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ABSTRACT 

Mining multimedia data is one of the most important issues in data 
mining. In this paper, we propose an online one-pass algorithm to 
mine the set of frequent temporal patterns in online music query 
streams with a sliding window. An effective bit-sequence 
representation is used to reduce the processing time and memory 
needed to slide the windows. Experiments show that the proposed 
algorithm only needs a half of memory requirement of original 
music query data, and just scans the data once. 

1. INTRODUCTION 

In recent years, several emerging applications warrant mining and 
discovering frequent patterns in data streams, e.g., sensor data 
generated from sensor networks, online transaction flows in retail 
chains, streaming Web click-sequences and records in Web 
applications, performance measurement in network monitoring and 
traffic management, and inventory stock monitoring. Data streams 
are characterized by two features [2] [4]: 

� The volume of a continuous data stream over its lifetime 
could be huge and fast changing. 

� The queries require timely answers, and the response 
time is short. 

    These features raise new challenges for mining data streams, 
such as it is not possible to store all the streaming data in main 
memory or even in secondary storage. This motivates the design 
for in-memory summary data structure with small memory 
footprints that can support both one-time and continuous queries. 
Furthermore, an online method for mining data streams has to 
sacrifice the correctness of its analysis results by allowing some 
counting errors, i.e., it generates approximate results, and only has 
one pass over the data.  
    Mining music data is one of the most important research issues 
of multimedia data mining. Although several techniques have been 
developed recently for discovering and analyzing the content and 
usage of static music data [3][5][6][9][10], new techniques are 
needed to analyze and discover the content and usage of streaming
music data. The problem of mining streaming music data comes 
from the context of online music-downloading services (such as 
iTunes, Kuro [11] and KKBOX [12]), where the streams in 
question are streams of queries, i.e., music-downloading requests, 
sent to the server, and we are interested in finding the useful music 
melody structures requested by most customers during some period 
of time. With the processing model of music query streams 
presented in Figure 1, the melody stream processor and the 

summary data structure are two major components. The user query 
processor receives user queries in the form of <Timestamp, 
Customer-ID, Music-ID>, and then transforms the queries into 
music data (i.e., melody sequences) in the form of <Timestamp, 
Customer-ID, Music-ID, Melody-Sequence> by querying the music 
database. Note that the component Buffer can be optionally set for 
temporary storage of recent music melody sequences from the 
music query streams.  
    Recently, Li et al. [7][8] proposed the novel online algorithms to 
find the complete set of maximal frequent melody structures and 
closed frequent melody structures over the entire history of a 
continuous music query stream. Generally, knowledge embedded 
in a data stream is more likely to be changed as time goes by. 
Mining the recent interesting patterns of an online data stream can 
provide valuable information for the analysis of the data stream. 
Hence, in this paper, we propose a new online algorithm called 
FTP-MQS (Frequent Temporal Patterns of Music Query Streams) 
to mine the set of frequent temporal patterns, i.e., frequent melody 
structures, over a continuous music query stream with a sliding 
window. Experiments show that the proposed algorithm is an 
efficient online method for mining music query streams. 
    The rest of the paper is organized as follows. The problem is 
defined in Section 2. In Section 3, we introduce the design of the 
proposed algorithm. Experimental results are discussed in Section 
4. We conclude the paper in Section 5.  
   

Figure 1: Computation model for music query streams

2. PROBLEM DEFINITION 

In this section, several features of music data are described and the 
problem is defined. The basic terminologies on music used in this 
paper are referred to [6][9]. A chord is the sounding combination 
of three or more notes at the same time. A note is a single symbol 
on a musical score, indicating the pitch and duration of what is to 
be sung and played. A chord-set is a set of chords.  
    Let Ψ = {i1, i2,…, in} be a set of chord-sets, called items for 
simplicity. An itemset is a set of items, i.e., a set of chord-sets. A 
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k-itemset is an itemset with k items, denoted as (x1, x2, …, xk). For 
brevity, the commas are omitted. For example, a 3-itemset (a, b, c) 
is written as (abc). A melody sequence stream, MSS, is a 
sequence of incoming melody sequences, [m1, m2, …, mN), where a 
melody sequence mi is composed of a melody sequence identifier 
(MSID) mi and an itemset, and N is an unknown largest number of 
melody sequences that will arrive. The sequence of w recent 
melody sequences of MSS is called the sliding window (SW) of 
MSS, i.e., SW = [mN−w+1, mN−w+2, …, mN]. The support of an 
itemset X, denoted as sup(X), is the number of melody sequences 
in SW containing X as a subset. An itemset X is a frequent 
temporal pattern (FTP), if and only if sup(X) ≥ s⋅w, where s is a 
user-defined minimum support threshold in the range of [0, 1]. An 
itemset X is called infrequent temporal pattern (ITP), if and only 
if sup(X) � s⋅w.

