
AN ENERGY-BASED METHOD FOR THE FORENSIC DETECTION
OF RE-SAMPLED IMAGES

Xiaoying Feng1, Ingemar J. Cox1, and Gwenaël Doërr2
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ABSTRACT
We propose a new method to detect re-sampled imagery. The

method is based on examining the normalized energy density

present within windows of varying size in the second deriva-

tive of the frequency domain, and exploiting this character-

istic to derive a 19-dimensional feature vector that is used

to train a SVM classifier. Experimental results are reported

on 7,500 raw images from the BOSS database. Comparison

with prior work reveals that the proposed algorithm performs

similarly for re-sampling rates greater than 1, and is supe-

rior to prior work for re-sampling rates less than 1. Experi-

ments are performed for both bilinear and bicubic interpola-

tion, and qualitatively similar results are observed for each.

Results are also provided for the detection of re-sampled im-

agery that subsequently undergoes JPEG compression. Re-

sults are quantitatively similar with some small degradation

in performance as the quality factor is reduced.

Index Terms— Image forensics, Re-sampling detection,

Normalized energy density.

1. INTRODUCTION

Forensic signal processing attempts to identify the variety of

processing steps that a signal has undergone. Such informa-

tion is useful in determining whether, for example, a signal

is authentic or has been tampered with. There are two main

approaches to multimedia forensics: active forensics and pas-

sive forensics [1]. Active forensics relies on modifying the

multimedia signal prior to its distribution to assist in later

forensic analysis. Digital watermarks [2] are one example of

active forensics. A limitation of active forensics is the need

for content-generating devices, e.g. cameras, sensors, micro-

phones, to be capable of embedding watermarks. This is often

not possible, and in these cases active forensics cannot be ap-

plied. Passive forensics, in contrast, does not rely on any prior

modification of the signal. As such, passive forensics is, in

theory, applicable to a broader range of operating scenarios.

A variety of passive forensic methods have been devel-

oped to detect, for example, re-quantization [3, 4, 5, 6], re-

sampling [7, 8, 9, 10, 11, 12], and affine transformations

[13, 14]. In this paper, we consider the problem of determin-

ing whether an image∗ has undergone re-sampling. Section 2

provides a review of prior work on this topic. Section 3 then

describes our proposed algorithm in detail. In Section 4, ex-

periments are performed using the BOSS database [15] con-

sisting of 7,500 raw images, and compared with the algorithm

described in [9]. Finally, Section 5 summarizes our results

and discusses possible directions for future work.

2. PRIOR WORK

Early work on detecting image re-sampling was based on the

observation that artifacts were introduced in the re-sampled

images due to interpolation, a basic operation involved in re-

sampling. Generally, these artifacts are periodic in the spatial

domain and therefore manifest themselves as peaks in the cor-

responding frequency domain.

Popescu and Farid [7] noted that the interpolation pro-

cess introduces correlations between the re-sampled image

pixels. They proposed measuring these correlations based on

an expectation/maximization (EM) algorithm. The EM algo-

rithm estimates the linear correlation between each pixel and

its neighbors, and subsequently computes the probability of

each pixel being correlated to its neighbors. The correspond-

ing correlation probability map (p-map) in the DFT domain,

exhibits periodic peaks that are not present in single-sampled

images.

The work of Popescu and Farid was subsequently refined.

Mahdian and Saic [8, 9] proposed an automatic detector that

searches for local maxima, which is defined as n times greater

than a local average magnitude. Kirchner [10] replaced the

EM algorithm, which is computationally demanding, with lin-

ear filtering and cumulative periodograms, and proposed an

automatic detector based on the maximum gradient of the p-

∗For the sake of simplicity, we only discuss grey-scale images in this

paper. However, a color image can be represented by three channels, i.e.

intensity, saturation and hue. Our proposed method can be directly applied

in the intensity channel of color images.



map. Besides detecting re-sampled raw camera images, Gal-

lagher [11] and Kirchner and Gloe [12] investigated the de-

tection of re-sampling on JPEG compressed images.

