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ABSTRACT

The temporal correlation between adjacent video frames poses a
severe challenges for video watermarking applications. Motion-
coherent watermarking has been recognized as a strategy to embed
watermark information in video frames, resistant to collusion at-
tacks. The motion-compensated temporal wavelet transform(MC-
TWT) provides an efficient tool to separate static and dynamic
components of a video scene and enables motion-coherent water-
marking.

In this paper, we extend a MC-TWT domain watermarking
scheme with blind detection, i.e. motion estimation and watermark
detection is performed without reference to the unwatermarked
video. Our results show that motion-coherent watermarkingcan
be combined with a blind detector, widening the applicability of
MC-TWT domain watermarking beyond forensics (where the un-
watermarked content is assumed to be available).

Index Terms— motion-coherent, blind watermarking

1. INTRODUCTION

Watermarking has been proposed as a technology to ensure copy-
right protection by embedding a signal in digital multimedia con-
tent such as video [1]. Direct application of image watermarking
schemes on the individual video frame gives rise to inter-frame at-
tacks [2]. Adjacent video frames are typically highly correlated
along the temporal axis. This fact can be exploited by averaging
frames in case of an uncorrelated watermark or by performingper-
ceptual remodulation of the averaged per-frame watermark estimate
(WER attack [3]). To counter above attacks, the embedded water-
mark should exhibit correlation similar to the host signal frames [4],
i.e. the watermark should be motion-coherent [5].

Frame registration and temporal transforms employing motion-
compensation (MC) have been proposed as tools to align compo-
nents of a video scene [6]. While the temporal transform approach
uses block-based motion estimation (ME) to track motion of back-
ground and foreground objects, the frame registration technique
merely separates and aligns the background. Motion-compensated
frame prediction and evaluation of the local variance statistics of the
residual frame has been proposed to assess the motion-coherency of
a video watermarking scheme [7].

In this paper, we propose a blind video watermarking scheme
based on a motion-compensated temporal wavelet transform.It ex-
tends the work of Pankajakshan et al. [6] by employing blind ME
and blind watermarking detection, i.e. without reference to the un-
watermarked content.
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In section 2 we review motion-compensated watermarking and
propose our novel blind detection scheme. Experimental results are
presented in section 3, followed by concluding remarks in section 4.

2. MOTION-COHERENT WATERMARKING

Early video watermarking schemes simply adopted image water-
marking techniques on a per-frame basis. Two prototypical key
schedules, repetitive and independent watermarking, can be distin-
guished, i.e. the same key is used for all frames or a different key
is used to generate the watermark signal for each frame. In case of
independent frame watermarking, flickering may become noticeable
even when the watermark is imperceptible for each frame.

Furthermore, the redundancy between video frames permits to
drop or swap frames to hinder synchronization, but also gives rise to
powerful watermark estimation and collusion attacks whichthreaten
the security of the watermarking scheme by revealing information on
the secret watermark signal. Only recently, the notion of watermark
security has been established alongside watermark robustness. In
this paper we do not consider synchronization or inter-video attacks
but concentrate on inter-frame attacks.

A repetitive video watermark can be attacked by estimating and
remodulating the watermark’s high-frequency components in each
frame (e.g. via Wiener filtering [3]). The watermark estimate can be
refined by combining estimates derived from dissimilar frames thus
exploiting the redundancy of the watermark signal.

An independent video watermark is susceptible to the frame
temporal filtering (FTF) or collusion attack: representingadjacent
video frames by their temporal low-pass approximation averages out
the uncorrelated watermark in the high frequency components. This
attack’s effectiveness can be greatly increased by employing MC-
FTF [6] or FTF after frame registration [5].