Problem Definition Given a melody sequence stream MSS, a user-
defined minimum support threshold s, and the size of sliding 
window w, the problem of online mining of user-centered music 
query streams is to discover the set of frequent temporal patterns 
by one scan of the w recent melody sequences of MSS.  

Example 1 Let the first four melody sequences in a melody 
sequence stream be <m1, (acd)>, <m2, (bce)>, <m3, (abce)>, and 
<m4, (be)>, where m1, m2, m3, and m4 are melody sequence 
identifiers and a, b, c, d, and e are chord-sets. Let the size of 
sliding window w be 3 and the user-defined minimum support 
threshold s be 0.6. Hence, the current melody sequence stream 
consists of two sliding windows, i.e., SW1 = [m1, m2, m3] and SW2

= [m2, m3, m4], where first window SW1 contains the melody 
sequences m1, m2, and m3, and the second window SW2 contains 
the sequences m2, m3, and m4. The example is shown in Figure 2.     

  Melody Sequence Stream FTPs in SW1 FTPs in SW2

          <m1, (acd) > 
          <m2, (bce) > 
          <m3, (abce) > 
          <m4, (be) > 

(a), (b), (c), (e), 
(ac), (bc), (be), 
(ce), (bce) 

(b), (c), (bc), 
(be), (ce), (bce) 

A melody sequence stream is formed by melody sequences arriving in series 

Figure 2: An example melody sequence stream and the frequent temporal 
patterns in two consecutive sliding windows 

     In Figure 2, the frequent temporal patterns in SW1 are (a), (b), 
(c), (e), (ac), (bc), (be), (ce), and (bce), and the frequent ones in 
SW2 are (b), (c), (d), (bc), (be), (ce), and (bce). In this example, we 
can find that {(a), (e), (ac)} are frequent temporal patterns in SW1, 
but are not frequent ones in SW2.  

3. ONLINE MINING OF RECENT MUSIC QUERY 
STREAMS 

3.1. Bit-Sequence Representation of 1-Itemsets 
In the proposed algorithm, for each item X in the current sliding 
window, a bit-sequence with w bit, denoted as Bit(X), is 
constructed. If an item X is in the i-th music sequence of current 
sliding window, the i-th bit of Bit(X) is set to be 1; otherwise, it is 
set to be 0. The process is called bit-sequence transform. 

Example 2 Consider the melody sequence stream in Figure 2 and 
assume that the size of sliding window is 3. The sliding window 
SW1 consists of three consecutive melody sequences: <m1, (acd) >, 
<m2, (bce) >, and <m3, (abce) >, and five items (chord-sets): a, b, c, 

d and e. Because item a appears in the 1st and 3rd melody 
sequences of SW1, the bit-sequence of a, Bit(a), is 101. Similarly, 
Bit(b) = 011, Bit(c) = 111, Bit(d) = 100, and Bit(e) = 011. 

3.2. The Proposed Algorithm FTP-MQS 
In this section, based on the representation of appearing items, an 
efficient algorithm FTP-MQS is introduced. FTP-MQS consists of 
three phases: window initialization phase, window sliding phase, 
and frequent temporal patterns generation phase. 

3.2.1. Window Initialization Phase 
The phase is activated while the number of melody sequences 
generated so far in the melody sequence stream is less than or 
equal to a user-predefined sliding window size w. In this phase, 
each item in a new incoming melody sequence is transformed into 
its bit sequence representation. 

Figure 3: Bit-sequence representations after window initialization phase

Example 3 Consider the melody sequence stream in Figure 2. The 
first sliding window SW1 contains three melody sequences: m1, m2, 
and m3. The bit-sequences of items of SW1 in the window 
initialization phase are shown in Figure 3. 

3.2.2. Window Sliding Phase
The phase is activated after the sliding window SW becomes full. 
A new incoming melody sequence is appended to the sliding 
window, and the oldest melody sequence is removed from the 
current window. 

For removing oldest information, an efficient method is used in 
the proposed algorithm. Based on the bit-sequence representation, 
FTP-MQS uses the bitwise left shift operation to remove the aged 
melody sequences from the set of items in the current sliding 
window. After sliding the window, an effective pruning method, 
called Item-Prune, is used to improve the memory requirement of 
FTP-MQS. The pruning approach is that a 1-itemset X in the 
current sliding window is dropped if and only if sup(X) = 0. 

