ∈ CFPk do
 if sup(ck) ≥ w⋅s then
 FTPk = {ck ∈ CFPk | sup(ck) ≥ w⋅s};
 end if
 end for
 end for
 FTP-Output =��kFTPk;

End

Figure 5: Algorithm FTP-MQS

Example 5 Consider the bit-sequences of SW2 in Figure 4, and let
the minimum support threshold s be 0.6. Hence, a temporal pattern
X is frequent if sup(X) ≥ 0.6⋅3 = 1.8. In the following, we discuss
the frequent temporal patterns mining steps of SW2. The generated
patterns are shown in Figure 2.

 First, FTP-MQS generates candidate 2-itemsets, (bc), (be) and
(ce), by combining frequent 1-itemsets: (b), (c) and (e), where
Bit(b) = 111, i.e., sup(b) = 3, Bit(c) = 110, i.e., sup(c) = 2, and

1 It is a downward closure property, i.e., if a temporal pattern is
frequent, all of its sub-patterns will also be frequent.

Bit(e) = 110, i.e., sup(e) = 2. 1-itemset (a) is an infrequent
temporal pattern, since its Bit(a) = 010, i.e., sup(a) = 1. All these
candidates are frequent temporal patterns after using bitwise AND
operations to count the supports of these candidates. Because the
Bit(bc) is 110, the support of candidate 2-itemset bc are 2, i.e.,
sup(bc) = 2. Similarity, sup(be) = 3, and sup(ce) = 2.
 Second, FTP-MQS generates one candidate 3-itemset (bce)
according to Apriori property and uses bitwise AND operation to
count the sup(bce) = 2, i.e., Bit(bc) AND Bit(be) AND Bit(ce) =
110. Because no new candidates are generated, the generation-
then-test process is stopped. Hence, there are six frequent temporal
patterns, (b), (c), (bc), (be), (ce), (bce), generated by FTP-MQS in
SW2. The process is shown in Figure 6.

Melody
Sequences (SW2)

Bit-Sequences in
SW2

FTP1 in SW2 (s =
0.6)

sup

<m2, (bce) >
<m3, (abce) >

 <m4, (be) >

Bit(a) = 010
Bit(c) = 110
Bit(b) = 111
Bit(e) = 111

{(b) | Bit(b) = 111}
{(c) | Bit(c) = 110}
{(e) | Bit(e) = 111}

3
2
3

CTP2 in SW2 FTP2 in SW2 sup
{(bc) | Bit(b) = 111 AND Bit(c) = 110}
{(be) | Bit(b) = 111 AND Bit(e) = 111}
{(ce) | Bit(c) = 110 AND Bit(e) = 111}

{(bc) | Bit(bc) = 110}
{(be) | Bit(be) = 111}
{(ce) | Bit(ce) = 110}

2
3
2

CTP3 in SW2 FTP3 in SW2 sup

{(bce) | Bit(bc) = 110 AND Bit(be) =
111 AND Bit(ce) = 110}

{(bce) | Bit(bce) =
110}

2

Figure 6: Steps of frequent temporal patterns generation in SW2

4. EXPERIMENTS

In this section, we report the experimental results of the proposed
algorithm FTP-MQS. All the programs are implemented using
Microsoft Visual C++ Version 6.0 and performed on a 1.80 GHz
Pentium(R) PC machine with 512 MB memory running on
Windows 2000. For testing frequent temporal patterns mining of
melody sequence streams, we generate melody sequence streams
using IBM synthetic data generator proposed by Agrawal and
Srikant [1]. One synthetic melody sequence stream, denoted by
T5.I4.D1000K, of size 1 million melody sequences each are used
to evaluate the performance of the proposed algorithm FTP-MQS.
T5.I4.D1000K, with 1,000 unique items, has an average melody
sequence size of 5 items with average maximal frequent temporal
pattern size of 4 items. In all experiments, the melody sequences
are looked up in sequence to simulate the environment of an online
data stream.
 The experiments of memory requirements are shown in Figures
7 and 8, and the processing times are shown in Figures 9, 10, and
11. The minimum support threshold s and the size of a window w
are set to 0.1% and 20,000, respectively. Figure 7 shows the
memory usage of the window initialization phase and window
sliding phase. As shown in Figure 7, FTP-MQS consumes only
about 2.1MB in window initialization phase, but the memory
consumption of original data is increased linearly from 0.2MB to
3.9MB. In window sliding phase, the memory usage of FTP-MQS
is approximately a half of original data. Figure 8 shows the
memory usage of the frequent temporal patterns generation phase.
In frequent temporal patterns generation phase, the memory
requirement of FTP-MQS is between 33.5MB to 39MB.

