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ABSTRACT

In this paper, we propose the use of (adaptive) nonlinear ap-
proximation for dimensionality reduction. In particular, we
propose a dimensionality reduction method for learning a parts
based representation of signals using redundant dictionaries.
A redundant dictionary is an overcomplete set of basis vec-
tors that spans the signal space. The signals are jointly rep-
resented in a common subspace extracted from the redundant
dictionary, using greedy pursuit algorithms for simultaneous
sparse approximation. The design of the dictionary is flexi-
ble and enables the direct control on the shape and properties
of the basis functions. Moreover, it allows to incorporate a
priori and application-driven knowledge into the basis vec-
tors, during the learning process. We apply our dimensional-
ity reduction method to images and compare it with Principal
Component Analysis (PCA) and Non-negative Matrix Factor-
ization (NMF) and its variants, in the context of handwritten
digit image recognition and face recognition. The experimen-
tal results suggest that the proposed dimensionality reduction
algorithm is competitive to PCA and NMF and that it results
into meaningful features with high discriminant value.

1. INTRODUCTION

Recent years have witnessed a large volume of high dimen-
sional multimedia data. Generally, a pattern of interest is ob-
served in a high dimensional ambient space but it is of much
lower intrinsic dimension. For instance, all the possible ap-
pearances of a facial image span only a small part of the high
dimensional image space. The purpose of feature extraction
and dimensionality reduction techniques is to discover the in-
trinsic dimension of the data and to extract the low dimen-
sional meaningful information from them.

Subspace analysis helps to reveal the latent low dimen-
sional structures from the observed high dimensional data.
One popular subspace method for dimensionality reduction
is the Non-negative Matrix Factorization (NMF) [1], which
has been proposed for learning a parts-based representation.
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In contrast to the basis vectors of Principal Component Anal-
ysis (PCA) that are of global support, the basis vectors ob-
tained from NMF are sparser, spatially localized and there-
fore more interpretable. A lot of variants of NMF (see e.g.,
[2, 4] and references therein) have been proposed, which at-
tempt to provide more control over the properties of the basis
vectors and/or coefficients vectors, by introducing additional
(possibly non convex) constraints into the NMF optimization
problem. However, in some cases, this results in sophisticated
non-convex optimization problems that are hard to solve.

We propose a subspace method that formulates the dimen-
sionality reduction problem as a matrix factorization problem,
where the basis vectors are extracted from a redundant dictio-
nary of localized basis functions. The flexibility in the design
of the dictionary provides direct control on the shape and the
properties of the basis functions, such as spatial locality and
sparse support. Moreover, it provides naturally the potential
to incorporate a priori and application-driven knowledge into
the learning process, without resorting to sophisticated con-
straints, as is usually the case with NMF. During learning, the
matrix factorization is obtained using greedy algorithms from
simultaneous sparse approximation of signals. To the best
of our knowledge, our paper is the first one to highlight the
potential advantages of nonlinear approximation1 to dimen-
sionality reduction. Thus, it opens the way to the develop-
ment of a new family of dimensionality reduction algorithms
based on sparse nonlinear approximations. An additional ad-
vantage of the method is that compression and dimensionality
reduction are jointly performed; hence, classification can be
directly performed in the compressed domain. We provide ex-
perimental results on image recognition, which demonstrate
that the proposed method is competitive with NMF and PCA.

2. DIMENSIONALITY REDUCTION USING
SIMULTANEOUS APPROXIMATION

We assume the existence of a redundant dictionary D which
spans the Hilbert space H of the signals of interest. A redun-

1Nonlinear approximation refers to the type of subspace approximation
where the subspace is adapted to the signal that is approximated.
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Algorithm: SOMP
Input: Signal matrix S ∈ Rm×n and tol:
approximation error tolerance.
Output: Set of selected atoms Ψ, approximation A
and residual matrix R.
1. Initialize the residual R0 = S, Ψ = [], t = 1.
2. Find index γt by solving the optimization problem

maxγ∈Γ ‖R>t φγ‖1
3. Augment Ψ = [Ψ, φγt

]
4. Compute an orthonormal basis V = [v1, . . . , vt]

of the span{Ψ}.
5. Compute the orthogonal projector Pt = VtV

>
t on

the span{Ψ}.
6. Compute the new approximation and residual

At = PtS
Rt = (I − Pt)S

7. If ‖R‖F ≤ tol, then stop. Otherwise, increment
iteration t = t + 1, and go to step (2).

Table 1. The SOMP algorithm.

dant dictionary
D = {φγ , γ ∈ Γ}

is an overcomplete basis i.e., it includes more vectors than
the dimension of the subspace. Redundancy provides flexi-
bility in the construction and in general boosts the approxi-
mation rate, especially for multidimensional signals [5]. The
elements of the dictionary φγ are usually called atoms and
are of unity norm. When the atoms are constructed by ap-
plying geometric transformations (e.g., translations, dilations
and rotations) on a generating mother function φ, the dictio-
nary is called structured and in this case, the index Γ indicates
the parameters of the transformation. The following analysis
holds for any redundant dictionary (i.e., overcomplete basis)
spanning the signal space H.

