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ABSTRACT

In this paper we present a method for aligning shredded doc-
ument pieces based on outer contours and content-based prior
information. Our approach relies on domain-specific knowl-
edge that document pieces must complement each other when
aligned correctly. Building on this intuition we propose a vari-
ant of MSAC (M-estimator SAmple Consensus) to estimate
an hypothesis that recovers the spatial relationship between
pairs of pieces. To do so we first approximate their boundaries
by polygons from which we define consensus sets between
fragments. Each consensus set provides multiple hypotheses
for aligning one piece onto the other. An optimal hypothesis
is identified by applying a two-stage procedure in which we
discard locally inconsistent hypotheses before verifying the
remainder for global consistency.

Index Terms— Document analysis, MSAC, partial con-
tour matching

1. INTRODUCTION

There are many reasons for making sensitive data in docu-
ments unrcadable including tax fraud, business crime, or other
criminal intentions. Our work thus investigates on recovering
hand-torn document pages, for which we propose a method
to precisely align pairs of pieces based on their boundary and
content-based prior information. A system capable of recov-
ering the relative layout of document pieces could be of great
use in many real-world applications. For instance, a recent
project of the Fraunhofer Institute [1] deals with the problem
of reassembling documents related to the Stasi, which was the
former secret police of the GDR. Shortly before the end of the
Socialist regime of the GDR in 1989, members of the Stasi
destroyed millions of documents containing evidence about
their activities. Many of those files were simply torn by hand
and thus can be attempted to be recovered. Another example
is that of an Israeli group who recently scanned and restored
250,000 historic documents that are hundreds of years old.
For this reason we propose a method that could guide
human users in the reassembling process. Common require-
ments of such a system include (i) the ability to handle rotated
pieces and (ii) robustness to image noise stemming from the
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Fig. 1. Example for polygons (grey line segments) that ap-
proximate the pieces’ outer contours. Pairs of support points
among the fragments’ boundaries form a consensus set (green
dots). This set tends to contain many correct one-to-one cor-
respondences (inliers) if the contour segments match. Based
on pairs of inliers, e.g. (¢,7) and (¢/, '), we may then deter-
mine an hypothesis that precisely aligns the two fragments.

digitizing process. Our goal is to recover the spatial relation-
ship for pairs of arbitrarily oriented fragments from a dataset
of hand-shredded documents. To obtain such partial solutions
we have to estimate the orientation and relative position of
pairs of pieces, without knowing the intact page in advance.

To accomplish this, we approximate the boundary of each
fragment by a simple polygon to obtain a less complex repre-
sentation. In this respect, identifying partially matching con-
tour segments from pairs of document pieces comes down to
finding hypotheses that satisfy geometric constraints based on
the pieces’ outer contours. As illustrated in figure 1, the basic
idea is to construct consensus sets which define one-to-one
correspondences between support points of the polygons. We
then use these correspondences to determine hypotheses that
embed boundaries of pieces into a common coordinate sys-
tem in a way that they complement each other. Most impor-
tantly, since content overlap provides evidence for hypotheses
being incorrect, we capitalize on this prior knowledge to iden-
tify and discard invalid transformations at early stages of the
alignment process.



2. RELATED WORK

A popular approach to partial contour matching is the Smith-
Waterman algorithm [2], which is a dynamic programming
technique initially proposed to find maximally homologous
subsequences among two molecular sequences. Lately many
approaches also make usc of this algorithm for shape recogni-
tion. For instance, Bunke and Biihler [3] devised a method for
recognizing arbitrary two-dimensional shapes which is invari-
ant under translation, rotation and partial occlusion. A similar
route was taken by Chen et al. [4], who also apply the Smith-
Waterman algorithm to evaluate the similarity of two shapes.
Their work differs from others in that they use a probabilistic
similarity measure instead of distance functions.

One approach similar to our work is that of Stieber et
al. [5], who adopt the Smith-Waterman algorithm for partial
contour matching between document pieces. In their method
the authors only compare contour segments delimited by sub-
sequent corners, which helps in avoiding false matches that
are inconsistent regarding the pieces’ global geometry. Sim-
ilar as in our work, they also incorporate geometric informa-
tion into their similarity score to assess the quality of an indi-
vidual alignment. We note that our approach does not require
corner detection, which could be beneficial for cases where
the pieces’ corners can not be identified without ambiguity.

