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ABSTRACT 

 

In this paper, we describe a real-time multimodal analysis 

system with just-in-time multimodal association and fusion 

for a living room environment, where multiple people may 

enter, interact and leave the observable world with no 

constraints. It comprises detection and tracking of up to 4 

faces, detection and localisation of verbal and paralinguistic 

events, their association and fusion. The system is designed 

to be used in open, unconstrained environments like in next 

generation video conferencing systems that automatically 

“orchestrate” the transmitted video streams to improve the 

overall experience of interaction between spatially separated 

families and friends. Performance levels achieved to date on 

hand-labelled dataset have shown sufficient reliability at the 

same time as fulfilling real-time processing requirements. 

 

Index Terms — Multimodal signal processing, data 

analysis, association rules, sensor fusion 

 

1. INTRODUCTION 

 

The TA2 (Together Anywhere, Together Anytime) project 

[1] tries to understand how technology can help to nurture 

family-to-family relationships to overcome distance and time 

barriers. This is something that current technology does not 

address well: modern media and communications are 

designed for individuals, as phones, computers and 

electronic devices tend to be user centric and provide 

individual experiences. Existing multiparty conferencing 

solutions available on the market such as Microsoft 

RoundTable conferencing table [2] are not designed to be 

used in open, unconstrained environments.  

In our work, we target the next generation of 

orchestrated video conferencing systems with spatially 

separated non-intrusive sensors. We are particularly 

interested in efficient mechanism of just-in-time multimodal 

cue association and fusion in open, unconstrained 

environments to be employed by a subsequent reasoning 

step. The reasoning produces then an orchestrated video chat 

[3] by choosing at each point in time the perspective that 

best represent the social interaction. 

The fusion can be performed at different levels, based 

on type of input information available. It can be at sensor 

level, feature level, score level, rank level or decision level. 

First two levels can be considered as pre-classification 

category, while others can be considered as post-

classification category [4]. The feature-level multimodal 

approach is normally done via transformation of the data in 

such a way that a correlation between the audio and a 

specific location in the video is found [5, 6]. In our study we 

concentrate mainly on score level fusion and propose a 

technique, which relies on information derived from 

spatially separated sensors. By placing the sensors at their 

individually optimal locations, we clearly obtain a better 

performance of low-level semantic information. This in turn 

results in good performance of the complete system. Other 

score-level multimodal techniques rely on estimation of the 

mutual information between the average acoustic energy and 

the pixel value [7], probability densities estimation [8] or a 

trained joint probability density function [9]. A subsequent 

reasoning step, which is not part of this paper, relies on 

decision-level rule-based fusion.  

All described in the paper components were 

successfully integrated into a low delay analysis system. The 

detection and tracking of faces and the estimation of 

direction of sound (who spoke when?) are integrated into the 

main processing chain. This information is then used to 

associate events detected with the respective person IDs 

coming from the visual processing. 

The association and fusion of acoustic and visual events 

is not a trivial task, because at each time instant there might 

be some events that are more reliable than others. The 

combined model has to be able to compute a confidence 

measure of the different modalities and weighs them 

accordingly. In addition, the sensors capturing the audio and 

video signals are spatially separated (as opposed to other 

systems, such as [10, 11], relying on collocated sensors). 

In this context, TA2 presents several challenges: the 

results need to be computed in real-time with low affordable 

delay from spatially separated sensors in open, 

unconstrained environment. Furthermore, the results are 

supposed to be localised in the image space to allow for a 

dynamic and seamless orchestrated video chat. 



2. A REAL-TIME ARCHITECTURE 

 

The presented multimodal analysis system includes robust 

face tracking, far-field voice activity detection, estimation of 

direction of arrival, Automatic Speech Recognition (ASR) 

with keyword and proper name spotting. A face tracking 

algorithm has been developed to track a variable number of 

faces even when there is no face detection for a long period 

of time. Although the accuracy of far-field ASR is not yet 

good enough to be exploited for obtaining an accurate real-

time transcription, it is already sufficient to augment the 

behaviour of an orchestration module. Words in the 

transcript are used to search for participants’ proper names 

relevant to the group of people or keywords relevant to a 

given scenario. Furthermore, the orchestration (which is not 

part of the multimodal analysis system) will be able to 

reason and act upon these events together with other cues 

that could potentially come from a game engine, aesthetic or 

cinematic rules, making orchestrated video chat dynamic 

and seamless. 

The system architecture is built around several modules 

(see Fig. 1) comprising a so-called Video Cue Detection 

Engine (VCDE) with a face detector, a multiple face tracker 

and multiple person identification; an Audio Cue Detection 

Engine (ACDE) with a direction of arrival estimator, a voice 

activity detector and a large vocabulary continuous speech 

recogniser; a Unified Cue Detection Engine (UCDE) 

performing association and fusion. 

 

 
Fig. 1. Real-time architecture. 