Consider a signal as an element of H ⊆ Rm. We collect
the training samples and form a signal matrix

S = [s1, s2, . . . , sn] ∈ Rm×n, (1)

where si is the i-th column of S. For dimensionality reduc-
tion, our goal is to decompose S in the following form

S ≈ ΨC, Ψ ∈ Rm×r, C ∈ Rr×n, (2)

where Ψ are the basis vectors drawn from the redundant dic-
tionary and C are the corresponding coefficients. In other
words, every column of S is represented in the same set of
basis functions Ψ using different coefficients. This is a di-
mensionality reduction step where each signal (column of S)
is represented in the subspace spanned by the columns of Ψ,
using only r ¿ m coefficients.

If the columns of Ψ are spatially localized basis functions
then the decomposition (2) results in a parts-based represen-
tation. Note that the design of the dictionary determines the
properties of Ψ. Therefore, one has direct control on the shape
and properties of the basis functions, thanks to the flexible de-
sign of the dictionary. Note that in NMF and its variants, one
has only implicit control on the properties of the basis func-
tions, accomplished via additional constraints introduced in
the optimization problem.

If we denote by ‖·‖F the Frobenius norm, then we formu-
late the above problem as the following optimization problem.

Optimization problem: OPT1
minΨ,C ‖S −ΨC‖2F
subject to

Ψ ⊆ D.

In order to solve OPT1, one may employ suboptimal algo-
rithms that have been proposed in the context of joint signal
compression by simultaneous sparse approximations [3]. We
have chosen to use Simultaneous Orthogonal Matching Pur-
suit (SOMP) [3], since it lends itself as a computationally at-
tractive algorithm for solving OPT1 in practice and enables a
fast FFT-based implementation in the case of structured dic-
tionaries. Note that other methods for simultaneous approxi-
mations could be potentially used.

SOMP is a greedy algorithm that extracts a subset Ψ of the
dictionary, such that all the columns of S are simultaneously
approximated. In each step, SOMP greedily selects the atom
from the dictionary, which best matches all the residual sig-
nals at each iteration. Initially, SOMP sets the residual matrix
R = S. Once the best matching atom φγ1 has been selected,
the algorithm updates the residual matrix by projecting it on
the orthogonal complement of φγ1 , and hence it removes its
component from R.

In the next steps, the algorithm repeats the same proce-
dure on the updated residual matrix. Thus, it greedily selects
in step t, the best matching atom φγt by solving the simple
optimization problem

γt = max argγ∈Γ ‖R>t φγ‖1,
and then it includes the selected φγt in Ψ. The residual ma-
trix is updated by Rt+1 = (I − P )S, where P is the orthog-
onal projector on the span{Ψ}. The main steps of the SOMP
algorithm are summarized in Table 1. Note that the Orthog-
onal Matching Pursuit (OMP) converges in a finite number
of iterations, since the norm of the residual decreases mono-
tonically. This can be generalized to the case of SOMP [3].
Therefore, unlike the NMF algorithms, SOMP is not prone to
local minima and it is not sensitive to initializations.

3. EXPERIMENTAL RESULTS

We apply our dimensionality reduction method to images and
we build two different structured dictionaries where φ is (a)
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Gaussian: φ(x, y) = 1√
π

exp(−(x2+y2)) and (b) Anisotropic
refinement (AR) function φ(x, y) = 2√

3π
(4x2−2) exp(−(x2+

y2)) [5]. The AR function has an edge-like form and has been
successfully used for image coding. For the construction of
the atoms in each dictionary, we sample uniformly 10 orien-
tation angles in [0, π] and 5 logarithmically equi-distributed
scales in [1, N/4], where N is the image size. The translation
parameters are discretized by pixel locations.