Another related approach has been proposed by Donoser
et al. [6], who sample points from object silhouettes to repre-
sent shapes. Their method utilizes local and global geometry
for detecting subparts of two shapes that possess high simi-
larity. Since their matching procedure is formulated as order-
preserving assignment problem, it is conceptually similar as
to how we form consensus sets from sets of support points.

Other recent works investigate on the automatic assembly
of documents [7] and photos [8]. The latter approach of Cao
ct al. deals with the problem of simultaneously reconstructing
multiple photos from a collection of pieces. The authors use
a curve matching algorithm to first identify matching pairs of
pieces, which are then clustered into groups of pieces from a
single photo. Finally, to assemble pieces into an intact photo,
a spanning tree algorithm is applied that also verifies the va-
lidity of the solution in terms of geometric consistency.

3. PRELIMINARIES

We commence by introducing the dataset used in this work
before describing our approach in section 4. We then explain
in section 5 how content-based information about the pieces’
orientation is used to discard incorrect hypotheses early in the
alignment process.

3.1. Dataset of Shredded Documents

In this work we use the bdw082010 dataset [7], which consists
of 96 document pages that have been shredded by hand into

16 pieces each. Our preprocessing closely follows [7] to ob-
tain an approximation of each fragment’s contour. Since each
fragment comes with a binary segmentation mask that identi-
fies its foreground, we first determine the set of all boundary
points P using the algorithm of Suzuki et al. [9]. Afterwards
we apply the Douglas-Peucker algorithm [10] to find a small
subset of support points P = {p,,...,p,} C P that consti-
tutes a less complex description of each piece’s outer contour.
By connecting consecutive pairs of support points with line
segments one finally obtains a polygon which approximates
the exact contour up to a predefined precision.

For the remainder of this work we write s = (P*, P*) in
short for pieces having their support points ordered in clock-
wise direction, while those being processed counterclockwise
are denoted by ¢. Based on this notion of ordered boundary
points our goal is to identify those correspondences between
two fragments s and ¢ that originate from the same location in
the former document. Throughout the following sections we
will denote a correspondence by (7, j), which associates the
i-th support point from the contour of piece s with the j-th
point on the contour of ¢.

4. APPROACH

We now describe our approach to find and align contour seg-
ments that are likely to adjoin each other in an intact docu-
ment. Our method 2p—PCM-MSAC is a variant of MSAC [11]
(M-estimator SAmple Consensus), which estimates parame-
ters of a model (hypothesis) from a set of observations.

In our problem setting, any correspondence between the
contours of two fragments is considered an observation. Nat-
urally, only very few correspondences stem from the same lo-
cation in the document (inliers), while the majority of bound-
ary points is spatially disconnected in the document (outliers).
For partial contour matching (PCM), we thus aim to find the
model that best aligns the inliers onto each other by first per-
forming a translation, followed by an in-plane rotation. Since
this group of Euclidean transformations has 3 degrees of free-
dom, it can be estimated from only two pairs of points — hence
the prefix 2p-PCM.

Futility of Unbiased Random Sampling. To estimate a cor-
rect model we thus need to find one pair of inliers from the sct
of all observations. In RANSAC [12] (RANdom SAmple and
Consensus) this problem is approached by iteratively sam-
pling a random subset of data points that could possibly be
inliers. Given a desired probability p that RANSAC finds at
least n = 2 inliers, the number of iterations that are needed is
upper bounded by £ = log (1 — p)/log (1 — w™). However,
due to the inherently small inlier ratio w, we note that random
sampling is not the method of choice in our scenario. Even
for conservatively estimated parameters, the required number
of iterations would be in the order of 10°.



4.1. Building the Consensus Set

Instead of random sampling we now propose a more effec-
tive method to find correspondences that are likely inliers.
Throughout algorithm 1 (line 4) we once consider each cor-
respondence between two fragments s and . Hence, among
all combinations of support points, we encounter at least one
point pair that corresponds to an inlier. As exemplified in fig-
ure 1, pair (4, 7) is an inlier, because both points refer to the
same position in the document. With regard to this initial cor-
respondence, called a pair of anchor points, any second pair
(¢, ') can also be considered an inlier if the line segments
enclosed by 7 and i’ on s and j and j’ on ¢ are similar.

For partial contour matching there are two notions of sim-
ilarity that come into mind. One necessary condition for line
segments to match is that they have equal length. On the other
hand, both segments must also be similar in terms of shape.
We address the latter aspect in section 4.4, where the validity
of each hypothesis is verified in terms of local geometry.