Figure 4: Bit-sequences of items after sliding SW1 to SW2

Example 4 Consider the melody sequence stream in Figure 2. 
Before the fourth melody sequence <m4, (be)> is processed, the 
first melody sequence m1 must be removed from the current 
window using bitwise left shift on the set of items. Hence, Bit(a) is 
modified from 101 to 010. Similarly, Bit(c), Bit(d), Bit(b) and 
Bit(e) are modified to 110, 000, 110, and 110, respectively. Then, 
the new melody sequence <m4, (be)> is processed using bit-
sequence transform. The result is shown in Figure 4. Note that item 
d is dropped since Bit(d) = 000, i.e., sup(d) = 0. 

ID Melody Sequences Bit-Sequences 

SW1

<m1, (acd) >       
<m2, (bce) > 
<m3, (abce) > 

Bit(a) = 101, Bit(c) = 111, Bit(d) = 100, 
Bit(b) = 011, Bit(e) = 011 

SW2

<m2, (bce) > 
<m3, (abce) > 
<m4, (be) > 

Bit(a) = 010, Bit(c) = 110, Bit(d) = 000, 
Bit(b) = 111, Bit(e) = 111 

MSID Melody Sequence Bit-Sequences in current SW1

m1 (acd) Bit(a)=100, Bit(c)=100, Bit(d)=100 
m2 (bce) Bit(a)=100, Bit(c)=110, Bit(d)=100, 

Bit(b)=010, Bit(e)=010 
m3 (abce) Bit(a)=101, Bit(c)=111, Bit(d)=100, 

Bit(b)=011, Bit(e)=011 
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3.2.3. Frequent Temporal Patterns Generation Phase 
The phase is performed only when the up-to-date set of frequent 
temporal patterns is requested. In this phase, FTP-MQS uses a 
level-wise method to generate the set of candidate temporal 
patterns CTPk (candidate temporal patterns with k items) from the 
pre-known frequent temporal patterns FTPk−1 (frequent temporal 
patterns with k-1 items) according to the Apriori property [1]1. The 
step is called CandidateGenApriori (Candidate temporal pattern 
Generation using Apriori property). Then, the proposed algorithm 
uses the bitwise AND operation to compute the support of these 
candidates in order to find the frequent ones FTPk. The generation-
then-test process is stopped until no new candidates with k+1 items 
(CTPk+1) are generated. FTP-MQS algorithm is shown in Figure 5.  

Algorithm FTP-MQS 
Input: MSS (a continuous melody sequence stream), s (a user-
defined minimum support threshold), and w (the size of sliding 
window). 
Output: a set of frequent temporal patterns, FTP-Output. 
Begin 
   SW = NULL;  /* SW consists of w melody sequences */
    Repeat: 
         for each incoming melody sequence mi in SW do
             if SW = FULL then
                  Do bitwise-shift on bit-sequences of all items in SW; 
             end if 
             for each item X in mi do
                   Do bit-sequence transform(X); 
              end for 
         end for 
         for each bit-sequence Bit(X) in SW do
               if sup(X) = 0 then
                   Drop X from SW; 
               end if 
          end for 
/* The following is the frequent temporal patterns generation phase. The phase is 
performed only when the up-to-date set of frequent temporal patterns is requested. */ 
          FTP1 = {frequent temporal 1-itemsets}; 
          for (k=2; FTPk−1≠ NULL; k++) do
              CTPk = CandidateGenApriori(FTPk−1); 
              Do bitwise AND to find the supports of CTPk; 
              for each candidate ck ∈ CFPk do
                  if sup(ck) ≥ w⋅s then
                      FTPk = {ck ∈ CFPk | sup(ck) ≥ w⋅s}; 
                  end if 
              end for 
           end for 
    FTP-Output =��kFTPk; 

End

Figure 5: Algorithm FTP-MQS 

Example 5 Consider the bit-sequences of SW2 in Figure 4, and let 
the minimum support threshold s be 0.6. Hence, a temporal pattern 
X is frequent if sup(X) ≥ 0.6⋅3 = 1.8. In the following, we discuss 
the frequent temporal patterns mining steps of SW2. The generated 
patterns are shown in Figure 2.  

    First, FTP-MQS generates candidate 2-itemsets, (bc), (be) and 
(ce), by combining frequent 1-itemsets: (b), (c) and (e), where 
Bit(b) = 111, i.e., sup(b) = 3, Bit(c) = 110, i.e., sup(c) = 2, and  

                                                
1 It is a downward closure property, i.e., if a temporal pattern is 
frequent, all of its sub-patterns will also be frequent. 

