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ABSTRACT

Text-based search using video speech transcripts is a popular

approach for granular video retrieval at the shot or story level.

However, misalignment of speech and visual tracks, speech

transcription errors, and other characteristics of video content

pose unique challenges for this video retrieval approach.

In this paper, we explore several automatic query refine-

ment methods to address these issues. We consider two query

expansion methods based on pseudo-relevance feedback and

one query refinement method based on semantic text anno-

tation. We evaluate these approaches in the context of the

TRECVID 2005 Video Retrieval Benchmark using a baseline

approach without any refinement. To improve robustness, we

also consider a query-independent fusion approach. We show

that this combined approach can outperform the baseline for

most query topics, with improvements of up to 40%. We also

show that query-dependent fusion approaches can potentially

improve the results further, leading to 18-75% gains when

tuned with optimal fusion parameters.

1. INTRODUCTION

In recent years, research in content-based video retrieval has

focused on exploiting various modalities of the video con-

tent. A popular approach is leveraging the textual informa-

tion that can be obtained from Closed Captions (CC), Au-

tomatic Speech Recognition (ASR), and Optical Character

Recognition (OCR) sources. Closed captions are frequently

unavailable, and video OCR is limited as it applies only to

video segments that contain inscriptions in the video imagery.

Most videos, on the other hand, carry spoken information—

especially news broadcasts, which form an important domain

for video retrieval. Complemented by the fact that automatic

speech recognition is a well understood technique, speech-

based retrieval is perhaps the most popular technique used for

video search and retrieval. Typically, videos are segmented

into shots, the speech track is automatically transcribed and

machine translated as needed, and the resulting speech tran-

script is time-aligned with the video segments. Traditional

∗The work was performed while this author was visiting the IBM

T. J. Watson Research Center.

text search engines can then be applied for speech-based video

retrieval. Unfortunately, the high retrieval performance that

text search engines achieve in pure text document retrieval is

usually not observable in text-based video retrieval.

The quality of the automatic speech recognition—and ma-

chine translation for foreign sources—influences the overall

retrieval performance directly. While some of these issues

have been addressed in a satisfactory way for spoken text

document retrieval, this is less so when applying text-based

search to video retrieval. One of the main reasons is the mis-

match between the semantics contained in the spoken track

and the visual one. For example, when users search for video

segments showing aircraft, they might use “aircraft” as a query

term. The likelihood that shots depicting aircraft actually con-

tain this term as spoken text is rather small, though. In addi-

tion, the spoken track rarely mentions the background scene

or setting depicted in the video. As a result, speech-based

retrieval performs well at answering specific queries about

named people, sites, or events. It usually fails at generic
queries involving unnamed people, objects, settings, or events.

Query expansion is a promising approach for addressing

some of the above problems, such as poor recall due to miss-

ing or misaligned speech terms in regards to the visual in-

formation. In principle, the original query is expanded with

additional query terms that are somehow related to the query.

These may include synonyms of the original query terms, or

non-synonym terms that frequently co-occur with the query

terms in the same context, and are therefore topically related

(e.g., “aircraft” and “airline”). Synonym or hypernym-based

query expansion approaches are considered global query ex-
pansion since they are based on the lexical properties of the

English language, and are corpus-independent. They are fre-

quently based on dictionaries or sources such as WordNet1 [1].

Co-occurrence based approaches, on the other hand, are

considered local as they rely on term co-occurrence and fre-

quency statistics, which are corpus-dependent. The typical

strategy is to expand the query with terms from a number of

documents that are considered relevant to the original query,

as well as to adjust the query term weights based on the statis-

tics of the relevant documents. With pseudo-relevance feed-

1http://wordnet.princeton.edu
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back, for example, the original query is used to retrieve the top

N matching documents. These are assumed pseudo-relevant,

and are analyzed to select additional query terms [2]. This

can improve recall—especially for short queries—by allow-

ing document matches to additional terms related to the origi-

nal query (e.g., “aircraft” expands with “airline” or “pilot”). It

may also narrow down too broad queries, thereby re-ranking

results and improving precision (e.g., expanding “car” with

“car accident”). This of course works only as long as the re-

fined query is indeed relevant to the original one. Experiments

in text-document retrieval have shown that query expansion is

highly query-dependent and bears the risk of topic drift.