Watermarking schemes aim to cope with the redundancy be-
tween the host frames using temporal transforms: Swanson etal.
[8] apply temporal wavelet filtering to separately mark static (low-
pass approximation) and dynamic (detail subbands) components of
the video. 3D DCT [9] and DFT [10] transforms have also been pro-
posed. Recently, watermarking schemes have been presentedwhich
explicitly take video motion into account to resist MC-FTF attacks.
Kundur et al. [4] depend on anchor points to embed a correlated
watermark in similar host video components, Doërr et al. useframe
registration to align the video’s background component before wa-
termarking. Pankajakshan et al. [6] embed the watermark in the
low-pass approximation obtained by a motion-compensated tempo-
ral wavelet transform (MC-TWT) [11]. Figure 1 shows the temporal
low-pass frame with and without MC of the first16 Foreman se-
quence frames.
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Fig. 1. Frames of the CIF Foreman sequence, (a) to (c). Temporal low-pass (average) of the first16 frames with (d) and without (e) MC.

For detection of a motion-coherent watermark, the video mo-
tion information is required. In case the detector has access to the
original host video, i.e. non-blind or private detection, an accurate
motion model is available. Clearly, this requirement restricts the
range of possible application scenarios, e.g. to forensic watermark-
ing. For blind watermark detection, i.e. detection withoutrefer-
ence to the original host, the approximate motion model has to be
estimated from the watermarked – and potentially further altered –
video. Robustness of the more versatile blind detector therefore also
depends on the robustness of the motion model.

In the next section, we review the scheme of Pankajakshan et al.
and then extend it to blind watermark detection. The MC-TWT of-
fers the advantage of an efficient, fine-grained motion modelbased
on block-based ME to track both foreground as well as background
video components and is compatible with potential future video cod-
ing standards [6, 11, 12].

2.1. MC-TWT watermarking

The MC-TWT can be efficiently computed via lifting steps. Here,
we follow the notation of [6] and restrict ourselves to the Haar
wavelet and a motion model,M , with integer pixel accuracy. Ex-
tensions to the5/3 wavelet for bidirectional filtering and sub-pixel
accuracy motion can be found in [11].

A video sequence is split into scenes ofN frames,{Xk[n], k =
0, 1 . . . , N − 1}, which are recursively decomposed in low-pass,lik,
and high-pass,hi

k, temporal frames of decomposition leveli,

hi
k[n] = li−1

2k+1[n] − li−1
2k [M2k·2i−1→(2k+1)·2i−1(n)] (1)

lik[n] = li−1
2k [n] − 1

2
hi

k[M(2k+1)·2i−1→2k·2i−1 (n)] (2)

where k = 0, 1, . . . , N/2i − 1 and l0k[n] = Xk[n]. A spread-
spectrum watermark,W [n], is then added to the temporal low-pass
frame

l̂ι0[n] = lι0[n] + W [n] (3)

of maximum levelι. The marked video sequence is obtained by the
reconstruction steps given by

li2k[n] =li+1
k [n] − 1

2
hi+1

k [M(2k+1)·2i→2k·2i(n)] (4)

li2k+1[n] =hi+1
k [n] + li2k[M2k·2i→(2k+1)2i (n)]. (5)

After embedding the watermark in the low-pass temporal frames
at decomposition levelι, the resulting reconstructed, watermarked
framesX̂k carry the same watermark sample in different frames
along the motion trajectories (assuming composition and invertibil-
ity of the motion vectors):

X̂k[n] =

(
Xk[n] + W [n] k = 0

Xk[n] + W [M0→k(n)] k = 1, . . . , N/2ι − 1.
(6)

Watermark detection can be performed by computing the normalized
correlation,

NC(W̃ , W ) =
< W̃ , W >‚‚W̃

‚‚ · ‚‚W
‚‚ , (7)

between the embedded watermark,W [n], and the extracted water-
mark,W̃ [n], from a potentially altered framẽXk,

nck = NC(X̃k[n] − Xk[n], W [M0→k(n)]). (8)

and comparingnck against a detection thresholdTNC(Pfa) de-
signed to yield a probability of false-alarm,Pfa, suitable for a given
application,

nck

?