Both input to and output from the system are done via 

sockets. The core capture devices for the system are a 

FullHD video camera and an audio diamond array with four 

omnidirectional microphones [12]. The audiovisual streams 

are captured on an external server(s) and supplied to the 

analysis engine via sockets. The socket interface allows for a 

flexible software solution, though adds a latency of 12-20 

ms for the audio stream and 30-300 ms for the video stream 

as the system requires uncompressed signals. 

 

2.1. Framing and synchronisation 

 

The multimodal processing operates in multi-framing mode 

with non-overlapping video frames at variable frame rate for 

video processing, overlapping audio frames of 16 ms in step 

of 10 ms for voice activity detection and ASR, and 

overlapping audio frames of 32 ms in step of 16 ms for 

direction of arrival estimation (see Fig. 2). 

 

 
Fig. 2. Framing for online processing. 

 

Video packets from the video grabber server are 

retrieved every 40-100 ms at a resolution of 640x360 pixels, 

while audio packets are retrieved every 10 ms and contain 

interleaved 4 channel PCM audio in 16-bit at 48 kHz. Each 

packet contains also unique 64-bit timestamp in 

microseconds for synchronisation between different remote 

modules. 

 

2.2. Multiple face tracking 

 

A multiple face tracking algorithm is automatically 

initialised and updated using outputs from a standard face 

detector [13]. The challenge for face tracking in this 

scenario is that face detections are not continuous and that 

the time between two successive detections can be very long 

(up to 30 s in our experiments). This is due to head poses 

that are difficult to detect by state of the art algorithms or 

partial occlusions caused by hands in front of the face. 

However, in the TA2 scenario it is necessary to know at 

each time instant where the people are in the video scene.  



The solution employed in this work is based on a multi-

target tracking algorithm using Markov Chain Monte Carlo 

(MCMC) sampling, similar to [14]. This is a Bayesian 

tracking framework using particles to approximate the 

current state distribution. At each time step, targets are 

added according to the output of the face detector, and 

targets are removed if there has not been any detection 

associated to a target for more than 10 s, or if the likelihood 

drops drastically. 

The state space is the concatenation of the states of all 

visible faces, where the state of each single face is a 

rectangle described by the 2D position in the image plane, a 

scale factor and the eccentricity (height/width ratio). 

The dynamic model is the product of the models of each 

visible face and a Markov Random Field that prevents 

targets becoming too close to each other. The state dynamics 

of each single face is described by a first-order 

autoregressive model for the position and a zeroth-order 

model for scale and eccentricity.  

Finally, the observation likelihood is the product of the 

observation likelihoods of each visible face, which in turn is 

calculated using the Bhattacharyya distance between the 

HSV (Hue-Saturation-Value) colour histograms over three 

horizontal bands on the face region and the respective 

reference colour histograms which are initialised when the 

face is detected. 

 

2.3. Multiple person identification 

 

Whenever a tracker loses a target and reinitialises it later on, 

or a person leaves the visual scene and comes back later, the 

tracking algorithm tries to recognise the respective person in 

order to associate it to a previously tracked target. This is 

not done inside the tracking algorithm but on a higher level 

taking into account longer-term visual appearance 

observations. We have found that HSV colour histograms 

calculated on face and shirt regions yield a simple but 

effective measure of visual similarity. When identifying a 

"new" face, the current colour histograms are compared to 

the stored models of all previously seen people and if the 

similarity is above a certain threshold the corresponding ID 

is assigned, otherwise a new person model is created. 

 

2.4. Direction of arrival estimation 

 

Speaker localisation is performed by the direction of arrival 

module (Fig. 1). The algorithm is based on short-term 

clustering of generic sector-based activity measures [12, 15] 

in steps of 5°. It relies only on the geometry of the 

microphone array and does not depend on prior knowledge 

of the room dimensions. It can be effectively used to both 

detect and localise multiple sources in open, unconstrained 

environments. 

 

2.5. Voice activity detection 

 

Voice activity detection (VAD) covers both verbal and 

paralinguistic activity and is implemented as a gate. The gate 

segments the input stream in accordance to Boolean voice 

activity / silence information from a VAD algorithm based 

on silence models or trained multi-layer perceptrons (MLP) 

using traditional ASR features [16]. 

 

2.6. WFST decoder and keyword spotter 

 

The ASR component is represented by the Weighed Finite 

State Transducer (WFST) based token passing decoder 

known as Juicer [16]. The output from the decoder is used to 

perform the spotting of proper names and keywords. More 

specifically, the spotting is performed based on the 

predefined list of participants and keywords relevant to the 

given scenario (e.g., orchestrated video chat). 

 

2.7. Association and fusion 

 

Due to the real-time requirements, the association and fusion 

of person IDs from the video identification with voice 

activity cannot be postponed until the voice activity is over. 

The fused events have to be published to the orchestrator 

within a few hundreds of milliseconds to keep the feeling of 

virtual presence and togetherness. The low delay temporal 

association and fusion scheme is depicted in Fig. 3. 