The method described in [9] is used as the baseline against

which we compare our algorithm. The second derivative is

taken along either the horizontal or the vertical dimension of

an image. The radon transformation then projects the sec-

ond derivative to each of 180 directions, where the projec-

tion angles are integers from 0o to 179o. The detection of

re-sampling is based on the detection of periodicity in the au-

tocovariance of the projected vectors. In so doing, the first

derivative of all 180 projected vectors are calculated. The au-

tocovariance of the first derivative is then computed. Finally,

the periodicity of autocovariance is detected in the DFT do-

main, using a local maxima detector. Further details of the

algorithm can be found in [9].

3. NORMALIZED ENERGY DENSITY-BASED
METHOD

Our method for detecting re-sampling is based on a 19-

dimensional feature vector that is derived from an examina-

tion of the normalized energy density present at various win-

dow sizes in the DFT of the second-derivative of an image.

Let i(x, y) denote a single-sampled or a re-sampled im-

age. Its corresponding DFT is denoted by I(u, v). We as-

sume, for simplicity and without loss of generality, that the

image is a square with dimension N , i.e. there are N2 pixels

present in the image.

Using Parseval’s equation, the energy, E, present in an

image is given by:

E =
N−1∑
x=0

N−1∑
y=0

i(x, y)2 =
fc∑

u=−fc

fc∑
v=−fc

|I(u, v)|2, (1)

where fc is the cutoff frequency of the image.

We define E(w) to be the energy present in the power

spectrum of an image, in a window of dimension ±w, where

0 < w ≤ fc:

E(w) =
w∑

u=−w

w∑
v=−w

|I(u, v)|2. (2)

Since an original image and a resized image will not have

the same dimension, we normalize the window size, s, with

respect to the cutoff frequency, fc, where s takes values be-

tween 0 and 1. Thus, the energy, E(s), present in a window s
is given by:

E(s) =
s·fc∑

u=−s·fc

s·fc∑
v=−s·fc

|I(u, v)|2. (3)

It is well-known that the energy present in an image is

typically concentrated in the lower frequencies, and drops off
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Fig. 1. The normalized power spectrum in the horizontal di-

rection (i.e. v = 0). The curve is averaged over 7,500 images

from the BOSS database.

with increasing frequency. The shape of the power spectrum

is often approximated by a Gaussian or Laplacian model. Fig-

ure 1 shows the normalized power spectrum in the horizontal

direction, i.e. |I(u, 0)|2, averaged over all 7,500 images in the

database we used.

In practice, the high concentration of energy in the lower

frequencies can mask high frequency effects. Thus, to high-

light these, an image, i(x, y), is first high-pass filtered before

examining its power spectrum. The high-pass filter with a

kernel h, shown in Equation 4, is used in our experiments.

h =

⎡
⎣

−1 −1 −1
−1 8 −1
−1 −1 −1

⎤
⎦ . (4)

An image after the high-pass filter is denoted by ĩ(x, y), and

its power spectrum is denoted by |Ĩ(u, v)|2. The energy,

Ẽ(s), of an image after the high-pass filter is given by:

Ẽ(s) =
s·fc∑

u=−s·fc

s·fc∑
v=−s·fc

|Ĩ(u, v)|2. (5)

The energy density, Ẽd(s), is then defined by the averaged

energy within the window s, i.e.

Ẽd(s) =
1

(2s · fc)2

s·fc∑
u=−s·fc

s·fc∑
v=−s·fc

|Ĩ(u, v)|2. (6)

Finally, the normalized energy density, Ẽn(s), is given by:

Ẽn(s) =
Ẽd(s)
Ẽd(1)

=
1
s2

∑s·fc

u=−s·fc

∑s·fc

v=−s·fc
|Ĩ(u, v)|2

∑fc

u=−fc

∑fc

v=−fc
|Ĩ(u, v)|2

,

(7)
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(a) Bilinear interpolation
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(b) Bicubic interpolation
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Fig. 2. The normalized energy density (without anti-aliasing effect) averaged over 7,500 images from the BOSS database, for

a set of re-sampling rates.
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Fig. 3. The normalized energy density (with anti-aliasing effect) averaged over 7,500 images from the BOSS database, for a set

of re-sampling rates.

where Ẽd(1) stands for the energy density of the whole im-

age.

Figure 2 shows the normalized energy density over 7,500

images from the BOSS database for window sizes ranging

from 0 to 1, including (i) single-sampled images (solid curve);

(ii) re-sampled images up-sampled at rates 1.5 and 2.0; and

(iii) re-sampled images down-sampled at rates 0.1 and 0.5.