≧ TNC(Pfa). (9)

This non-blind detector, designed for Gaussian noise interfer-
ence, subtracts the original frames in eq. 8 to suppress the non-
Gaussian interference due to the host signal.

2.2. Blind detection

When the original host signal is not available to the watermark detec-
tor, the watermark has to be correlated directly with received video
frames,X̃k[n], instead of the extracted watermark. The host signal
acts as noise and interferes with watermark detection. By applying
a block-wise8× 8 DCT transform on the temporal low-pass frames
and adding the watermark only to the mid-frequency bands of the
transform blocks, substantial energy of the host signal canbe re-
jected. It is well known that the mid-frequency coefficientsof the
8 × 8 DCT can be modeled by a generalized Gaussian distribution
for which an optimal detector has been derived [13].

For our blind MC-TWT video watermarking we select18 fre-
quency bands, band3 to21 in zig-zag scan order, from the8×8 DCT
blocks of the temporal low-pass framelι0. We construct a frequency
domain bipolar watermark,W ′[η], where only the coefficients in the
selected bands are non-zero. The marked temporal low-pass frame
is then obtained by

l̂ι0[n] = DCT−1
8×8(DCT8×8(l

ι
0[n]) + W ′[η]). (10)

Applying the inverse8× 8 DCT onW ′[η] yields the spatial domain
watermark

W [n] = DCT−1
8×8(W

′[η]). (11)

Due to the linearity of the DCT, it follows that

l̂ι0[n] = lι0[n] + W [n]. (12)

For blind watermark detection we construct the vectorsv and
w from the selected frequency bands ofDCT8×8(X̃k[n]) and
DCT8×8(Wk[n]), Wk[n] = W [M̃0→k(n)], respectively, and com-
pute the generalized Gaussian detection statistic

GGdk(v, w) =
X

j

β(
˛̨
vj

˛̨c − ˛̨
vj − wj

˛̨c
), (13)



Sequence
Non
blind

Blind ME
SR 16, L 4 SR 32, L 4 SR 16, L 3 SR 32, L 3

Foreman 1.00 0.80 0.79 0.90 0.89
Coastguard 1.00 0.48 0.45 0.63 0.60

Akiyo 1.00 0.98 0.98 0.99 0.99
Mobile 1.00 0.34 0.29 0.45 0.38
Stefan 1.00 0.47 0.47 0.64 0.61

Table 1. Normalized Correlation (nc) results for watermark detec-
tion with non-blind and blind motion estimation (ME) for different
search ranges (SR) and temporal decomposition levels (L).

where the shape parameter of the distribution,c, andβ are computed
using maximum-likelihood estimation onv. Note that for blind de-
tection, an approximate motion model,̃M, has to be estimated from
the received video frames̃X.

The detection statistic is again compared against a decision
threshold,TGGd(Pfa), to decide upon the watermark presence. We
can turn the above motion-coherent watermarking into a repetitive
or independent watermarking scheme by settingWk[n] = W [n] or
generating uncorrelatedWk[n], respectively.

3. EXPERIMENTAL RESULTS

We have implemented the reference non-blind scheme [6] for com-
parison and the proposed blind watermarking schemes with per-
frame repetitive and independent watermarking as well as motion-
coherent watermarking. The MC-TWT is performed with Haar
wavelet lifting with a decomposition level of4 and integer pixel
accuracy.

The same binary bipolar watermark has been embedded in the
luminance component of all sequences with no perceptual masking
applied. The embedding strength has been adjusted for all algo-
rithms so that the average PSNR of the watermarked video is around
38 dB.

For ME, a simple hierarchical variable size block matching
(HVSBM) technique with minimal block-size8 × 8 pixels and
integer-pixel accuracy is adopted. We have chosen the first64
frames of the widely available video sequences Foreman, Coast-
guard, Akiyo, Mobile and Stefan in CIF format,352 × 288 pixels.
A characterization of the motion of these video sequences can be
found in [7]. The reported results were obtained by averaging the
per-frame results over5 test runs.