 

 
Fig. 3. Low delay association and fusion. 

 

Since the position of people does not significantly 

change within a few hundred milliseconds, predictive 

temporal association can be used for video modality. 

Furthermore, audiovisual association is performed between 

acoustic short-term directional clusters and the positions of 

detected faces from the video modality. This involves a 

mapping estimation between microphone array coordinates 

(acoustic directional clusters w.r.t. the microphone array 

centre) and the coordinates of the image plane, which are 

defined by the field of view of the camera (Fig. 4). 

 



 
Fig. 4. TA2 setup, view from top [17]. 

 

Since the participants do not sit at predefined positions 

in the room, it can often cause ambiguities in the association 

and fusion. Clearly, the same acoustic short-term directional 

cluster can correspond to different positions in the image 

and vice-versa. Therefore, the location of a detected face 

within the image can be mapped to many different sound 

directions. However, since the participants are mainly 

located around a coffee table, such ambiguities occur rarely. 

Therefore, given the mean angle   of the directional cluster 

from the audio modality, a simplified association can be 

computed as: 

.sinminargˆ  imai
Pi

xxi 


 

In the above formulation, P is the set of detected 

participants from the video modality, 
ix  is the horizontal 

position of the i-th person, 
max  is the horizontal position of 

the microphone array, and 
i  are calibration parameters. 

 

3. EXPERIMENTAL RESULTS 

 

The experiments were performed on real life hand-labelled 

datasets (3 h 50 min for Dataset 1 with enabled echo 

suppression [18]; 1 h 20 min for Dataset 2 [17] with 

disabled echo suppression, lower SNR and fewer frontal 

face views). The datasets follow the systematic description 

presented in [17] and contain recorded gaming sessions with 

enabled video chat of socially connected but spatially 

separated people. Each room was recorded and analysed 

separately and contained up to 4 people. The latency was 

measured on an Intel Core 2 CPU 6700 2.66GHz. 

The achieved F-measure at different steps of processing 

on described datasets is summarised in Table 1. The F-

measure is defined as the harmonic mean of precision and 

recall values: 

recallprecision

recallprecision
F




 2  

Precision is defined as the number of true positive test 

events (test events correctly detected as belonging to the 

positive class) divided by the total number of test events 

detected as belonging to the positive class (the sum of true 

positive and false positive test segments). Recall is defined 

as the number of true positives test events divided by the 

total number of test events that actually belongs to the 

positive class (the sum of true positive and false negative 

test events). The annotated voice activity events from 

Dataset 2 are illustrated in Fig. 5. 
 

Table 1. F-measure at different steps of processing 

Algorithm 
F-measure 

Dataset 1 Dataset 2 

Face detection [13] 73.7% 67.1% 

Local far-field VAD 81.9% 69.1% 

Acoustic localisation 93.1% 89.4% 

Multiple face tracking 89.1% 89.4% 

Person localisation, based on 

fusion of AV information 
89.2% 83.7% 

Local far-field VAD, based on 

fusion of AV information 
80.2% 69.0% 

 

The first row of the Table 1 shows the F-measure of a 

standard face detector [13] applied on single frames of the 

video stream. It represents mean value over all people. The 

4th row shows the results of the face tracking algorithm, 

which improves the overall accuracy of the video 

processing. 

The second and third rows show the F-measure on the 

output of the local far-field voice activity detection and 

acoustic localisation (6000+ observations). Since Dataset 1 

is echo-cancelled and less noisy, we were able to detect local 

voice activity with much higher precision/recall than for 

Dataset 2, in which echo from remote location negatively 

affects the precision level of local far-field VAD. 

Far-field voice activity detection based on fusion of AV 

information is given in row 6. One can see that the 

performance can vary in comparison to row 2 due to 

assigning the voice activity to video tracked person. Row 5 

expresses a person identity association of detected voice 

activity, i.e. how well we can assign previously detected 

voice activity to a local person based on AV information. 



 
Fig. 5. Annotated voice activities over time for room 1 of Dataset 2 [17]. The first row (inv) shows voice activity of persons not visible 

from the camera, the four following rows show the voice activity of the four different persons visible in the video (id 1 to 4), and the last 

row shows silence (sil). One can see that there are a lot of short utterances, and speakers change quite frequently. 

 

4. CONCLUSION 

 

We have developed a framework for just-in-time multimodal 

association and fusion for open, unconstrained environments 

with spatially separated multimodal sensors. Performance 

levels achieved to date on hand-labelled echo-cancelled 

dataset have shown sufficient reliability at the same time as 

fulfilling real-time processing requirements with latency 

within 200-300 ms. The achieved results are promising for 

the further development of the platform in several directions 

such as improvement of performance, reduction of the 

latency and integration of elevation component into fusion to 

allow analysis of another layer of people, who could be 

standing up behind. 
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