We observe the following. First, for the single-sampled

imagery, we see a curve originating at zero (since there is no

energy in a window size of zero), increasing monotonically to

a peak at a window size of approximately s = 0.4, and then

monotonically decreasing to a value of 1 when the window

size encompasses the entire power spectrum (s = 1). If we

now compare this to the up-sampled images, we observe a

qualitatively similar curve, but the peak values are shifted to

the left, i.e. the peak values occur for s < 0.4. Similarly for

the down-sampled images, we observe a qualitatively similar

curve, but the peak values are shifted to the right, i.e. the peak

values occur for s > 0.4. This is to be expected since, for up-

sampled imagery, we would expect that less energy is present

in the very high frequencies, as these frequencies are absent

in the original single-sampled images. Conversely, for down-

sampled imagery, the fact that we have more energy in the

higher frequencies indicates that these images were derived

from images containing higher frequency information.

In practice, anti-aliasing is routinely applied after the in-

terpolation operation. Figure 3 shows the equivalent en-

ergy curves to Figure 2, after anti-aliasing has been applied.

Once again, the normalized energy density curves (with anti-

aliasing effect) of different re-sampling rates are well sepa-

rated from each other.

The curves in both Figures 2 and 3 suggest that it is pos-



sible to differentiate single-sampled and re-sampled imagery

based on these characteristics. To investigate this, we defined

a 19-dimensional vector, the values of each dimension be-

ing the normalized energy density, Ẽn(s), for window size

s ranging from 0.05 to 0.95 in steps of 0.05.

4. EXPERIMENTS

Our experiments use the BOSS database [15], which consists

of 7,500 raw images, i.e. the images have never undergone re-

sampling. Experiments are performed for both bilinear and

bicubic interpolation. Note that both interpolation and anti-

aliasing are applied to the images, as this is a more realistic

operating scenario. Further note that all re-sampling opera-

tions involve re-sizing the images, i.e. we do not consider

image rotation.

The 19-dimensional vector was used as input to train sup-

port vector machine (SVM) classifiers [16]. We applied ran-

dom sub-sampling validation, where for each of the 10 trials,

training is performed on a random 20% subset of the database,

and testing on the remaining 80%. The reported results are the

average of the 10 trials.

Instead of manually setting a fixed threshold, a receiver

operating characteristics (ROC) curve [17], the threshold of

which is varied, is used to evaluate our detection results.

Moreover, in order to reduce performance to a single scalar

number, we report the area under the ROC curve (AUC). Note

that an AUC value of 0 means the detection is always false,

whereas an AUC value of 1 means a perfect detection. An

AUC value of 0.5 represents random guessing, which is re-

flected by the diagonal line between (0, 0) and (1, 1) in the

ROC curve.

The method described in [9] is used as the baseline algo-

rithm for comparative purposes. Baseline # 1 is fully imple-

mented according to [9]. In baseline # 2, the discriminating

features are implemented according to [9], but detection is

based on the SVM classifier that is the same as our method.

The purpose of baseline # 2 is to help identify if the perfor-

mance variation is due to different discriminating features or

different detectors.

We first examine the case where one classifier is trained

for each specific re-sampling rate. We then consider the case

of only a single classifier trained to detect all re-sampling

rates. Finally, the detection of re-sampled images that have

subsequently been JPEG compressed is investigated.

4.1. One Classifier per Re-sampling Rate

In the first experiment, one SVM-based classifier is trained for

each individual re-sampling rate, which ranges from 0.1 to 2

in steps of 0.1. As a result, there is a total of 19 classifiers in

all. The experimental results are shown in Figure 4 for both

bilinear and bicubic interpolation. Note that during testing,

the re-sampled image is only presented to its corresponding

classifier.

