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ABSTRACT 
 
This paper proposes an efficient video coding method based 
on audio-visual attention, which is motivated by the fact that 
cross-modal interaction significantly affects humans’ 
perception of multimedia content. First, we propose an 
audio-visual source localization method to locate the sound 
source in a video sequence. Then, its result is used for 
applying spatial blurring to video frames in order to reduce 
redundant high-frequency information and achieve coding 
efficiency. We demonstrate the effectiveness of the 
proposed method for H.264/AVC coding along with the 
results of a subjective evaluation. 
 

Index Terms— video coding, audio-visual attention, 
cross-modal interaction, source localization, H.264/AVC, 
perceived audio-visual quality 
 

1. INTRODUCTION 
 
Techniques based on the characteristics of the human visual 
system for efficient video coding have recently received 
much interest. When humans observe a scene, only a small 
region around a point of fixation is captured at a high spatial 
resolution while resolutions for the peripheral regions 
dramatically decrease with eccentricity. This implies that it 
may not be necessary to encode the whole scene with a 
uniform quality. Compression efficiency can be achieved by 
discarding redundant information outside small fixation 
regions without significant degradation of perceived quality. 
Several techniques have been proposed for such visual 
attention-based coding, in which spatial prioritization 
schemes determine the priorities of different regions in the 
scene and encoding is performed according to those 
priorities [1,2]. 
   An important aspect which has been rarely considered in 
attention-based coding is the acoustic modality. Cross-
modal interaction of auditory and visual modalities plays an 
important role in spatial attention. An auditory stimulus in a 

particular location attracts visual attention occurring at the 
same spatial location, for both exogenous attention (i.e., 
stimulus driven) and endogenous attention (i.e., directed 
voluntarily) [3]. Even when people are performing a visual 
task, a novel auditory stimulus can automatically capture 
their visual attention [4]. Directing attention to an auditory 
stimulus improves perception of the subsequent visual 
stimulus [5]. As for motion perception, simultaneous 
auditory motion information introduces a bias or affects the 
sensitivity in a visual motion detection task [6].  
   Motivated by these observations, we propose a new 
attention-based video coding technique which considers 
both the acoustic and the visual modalities. For a given 
video sequence containing an audio channel, the region 
emitting sound is localized by analyzing the correlation 
between the acoustic and the visual signals. Then, a priority 
map is generated based on the distance of each pixel to the 
localized region; the priority is the highest for the localized 
region and decreases as the distance increases. Spatial 
blurring is applied so that a low priority region is strongly 
blurred. The introduction of blur at the locations far from 
the sound source attenuates high frequency information in 
those areas which are likely to be less attended. Thus, 
coding efficiency can be increased without significant 
perceived quality degradation. We demonstrate the 
effectiveness of the proposed localization method and the 
consequent coding method through experimentations. 
Moreover, the results of a subjective quality test with the 
produced video are reported. 
   The following section presents the proposed audio-visual 
source localization method. In Section 3, we describe the 
encoding scheme based on the audio-visual localization. 
The experimental results are shown in Section 4 and, finally, 
concluding remarks are given in Section 5. 
 

2. AUDIO-VISUAL SOURCE LOCALIZATION 
 
Audio-visual source localization is to specify the location of 
the region producing sound in a video sequence. Especially, 
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we are interested in the case where multiple moving objects 
appear simultaneously but only one object is responsible for 
the sound, and thus a conventional motion detection with 
only the visual information may not be satisfactory. 
   Our source localization method is based on the one 
proposed in [7], to which an important improvement has 
been introduced. The method does not have any assumption 
on the object or region to be localized but tries to pinpoint 
image pixels associated with the one-channel acoustic 
source. Moreover, the method does not require a training 
step which may need manually processed training data. 
   Basically, the method utilizes the canonical correlation 
analysis (CCA) technique. Let a and v be the temporally 
synchronuous na-dimensional acoustic feature vector and 
the nv-dimensional visual vector for a frame. In this paper, 
pixel values are used for v. The objective of CCA is to find 
a pair of vectors wa and wv which maximize the correlation 
of the projected features, i.e., T

aw a  and T
vw v , respectively. 

Let A and V be the collections of the features over multiple 
frames, i.e., A=[at,at+1,…,at+T-1] and V=[vt,vt+1,…,vt+T-1], 
where T is the number of frames. Then, projection vectors 
are obtained by solving 

,

( )
, arg max

( ) ( )a v

T T T
a v

a v T T T T
a a v v

w w

w V A ww w
w A A w w V V w
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It can be shown that solving the above problem is 
equivalent to resolving the following equation [7]: 

v aVw Aw .                                 (2) 
If V is full rank, there exist an infinite number of solutions 
for (2), because the dimension of wv is usually much larger 
than T.  
   In order to alleviate this problem, a spatial sparsity 
criterion is imposed to find a unique solution: 