1987

�

���

����

����

����

����

����

����

����

����

����

��� ��	 �
	 ��� ��� ���
�� ��� ��� ����

������������	�������	���

�
�
�
�
��
��
�	

�
��
�

�
��
��

�
�����������

�� !"#�

Figure 7: Memory usages in the window initialization phase and window
sliding phase.

�����

�����

�����

�����

�����

�����

�����

�����

������ 	����� ������ ������ ������ ������ ������ ������ ������ �
���

�����������	�
����
������

�
��
�
��
��
�	

��
��
�

�
��
��

Figure 8: Memory usage in frequent temporal patterns generation phase

�

�

�

�

�

�

�

�

�

����� ����� ����� ����� ����� ������

	
��
���
��

�
��
�
�
��
��
�
	

��
�
	�
��
�
�
�

�

����������

Figure 9: Processing time of window initialization phase under different
window sizes

�

��

��

��

��

���

���

���

���

����� ����� ����� ����� �����

�	
	���
�������

�
��
�
�
��
��
�
	

��
�
	�
��
�
�
�

� ����������

Figure 10: Mining time of frequent temporal patterns under different
minimum supports

�

��

��

��

��

��

��

��

��

����� ����� ����� ����� ������

	
��
���
��

�
��
�
�
��
��
�
	

��
�
	�
��
�
�
�

�

����������

Figure 11: Mining time of frequent temporal patterns under different
window sizes

 Figure 9 shows the processing time of window initialization
phase of FTP-MQS under different window sizes from 10,000
melody sequences to 100,000 melody sequences. Figure 10 shows
the mining time of frequent temporal patterns using various
minimum support thresholds from 0.02% to 0.1%. Figure 11
shows the mining time of frequent temporal patterns under
different window sizes from 20,000 melody sequences to 100,000
melody sequences.

5. CONCLUSIONS

In this paper, we study the problem of mining frequent temporal
patterns from a continuous music query stream with a sliding
window. A new online algorithm, called FTP-MQS, is proposed.
An effective bit-sequence representation is developed to maintain
the essential information of recent frequent temporal patterns.
Experiments show that the proposed algorithm is an efficient
single-pass algorithm for mining music query streams.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in: Proc. VLDB, pp. 487–499, 1994.
[2] B. Babcock, S. Babu, M. Data, R. Motwani and J. Widom, “Models
and issues in data stream systems,” in: Proc. PODS, pp. 1–16, 2002.
[3] V. Bakhmutora, V. U. Gusev and T.N. Titkova, “The search for
adaptations in song melodies,” Computer Music Journal, 21 (1), 58–67,
1997.
[4] M. M. Gaber, A. Zaslavsky and S. Krishnaswamy, “Mining data
streams: a review,” ACM SIGMOD Record, 34(1), June 2005.
[5] J.-L. Hsu, C.-C. Liu and A.L.P. Chen, “Discovering nontrivial
repeating patterns in music data,” IEEE Transactions on Multimedia, 3 (3),
311–325, 2001.
[6] G.T. Jones, Music Theory. Harper & Row, Publishers, New York.,
1974.
[7] H.-F. Li, S.-Y. Lee and M.-K. Shan, “Mining frequent closed structures
in streaming melody sequences,” in: Proc. ICME, 2004.
[8] H.-F. Li, S.-Y. Lee and M.-K. Shan, “Online mining maximal frequent
structures in continuous landmark melody streams,” Pattern Recognition
Letters, 26 (11), 1658-1674, August 2005.
[9] M.-K. Shan and F.-F. Kuo, “Music style mining and classification by
melody,” IEICE Transactions on Information and Systems, E86-D (4),
655–659, 2003.
[10] A. Yoshitaka and T. Ichikawa, “A survey on content-based retrieval
for multimedia databases,” IEEE Transactions on Knowledge and Data
Engineering, 11 (1), 81–93, 1999.
[11] www.music.com.tw
[12] www.kkbox.com.tw

1988