Another method of query refinement attempts to prevent

topic drift by disambiguating word senses using semantic text
annotation. In this approach, the entire collection is analyzed

and annotated with semantic categories. Sense ambiguity is

resolved by deep parsing, part-of-speech tagging based on

word context, and rule-based semantic annotation. An appro-

priate index including this information for all detected terms

can then be built. At query time, the query terms are analyzed

and annotated in the same way, and the query is refined with

the relevant semantic categories [3]. For example, a query

containing the term “basketball” may automatically be refined

to the “SPORTS” category, “car” can be expanded to “VE-

HICLE”, while “George Bush” can be expanded to “PRES-

IDENT”. This approach has the potential to allow semantic

refinement of query topics, while limiting topic drift. How-

ever, it is only applicable to the set of semantic categories that

can be annotated robustly.

In the remainder of this paper, we describe our speech-

based retrieval system and evaluate several text-based query

refinement methods in the context of video retrieval. We pro-

pose query refinement using a fusion of different approaches

and conclude with a discussion of our results.

2. TEXT-BASED VIDEO RETRIEVAL SYSTEM

Our speech-based search system is part of the IBM video re-

trieval system [4] used in the TREC Video Retrieval Bench-

mark (TRECVID)2. To study the effect of text-based query

expansion, we have evaluated the speech-based retrieval sys-

tem independently. It is built using the IBM Unstructured

Information Management Architecture (UIMA)3 and the Ju-

ruXML semantic search engine [5] included in the UIMA

SDK4. In addition, we used several UIMA components de-

veloped by IBM Research for advanced text analytics. These

include the RESPORATOR (RESPOnse geneRATOR) sys-

tem [3] and the PIQUANT Question Answering system [6]

built on top of RESPORATOR. With this setup, we evaluated

the following automatic query refinement methods:

2http://www-nlpir.nist.gov/projects/trecvid/
3http://www.research.ibm.com/UIMA/
4http://www.alphaworks.ibm.com/tech/uima

Rocchio-based query refinement: Rocchio refinement [7],

a pseudo-relevance feedback method, is available na-

tively in JuruXML. The top N documents ranked high-

est by the original query are assumed pseudo-relevant.

This set is then analyzed to select k representative terms

for query expansion, and to adjust the weights of the

original query terms. While susceptible to topic drift,

this approach is suitable for discovering relevant terms

that do not necessarily have a lexical relationship with

the original query terms but frequently co-occur with

them in the pseudo-relevant documents. For example,

in this fashion, “car” may be related to “BMW”.

Lexical affinity-based query refinement: This approach is

also based on pseudo-relevance feedback but employs

an alternative term selection method, designed to min-

imize topic drift. It considers lexical affinities (LA),

which are pairs of terms that frequently co-occur within

a close proximity of each other—for example, within

one phrase. If one of the terms in a lexical affinity ap-

pears in the query text, it is assumed that the other part

of the LA is also relevant. For example, “car” may be

expanded to “car accident”. This method was proposed

in [8], and is also available natively in JuruXML.

Semantic annotation-based refinement: In this method, the

entire corpus is annotated and indexed with over 100

semantic categories using the RESPORATOR annota-

tor [3]. It is a rule-based annotator of both named and

unnamed entities, such as people, roles, objects, places,

events, program categories, etc. It is used extensively

by the PIQUANT question answering system [6]. Each

query is analyzed by PIQUANT and annotated with one

or more semantic categories. Shots would then be con-

sidered relevant not only if they contained one of the

query terms, but also if they were annotated with one

of the semantic categories of the query.