In general, the detection performance of our method is

comparable to that of the baseline algorithm described in [9]

when re-sampling rates are greater than 1 (i.e. the re-sampled

image is larger than the single-sampled one). Note that for

this case, our method never reaches perfect detection, whereas

the baseline # 2 does. In contrast, when re-sampling rates are

less than 1, our method performs better than the baseline al-

gorithms. Note that the baseline # 1 actually performs worse

than random, i.e. AUC values are less than 0.5. This im-

plies that the baseline # 1 can discriminate between single-

sampling and re-sampling, but the decision is opposite to the

truth. This characteristic was also observed in [18], where

it was suggested that a two-sided hypothesis test is actually

needed. For baseline # 2, there is no such problem. Still,

for down-sampling, the normalized energy density approach

is almost always superior. In addition, we note that the error

bars for all re-sampling rates are small, indicating that the pro-

posed method is stable across all re-sampling rates. There is

little difference in performance when either bilinear or bicu-

bic interpolation is used.

4.2. A Single Classifier for All Re-sampling Rates

We now consider a single SVM-based classifier for all re-

sampling rates. This is a more realistic scenario where there

is no prior knowledge of the re-sampling rate.

If an image is used for training (i.e. within the 20% sub-

set of the database), its single-sampled version and only one

of its re-sampled versions are fed into the SVM-based classi-

fier. This guarantees that the numbers of single-sampled and

re-sampled images used to train the SVM-based classifier are

the same. In addition, during training, the same number of re-

sampled images for each of the 19 re-sampling rates is guar-

anteed.

As expected, the absolute detection performance of both

our method and the baseline algorithm # 2 declines slightly, as

shown in Figure 5. However, the degradation in performance

is small. It is also noted that the relative performance of the

two algorithms remains qualitatively the same. Once again,

the error bars for all re-sampling rates are small, demonstrat-

ing the stability of the proposed algorithm. Note that (i) we

do not show baseline # 1 as this curve is identical to that in

Figure 4 since there is no training and (ii) the scale of vertical

axis in Figure 5 is different from that in Figure 4.

4.3. Detection after JPEG Compression

In practice, an image may be compressed prior to testing. In

order to address this scenario, JPEG compression with differ-

ent quality factors was applied. Specifically, we consider four

cases, i.e. (i) JPEG quality factor of 85; (ii) JPEG quality

factor of 55; (iii) JPEG quality factor of 25; and (iv) JPEG

quality factor of 10.
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Fig. 4. Comparison of the energy method and the baseline, where one SVM-based classifier is trained for each re-sampling

rate. The error bars indicate the standard deviations after 10 trials.
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rates. The error bars indicate the standard deviations after 10 trials.
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7,500 images from the BOSS database [15] are subse-

quently compressed with different JPEG quality factors as

stated above. Our experiments are then conducted on these

JPEG compressed images. We assume that the JPEG qual-

ity factor is known. Therefore, for each JPEG quality factor,

we train a single classifier for all re-sampling rates based on

the normalized energy density approach. Figure 6 shows the

experimental results. As expected, the detection performance

degrades with decreasing JPEG quality factors.

5. CONCLUSIONS

This paper proposed a new method for detecting re-sampling.

It is based on computing the normalized energy density for

various window sizes in the second derivative of the fre-

quency domain. The corresponding characteristic curve usu-

ally exhibits a peak whose location varies depending on the

re-sampling rate. This characteristic curve is exploited to ex-

tract a 19-dimensional feature vector that is fed to a SVM-

based classifier.

Two forms of SVM classifiers were considered. In the

first case, a SVM classifier was trained for each individual

re-sampling rate, resulting in 19 classifiers in all. The exper-

imental results showed that the performance of the proposed

algorithm is comparable to previous work [9], when the re-

sampling rate was greater than 1, and provides superior per-

formance for re-sampling rates less than 1. There was very

little difference in performance when either bilinear or bicu-

bic interpolation was used.

In the second case, a single classifier was trained to de-

tect all re-sampling rates. In this case, both our algorithm and

the baseline algorithm exhibited a small degradation in per-

formance. However, qualitatively, the relative performance of

the two algorithms remained the same, i.e. for re-sampling

rates less than 1, our algorithm is almost always superior. For

both classifiers, the error bars are small indicating that the al-

gorithm is stable across different re-sampling rates.

Finally, we investigated the detection of re-sampling on

JPEG compressed images. Experimental results demon-

strated that the detection performance degrades gracefully as

the JPEG quality factor is reduced.

In future work, we intend to evaluate the performance of

our proposed method with other interpolation techniques such

as seam carving and sparse coding. In addition, we will fur-

ther investigate the impact of various signal post-processing

operations on the detection performance.
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