We compare experimentally the proposed method with
NMF [1] and PCA. Given a data matrix S ∈ Rm×n with non-
negative entries, NMF seeks two non-negative factors W ∈
Rm×r and H ∈ Rr×n such that S ≈ WH . The columns
of the matrix W contain the basis vectors and H contains
the corresponding coefficient vectors for the approximation
of the columns of S. We use the MATLAB software pack-
age nmfpack [4] developed by P. Hoyer, which provides im-
plementations for standard NMF as well as for Local NMF
(LNMF) [2].

We experiment with the dimension of the reduced space
r = [10 : 10 : 50] (in MATLAB notation) and for each value
of r, we report the classification performance in terms of av-
erage error rate across 50 random realizations of the train-
ing/test set. For classification, each training signal si is pro-
jected using the transpose of the matrix holding the basis vec-
tors. The classification is accomplished in the reduced space
by simple nearest neighbor (NN) classification.

Handwritten digit image recognition. We use the hand-
written digit collection that is publicly available at S. Roweis
web page2. This collection contains 20 × 16 bit binary im-
ages of “0” through “9”, and each class contains 39 samples.
We form the training set by a random subset of 10 samples
per class and the remaining 29 samples are assigned in the test
set. In the SOMP algorithm we use the Gaussian dictionary
after preliminary experiments which show that, for this data
set, it outperforms the AR dictionary. However, due to lack of
space, we do not report these experiments here. Note also that
this is one way to incorporate a priori and application-driven
knowledge into the learning process. Figure 1(a) depicts the
average classification error rate for various values of the di-
mension r of the reduced space. Observe that SOMP seems
to be superior to its competitors and results in more discrimi-
nant features. The poor performance of PCA may be due the
shortcoming of its global features to capture the spatial local
characteristics of the digits.

We also examine the basis functions extracted from all
methods. Figure 2 shows the recovered basis vectors from the
digits data set, where dark pixels correspond to high values.
The basis functions in sub-figures 2(a) and 2(b) are obtained
from SOMP using the Gaussian and AR dictionary respec-
tively. The figure also depicts the recovered basis functions
from NMF and LNMF. Note that the features obtained from
NMF resemble parts of digits but do not seem to be spatially

2http://www.cs.toronto.edu/∼roweis/data/binaryalphadigs.mat

localized. On the contrary, the features of LNMF are spatially
localized and they seem quite similar to the Gaussian atoms.
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(a) Handwritten digits
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(b) Faces

Fig. 1. Image recognition experiments

Face recognition. We use the ORL (formerly Olivetti)
database [6], which contains 40 individuals and 10 different
images for each individual, including variation in facial ex-
pression (smiling/non smiling) and pose. We form the train-
ing set by a random subset of 5 different facial expressions
per subject and use the remaining 5 as a test set.

Figure 1(b) depicts the average classification error rate
across 50 random realizations of the training/test set. For this
data set we use the AR dictionary, since the AR functions
are more effective in representing the fine facial characteris-
tics. Notice that SOMP is superior to the NMF algorithms
and competitive to PCA. Also observe that for small dimen-
sions r of the reduced space, the SOMP algorithm seems to be
slightly inferior to its competitors, but as r increases, SOMP
becomes more effective. This may occur due to the greedy
nature of SOMP. In the first steps the SOMP algorithm typi-
cally selects atoms of large scale, in order to reduce quickly
the approximation error. However, the large scale atoms usu-
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(a) Gaussian atoms (b) AR atoms (c) NMF (d) LNMF

Fig. 2. Recovered basis vectors from the handwritten digit collection.

(a) Gaussian atoms (b) AR atoms (c) NMF (d) LNMF

Fig. 3. Recovered basis vectors from the ORL face data set.

ally carry low frequency information, which in general may
not be effective for the classification task.

Finally, Figure 3 shows the recovered basis vectors from
the face data set. The basis functions in sub-figures 3(a) and
3(b) are obtained from SOMP using the Gaussian and AR
dictionary respectively. Notice that the features obtained from
NMF look like faces and seem to be of global support. On the
contrary, the features of LNMF are more localized.

4. CONCLUSION AND FUTURE WORK

We have proposed the use of (adaptive) nonlinear approxi-
mation using redundant dictionaries, for dimensionality re-
duction. We formulate dimensionality reduction as a matrix
factorization problem and use greedy pursuit algorithms from
simultaneous sparse approximation, in order to solve it. The
experimental results indicate the effectiveness of the proposed
scheme and suggest that the extracted features are meaningful
and of high discriminant value. We are currently working on
designing improved (e.g., supervised) dimensionality reduc-
tion methods.
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