The performance of the above approaches depends much

on the query topic, and no single approach is likely to emerge

as the winner for all topics. In fact, for many topics, the best

strategy is to not perform any query expansion. Such topics

include named person queries, or difficult queries for which

the pseudo-relevancy assumption for the top documents does

not hold. We therefore considered a fusion approach in an

effort to improve robustness and to combine the strengths of

the individual approaches. Ideally, one should use a query-

dependent method selection or weighted fusion, such as the

one in [9], as it has a tremendous potential to improve per-

formance and robustness in a query-specific way. However,

for simplicity, and due to lack of a large enough independent

training set of topics and ground truth, we consider only a

global parameter-free fusion approach in this paper. In par-

ticular, we use simple score averaging to combine the shot

ranking scores as determined by the three query refinement

approaches and the original query baseline.
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3. PERFORMANCE EVALUATION

We have conducted experiments using the TRECVID 2005

test corpus and query topics5. This collection contains 140

broadcast news video clips from U.S., Arabic, and Chinese

sources, with durations of 30 minutes to 1 hour each, and

pre-segmented into 45,765 shots. Each video comes with a

corresponding speech transcript obtained through automatic

speech recognition, as well as machine translation for the Ara-

bic and Chinese sources. The text search baseline is obtained

by processing queries to perform part-of-speech tagging and

retain only nouns, and to perform Porter stemming. The Ju-

ruXML search engine also natively identifies phrases in the

form of lexical affinities, and uses them to resolve ambigui-

ties and to obtain more accurate TF*IDF statistics. The query

refinement approaches are performed with the same retrieval

engine and query processing, after tuning the parameters for

the two pseudo-relevance feedback methods. The number

(N ) of top-ranked documents to be considered relevant was

set to N = 30 for LA-based expansion, and to N = 12 for

the Rocchio method. The max. number (k) of terms to be

added was set to k = 30 for both methods. Additional and

original query terms were weighted with the same weight.

We tuned these parameters based on performance on the

TRECVID 2003 corpus and queries; they are likely to be sub-

optimal for the 2005 corpus. The 2003 and 2005 TRECVID

collections are both based on broadcast news but differ in

many other aspects, such as including different channels with

different production rules, the use of non-English sources in

2005, and the use of different ASR engines. We have used the

machine translations for the non-English sources that NIST

has provided for 2005 without further processing. The quality

of these is inferior to the quality of the native English sources

because of the error rate of the machine translation.

To evaluate performance, we executed blind runs on the

TRECVID 2005 test set using the 24 search topics as specified

for the 2005 search task evaluation. We use Average Precision

to measure performance on a specific topic, and Mean Aver-

age Precision (MAP) to aggregate performance results across

multiple topics. Average Precision is the official performance

metric adopted by TRECVID, and essentially represents the

area under the precision-recall curve.

Table 1 shows a comparison of the three query refine-

ment approaches and the baseline, as evaluated on both 2003

and 2005 datasets and topics. We note that most of the re-

sults previously reported at TRECVID were produced using

some form of query refinement. Even though the two sets

of results are based on two different sets of the query topics,

and are therefore not directly comparable, we still note a sig-

nificant performance loss on the 2005 corpus. This is most

likely due to the poor quality of the machine-translated non-

English sources, and to suboptimal parameters for the 2005

data. More interesting, however, is the discrepancy in relative

5http://www-nlpir.nist.gov/projects/tv2005/tv2005.html

Query Refinement/ Training Set Testing Set

Expansion Method TRECVID-2003 TRECVID-2005

No refinement 0.0831 0.0558

Semantic refinement 0.1237 0.0546

LA-based expansion 0.1275 0.0578

Rocchio expansion 0.1291 0.0413

Table 1. Mean Average Precision scores of text search baseline

and three query expansion approaches, evaluated on two different

corpora and two sets of search topics. Parameters were tuned to

optimize TRECVID 2003 performance and were applied blindly on

TRECVID 2005 data and topics.

performance of different approaches on the two corpora. Our

results on the 2003 collection show that query expansion can

yield significant (50%) improvements on the “clean” sources

when properly tuned. The opposite is true, however, on the

“noisier” data—only one of the query expansion approaches

actually outperforms the no-expansion baseline.