3.1. Evaluation of ME robustness

First we evaluate the impact of blind ME, see table 1. Given the orig-
inal motion information, the detector can perfectly recover the em-
bedded watermark. However, when ME has to be performed on the
watermarked video, the detection performance degrades, strongly
depending on the video content. The detection improves whencon-
straining the search range or decomposition level.

Next, we assess the robustness of the non-blind detector under
H.264 and MC-EZBC [12] compression attack with bit rates rang-
ing from3000 to 250 kbit/s and contrast the performance with (sim-
ulated) blind ME. Figure 2 presents the plots for the Foremanand
Coastguard sequence. The lack of accurate motion information de-
creases the detector response, but the NC result stays well above the
detection threshold of0.02 for aPfa = 1e−6.
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Fig. 2. Robustness of the non-blind MC-TWT watermark detector
against H.264 and MC-EZBC compression and impact of blind ME.

3.2. Robustness of the blind detector

The blind MC-TWT watermarking scheme’s robustness against
H.264 and MC-EZBC compression is illustrated in figure 3 us-
ing the Foreman and Coastguard sequence. We plot the ratio
d = (GGd − TGGd(1e−6))/σ2, where TGGd is the detection
threshold andσ2 the estimated variance of the generalized Gaussian
detection statistic. The decrease in detection performance due to
inaccurate ME is less pronounced compared to the non-blind detec-
tor. Only for bit rates less than250 kbit/s the watermark cannot be
detected reliably.

3.3. FTF attack on the blind detector

We test our proposed blind watermarking scheme with repetitive,
independent and motion-coherent watermarking with FTF andMC-
FTF, i.e. inter-frame collusion attacks. For the FTF attackwe con-
fine the investigation to a collusion window size of3 as higher values
lead to very noticeable motion blur, compare with figure 1 (d)and
(e). MC-FTF is performed with window size7, nevertheless PSNR
is consistently higher.

As expected, FTF is ineffective against the repetitive watermark.
The motion-coherent watermark is more resistant against MC-FTF
than the repetitive or independent watermark.

4. CONCLUSION

We have extended MC-TWT domain watermarking with blind de-
tection. Although the inaccurate motion information derived by the
blind detector impairs robustness, the motion-coherent watermark



Sequence
FTF Attack (window size3) MC-FTF Attack (window size7)

Repetitive WM Independent WM Motion-coherent WM Repetitive WM Independent WM Motion-coherent WM
PSNR (dB) d PSNR (dB) d PSNR (dB) d PSNR (dB) d PSNR (dB) d PSNR (dB) d

Foreman 33.04 1.35 34.02 0.45 33.75 0.35 36.96 0.79 37.96 0.60 36.92 0.86
Coastguard 30.16 1.33 31.01 0.42 30.94 0.29 33.47 0.51 33.84 0.38 33.12 0.68

Akiyo 38.18 1.35 41.66 0.49 38.49 0.86 38.25 1.12 41.33 0.75 38.36 0.96
Mobile 26.62 1.33 27.69 0.41 27.46 0.36 28.53 0.69 29.01 0.52 28.58 0.76
Stefan 26.06 1.56 27.07 0.52 26.63 0.47 30.06 0.63 31.02 0.53 30.26 0.79

Table 2. PSNR and detector response results for the FTF and MC-FTF attack with collusion window3 and7, respectively.
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Fig. 3. Robustness of the blind MC-TWT watermark detector
against H.264 and MC-EZBC compression, contrasted with (sim-
ulated) non-blind ME.

remains detectable even under severe compression. There clearly is
a trade-off to be made between robustness and watermark security.

The motion-coherent watermark can either be detected in the
temporal low-pass frame, permitting progressive, blind detection in-
tegrated in MC-TWT based video codecs such as MC-EZBC [12], or
in the decoded frames. Further research will evaluate watermark es-
timation attacks and assess the robustness against explicit tampering
with block-based ME.
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