Bit(e) = 110, i.e., sup(e) = 2. 1-itemset (a) is an infrequent
temporal pattern, since its Bit(a) = 010, i.e., sup(a) = 1. All these 
candidates are frequent temporal patterns after using bitwise AND 
operations to count the supports of these candidates. Because the 
Bit(bc) is 110, the support of candidate 2-itemset bc are 2, i.e., 
sup(bc) = 2. Similarity, sup(be) = 3, and sup(ce) = 2.  
    Second, FTP-MQS generates one candidate 3-itemset (bce) 
according to Apriori property and uses bitwise AND operation to 
count the sup(bce) = 2, i.e., Bit(bc) AND Bit(be) AND Bit(ce) = 
110. Because no new candidates are generated, the generation-
then-test process is stopped. Hence, there are six frequent temporal 
patterns, (b), (c), (bc), (be), (ce), (bce), generated by FTP-MQS in 
SW2. The process is shown in Figure 6.

Melody 
Sequences (SW2)

Bit-Sequences in 
SW2

FTP1 in SW2 (s = 
0.6) 

sup

<m2, (bce) > 
<m3, (abce) > 

    <m4, (be) > 

Bit(a) = 010 
Bit(c) = 110 
Bit(b) = 111 
Bit(e) = 111 

{(b) | Bit(b) = 111} 
{(c) | Bit(c) = 110} 
{(e) | Bit(e) = 111} 

3 
2 
3 

CTP2 in SW2 FTP2 in SW2 sup
{(bc) | Bit(b) = 111 AND Bit(c) = 110} 
{(be) | Bit(b) = 111 AND Bit(e) = 111} 
{(ce) | Bit(c) = 110 AND Bit(e) = 111} 

{(bc) | Bit(bc) = 110}
{(be) | Bit(be) = 111}
{(ce) | Bit(ce) = 110} 

2 
3 
2 

CTP3 in SW2 FTP3 in SW2 sup

{(bce) | Bit(bc) = 110 AND Bit(be) = 
111 AND Bit(ce) = 110} 

{(bce) | Bit(bce) = 
110} 

2 

Figure 6: Steps of frequent temporal patterns generation in SW2

4. EXPERIMENTS 

In this section, we report the experimental results of the proposed 
algorithm FTP-MQS. All the programs are implemented using 
Microsoft Visual C++ Version 6.0 and performed on a 1.80 GHz 
Pentium(R) PC machine with 512 MB memory running on 
Windows 2000. For testing frequent temporal patterns mining of 
melody sequence streams, we generate melody sequence streams 
using IBM synthetic data generator proposed by Agrawal and 
Srikant [1]. One synthetic melody sequence stream, denoted by 
T5.I4.D1000K, of size 1 million melody sequences each are used 
to evaluate the performance of the proposed algorithm FTP-MQS. 
T5.I4.D1000K, with 1,000 unique items, has an average melody 
sequence size of 5 items with average maximal frequent temporal 
pattern size of 4 items. In all experiments, the melody sequences 
are looked up in sequence to simulate the environment of an online 
data stream.
    The experiments of memory requirements are shown in Figures 
7 and 8, and the processing times are shown in Figures 9, 10, and 
11. The minimum support threshold s and the size of a window w
are set to 0.1% and 20,000, respectively. Figure 7 shows the 
memory usage of the window initialization phase and window 
sliding phase. As shown in Figure 7, FTP-MQS consumes only 
about 2.1MB in window initialization phase, but the memory 
consumption of original data is increased linearly from 0.2MB to 
3.9MB. In window sliding phase, the memory usage of FTP-MQS 
is approximately a half of original data. Figure 8 shows the 
memory usage of the frequent temporal patterns generation phase. 
In frequent temporal patterns generation phase, the memory 
requirement of FTP-MQS is between 33.5MB to 39MB. 
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Figure 7: Memory usages in the window initialization phase and window 
sliding phase. 
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Figure 8: Memory usage in frequent temporal patterns generation phase 
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Figure 9: Processing time of window initialization phase under different 
window sizes 
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Figure 10: Mining time of frequent temporal patterns under different 
minimum supports 
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Figure 11: Mining time of frequent temporal patterns under different 
window sizes 

    Figure 9 shows the processing time of window initialization 
phase of FTP-MQS under different window sizes from 10,000 
melody sequences to 100,000 melody sequences. Figure 10 shows 
the mining time of frequent temporal patterns using various 
minimum support thresholds from 0.02% to 0.1%. Figure 11 
shows the mining time of frequent temporal patterns under 
different window sizes from 20,000 melody sequences to 100,000 
melody sequences.  

5. CONCLUSIONS 

In this paper, we study the problem of mining frequent temporal 
patterns from a continuous music query stream with a sliding 
window. A new online algorithm, called FTP-MQS, is proposed. 
An effective bit-sequence representation is developed to maintain 
the essential information of recent frequent temporal patterns. 
Experiments show that the proposed algorithm is an efficient 
single-pass algorithm for mining music query streams. 
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