To gain further insight, we analyzed the performance bro-

ken down into subsets of topics grouped by query class. We

considered the 5 classes Named People, Unnamed People,

Object, Scene/Setting, and Event/Action. Since one query can

belong to more than one class, we grouped the 24 topics from

TRECVID 2005 into 7 Person-X queries, 5 People queries,

6 Object queries, 10 Setting queries, and 7 Event queries.

Figure 1 shows the query-class specific performance of the

3 query expansion approaches and the baseline. This fig-

ure confirms our hypothesis that query expansion is highly

topic-dependent and no single method is likely to outperform

the others on all topics. It also gives a possible explanation

why query expansion hurts overall performance for two of the

methods. Since the overall MAP score is influenced mostly

by top-performing queries, the Person-X query class domi-

nates all other query classes due to the much higher scores it

generates. Any approach that does not fare well on Person-

X topics is therefore likely to have poor overall performance.

Incidentally, Person-X queries work just as well, or better,

without query expansion.

As no single approach works best for all topics, we wanted

to minimize query-dependency—and improve robustness—

by combining our query expansion techniques together with

the baseline approach. We used a score averaging fusion

scheme (global parameter-free fusion) to combine all 4 meth-

ods, and also considered a query-specific Oracle fusion. The

latter serves to measure potential performance gains with op-

timally tuned query-specific fusion parameters. For the Ora-

cle evaluation, we considered 5 different score normalization

methods, along with 3 non-weighted fusion methods (AVG,

MAX, and PRODUCT), and chose the optimal combination

for each query as observed on the test set. Query-dependent

weighted fusion approaches are likely to perform better, and

are subject of ongoing work [9].

The results of the combination hypothesis approach are
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Fig. 1. Query-class specific performance evaluation.

listed in Table 2. The simple AVG fusion approach does im-

prove robustness, as it outperforms the baseline for 4 out of

5 query classes. It leads to 11% overall improvement and a

Mean Average Precision within 10% of the best performance

(0.067) reported for text-based automatic search in TRECVID

2005. Furthermore, the Oracle method demonstrates signif-

icant potential gains for all query classes, ranging from 18%

to 75%, with an overall improvement of 27% over all topics.

This clearly attests to the promise of this combination hypoth-

esis approach for query expansion.

Based on the Wilcoxon signed rank test, both the results

for AVG fusion and Oracle fusion are statistically significant

at the 5% level.

Query Class No query Query Expansion Fusion

(#topics/class) Expansion AVG (gain) Oracle (gain)

Person-X (7) 0.1133 0.1238 (9%) 0.1341 (18%)

People (5) 0.0167 0.0240 (43%) 0.0266 (59%)

Object (6) 0.0312 0.0403 (29%) 0.0545 (75%)

Setting (10) 0.0360 0.0373 (4%) 0.0440 (22%)

Action (7) 0.0393 0.0382 (-3%) 0.0566 (44%)

All Topics (24) 0.0558 0.0617 (11%) 0.0711 (27%)

Table 2. Query-class specific Mean Average Precision scores for

no-expansion baseline, AVG fusion-based query expansion, and an

Oracle method with test set-optimized fusion parameters.

4. CONCLUSIONS AND FUTURE WORK

We have investigated three complementary automatic query

refinement approaches and shown that these have excellent

potential for improving speech-based video retrieval. While

query expansion performance is query specific, and no single

approach emerges as a clear winner across all topics, we ob-

served consistent performance patterns within 5 query classes,

including named and unnamed people, objects, settings, and

events. In particular, each class exhibited different behavior

with respect to the optimal query expansion method. A simple

combination hypothesis approach was able to improve robust-

ness, leading to performance gains for 4 out of the 5 query

classes, including 30-40% gains on the Objects and People
classes, and 11% improvement over all topics.

In future work, we will consider query-class dependent

fusion approaches, such as the one presented in [9]. Query-

class dependent method selection and fusion have a consider-

able potential for further improvements, as shown by the Or-
acle fusion method and its potential gains in all query classes,

ranging from 18% to 75% with a 27% overall gain. Weighted

fusion approaches are likely to yield even higher gains.
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