1min || || subject to   v vw Vw A   (3) 
for na =1, where ||·||1 is the l1-norm. If na >1, the following 
optimization is solved for every 11,2,..., 2 ank : 

1min || ||   

  subject to  , 1, and 0
v

T
v a k a k a

w
Vw Aw h w H w

, (4) 

where the elements of hk are the binary representation of k 
with +1 and -1, and Hk is the diagonal matrix whose 
diagonal is hk. Then, the one giving the smallest objective 
value is chosen for the final solution. The linear 
programming can solve the above constrained optimization 

problems. The solution of (3) and (4), wv, can be interpreted 
as the cross-modal energy concentrated on the visual 
features which are responsible for the acoustic signal.  
   A limitation of the above algorithm is the lack of 
consideration of temporal and spatial consistency. Therefore, 
we improve it by incorporating such consistency in the 
method, which will result in improved tracking performance. 
For this, the problems in (3) and (4) are modified as: 

1
min | | subject to   

vn

i vi v
i

f w Vw A   (5) 

and  

1
min | |  
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i
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respectively, where wvi is the i-th component of wv. Here, 
the weighting factor 1{ } vn

i if  is to consider the localization 
result of the previous frame for obtaining the result of the 
current frame. If a high value has been obtained for a pixel 
at a certain frame, we assign low weight values to the pixel 
and its spatial neighbors so that high energy values are 
assigned for those pixels in the next frame. This weighting 
scheme promotes consistency in the localization results in 
consecutive frames. Again, the problem (5) or (6) is solved 
by using linear programming. 
   The weights are obtained as follows: Once we have the 
localization result for the previous frame, we apply a 
smoothing filter to its image representation. For this, we use 
a Gaussian filter. Then, the weights are obtained by 

max 1old old
i vj vij

f w w ,   (7) 

where old
viw  is the i-th component of the smoothed image 

representation of the localization result for the previous 
frame. Adding 1 in (7) is to ensure that all weights are 
nonzero. Using a smoothing filter is to assign low weights 
not only to the localized pixel but also to its neighboring 
region, which allows some margin in consistency. 
   An example of localization is shown in Fig. 1(a): In the 
scene, the hand plays the guitar producing sound, while the 
wooden horse in the right part of the image is rocking. The 
white dot indicates the location detected by the method 
described above. 
 

3. ATTENTION-BASED CODING 

                
(a)                                      (b)                                        (c)                                       (d) 

Fig. 1. Illustration of the proposed method for a frame of Data #1 (see Section 4 for description of the data). (a) Localization result 
overlaid on the image (marked with a white dot). (b) Priority map (shown with small brightness values for high priorities). (c) Blurred 
image for L=2. (d) Blurred image for L=6. 
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To exploit the localization result for video coding, we apply 
a spatially variable blur to each image frame of the video 
sequence according to the result for the frame. 
 Once we have obtained the source localization result for 

each frame, a priority map is produced, which represents the 
weighted distance between each pixel and the nearest 
localized energy location (Fig. 1(b)). When there are more 
than one energy locations, the weighting is calculated in 
such a way that a pixel near a smaller energy receives a 
larger distance than one near a larger energy location, just as 
in a contour map. It is possible to monotonically scale the 
priority, e.g. by applying logarithm or exponentiation. 
However, such scaling was not necessary in our 
experiments. 
   Higher compression ratios are obtained for the smoothed 
regions due to elimination of high frequency components 
via smoothing. The compressed streams produced with this 
approach are fully compatible with existing decoders. 
   Blurring is performed with a Gaussian pyramid with L 
levels. An image with stronger blurring at low priority 
locations is obtained with a larger value of L. Each level of 
the pyramid is assigned to the linearly spaced values within 
the range of the priority values; the highest level (the 
original image) is assigned to the highest priority (at the 
sound-emitting location with the largest energy) and the 
lowest level to the lowest priority. For the priority values 
between two levels, trilinear interpolation is applied. Fig. 
1(c) and (d) depict examples of the blurred images for two 
different values of L. 
   The blurred frames are encoded by a conventional encoder 
(e.g. MPEG-2, MPEG-4 or H.264/AVC) to produce the 
final video stream. 
 

4. EXPERIMENTS 
 
4.1. Setup 
 
We used four video data for our experiments, namely, Data 
#1 and #2) from [7], and Data #3 and #4 selected from the 
“groups” section of the CUAVE database [8]. Their lengths 
are about 10 seconds each. In Data #1 a hand plays a guitar 
and then a synthesizer, while a wooden horse is rocking. In 
Data #2 a talking head and a rocking wooden horse appears 
at the same time. Data #3 and #4 contain two and three 
people pronouncing continuous English digits in turn, 
respectively. While a person speaks, the other persons act as 
distractors by moving their heads and mouths. 
   For source localization, we use the difference of the 
luminance component of consecutive frames for the visual 
features. For the acoustic features, the energy of audio 
samples within a moving window is extracted for each 
frame. We set T=32 for Data #1 and #2 as in [7], and T=16 
for Data #3 and #4 considering faster speech rates in them 
compared to the formers.  

   We use the x264 implementation of H.264/AVC [9] for 
creating compressed video sequences. The constant 
quantization parameter (QP) and the constant bitrate 
encoding modes are used. The audio part is encoded by 
MP3. 
 
4.2. Localization performance 
 
First, we show the performance of the proposed localization 
method by comparing with that of the method in [7]. Fig. 2 
shows the localization performance over frames for Data #1 
and #2. The performance is defined as the ratio of the 
energy concentrated in the sound-emitting region to that in 
all moving parts which have been identified manually. It 
ranges from 0 (failure of localization) to 1 (localization 
without error). It is observed that the localization results are 
significantly improved by considering consistency in our 
method. 
 
4.3. Coding efficiency 
 
To evaluate the efficiency of the proposed coding approach, 
we compare the file size of the original and the processed 
(i.e., spatially blurred) video sequences after compression 
when the constant QP mode is used. Table 1 shows the file 
size of the processed sequences when compared to the 
originals for different values of L and QP. The gain is larger 
for larger values of L, but blurring artifacts would be more 
clearly observed. Smaller values of QP (i.e., a better quality) 
result in larger gains because the encoder tries to keep high 
frequency components. The result in the first column is 
worth paying attention to, because setting QP=26 produces 
high quality streams and it is quite difficult to notice 
blurring artifacts for L=2. Therefore, we can estimate from 
this example that the proposed method typically yields 
compression gains of about 24-35% while producing the 
test video sequences of good quality. 
 
4.4. Subjective quality assessment 
 
The audio-visual subjective quality test aims at providing 
justification of the proposed coding method: We want to 
show that discarding high frequency information outside the 
sound-emitting region does not degrade perceived quality 
significantly. This would be an indirect support of the 
validity of the proposed method. 
   Five processing conditions are compared to each other: no 
blurring (NB), the case where all the moving objects are 
identified and receive high priority with L=2 (M2) and L=6 
(M6), the proposed method with L=2 (P2) and L=6 (P6). 
The processed frames are compressed at 100 kbps and 500 
kbps by using the constant bitrate mode. The double 
stimulus continuous quality scale (DSCQS) method was 
selected as the test methodology [10]. Fifteen naïve 
assessors participated in evaluations. Each subject had two 
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separate sessions for each bitrate value. The guidelines 
provided by standards [10] were used to determine the test 
environments, the duration of each session, the training 
session and the method of processing the subjective data.  
   Tables 2 and 3 show the differential mean opinion score 
(DMOS) values and the confidence interval obtained for 
Data #1 and #4 in the test sessions for 100 kbps and 500 
kbps, respectively. It is observed that, assuming that the 
overlap of confidence intervals indicates absence of 
statistical differences between DMOS values, the difference 
of perceived quality among the three methods for L=2 and 
that between the proposed method and the method 
prioritizing all the moving regions for L=6 are usually small 
and statistically irrelevant. Also, the results vary depending 
on the original content of the sequence; the perceived 
quality is sensitive to face regions, as it could have been 
expected. 
 

5. CONCLUSION 
 
We have presented a new pre-processing method in video 
coding, in which audio-visual information is utilized to 
determine importance of each part in image frames for 
efficient video coding without introducing a perceived 
quality degradation. It was demonstrated that considering 
spatio-temporal consistency improves source localization 
performance, and spatial blurring based on the priority map 
obtained from the localization leads to better coding 
efficiency. The subjective test results also reveal the validity 
of the proposed method. 
   For future work, experiments with higher definition 
content will be conducted. Also, we will consider using 
visual saliency information or user-provided tags in the 
present method to improve perceived quality.  
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Fig. 2. Comparison of localization performance for (a) Data #1 and 
(b) Data #2. The discontinuous regions are silent periods. 

Table 1. Compressed file size of processed videos compared to that 
of originals (%). 
L=2 L=6 Data QP=26 QP=46 QP=26 QP=46 

#1 76.0 96.1 48.9 82.4 
#2 69.7 96.6 43.6 84.7 
#3 64.6 93.9 42.8 84.3 
#4 64.6 93.5 37.3 80.5 

 
Table 2. DMOS and confidence interval (CI) values for the 

compression rate of 100 kbps. 
Data #1 Data #4 Method DMOS CI DMOS CI 

NB 64 6.4 64 2.9 
P2 69 3.9 67 4.1 
M2 67 3.8 67 3.6 
P6 70 4.6 77 4.1 
M6 77 3.8 65 3.6 

 
Table 3. DMOS and confidence interval (CI) values for the 

compression rate of 500 kbps. 
Data #1 Data #4 Method DMOS CI DMOS CI 

NB 10 5.1 16 4.8 
P2 11 5.2 22 6.1 
M2 11 5.0 15 4.8 
P6 42 5.7 49 7.5 
M6 41 7.0 41 4.0 
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