In the following we first focus on finding equally long line
segments among the two fragments, from which we then form
consensus sets. For this reason we precompute the absolute
distances of points on the fragments’ contours with respect to
fixed reference points. Hence all relative distances between
two arbitrary points on the same contour can be computed on
demand by performing two lookups. In our algorithm (line 5),
the relative distances w.r.t. anchor points ¢ and j are indexed
in 75 and 7, respectively.

Based on the precomputed distances, the idea is to search
for points on both sides that have approximately the same dis-
tance with respect to their anchor points. To accomplish this
we only consider short contour segments, in clockwise direc-
tion on s and counterclockwise direction on £, respectively.
Each of these segments is restricted to cover at most 20%
of the two fragments’ total boundary length, as illustrated in
figure 1 (marked regions). From all possible point combina-
tions between those two segments we then greedily choose a
subset of equidistant one-to-one correspondences, which are
indicated in the figure by identically colored dots. Correspon-
dences having dissimilar euclidean distances to their respec-
tive anchor points are discarded during this process, as this
typically indicates an outlier.

All established correspondences (i’ j') are candidates for
inliers and thus become part of consensus set C;; (line 6). An
important observation is that the cardinality of this set always
depends on the anchor points. For instance, when correspon-
dence (4, j) itself is no inlier, its consensus set tends to contain
only very few (if any) equidistant pairs of points.

4.2. Hypotheses from Consensus Sets

We now describe how to obtain multiple hypotheses (line 9)
from each consensus set, which are later checked for incon-
sistencies regarding local geometry (see section 4.4).

Algorithm 1: 2p-PCM-MSAC

Input :s= (P% P*%),t = (P!, P
Output: model A3

Initialization
2 |_ HL =0, H2 =0

Step1 (Creating locally verified hypotheses)

4 | foreach (i,j) «+ P* x P'do
5 [7s,T¢] ¢ rel-distances (i,])
6 C;j <—consensus-set (4, ], Ts, T¢)
7 ,H,L'j = (/)
8 foreach ¢, € C;; do
9 h = (t,a) compute—h (3,7, c)
10 if valid-geometry (h,C;;) then
11 L 'Hij = Hij @] {h}
12 hi argminheﬂij{el(h; Ci;)}
13 H' =H' U{h}}
Step2 (Global verification)
15 | foreach h € H' do
16 if valid-geometry (h, (]55, Pt)) then
17 | H>=H*U{h}

18 h3 < argming 2 {€e2(h)}

return hj

Given the coordinates of two anchor points, we first com-
pute an offset vector ¢ that translates support point j onto ¢ in
a common coordinate system. Since both points coincide in %
after translation, we also use this point as rotation center for
all hypotheses. From each pair of points ¢, = (7', j') in con-
sensus set C;; we then determine a rotation angle «ay,, based
on the line segments between ¢,7’ and 7, j’, respectively. This
fully defines one Euclidean transformation h = (¢, ) for
each member in Cj;.

4.3. Signed Nearest Distance

As will become clear in the following section, we further have
to evaluate distances of points to a fragment’s contour. Given
the set of all support points P that define the vertices of the
boundary, we measure the minimal perpendicular distance of
point p to any of the polygon’s line segments. We denote this
distance function by d(p; P) Finally, the sign of the distance
is determined, that is whether the point lies inside (positive)
or outside the polygon (negative).

4.4. Local Geometric Verification

At this point we want to utilize local geometry to perform
a fast spatial verification of each hypothesis found thus far.
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(a) connectivity 0.10 (b) connectivity 0.11

(f) connectivity 0.26

(g) connectivity 0.26

(h) connectivity 0.28

.

(d) connectivity 0.19 (e) connectivity 0.11

(i) connectivity 0.31 (j) connectivity 0.25

Fig. 2. Results for different degrees of connectivity. Top row: Rectified examples for correctly aligned pieces (min-overlap
greater than 0.5), with low—medium connectivity that increases from left to right (a)-(d). Bottom row: Results for examples
with medium—high connectivity (see (f)-(i)). Examples for incorrect solutions, e.g. pairs having zero min-overlap, are shown in

the rightmost columns (¢) and (j).

Based on our conception that correct models never produce
any overlapping content between aligned fragments, we dis-
card hypotheses that map any point from their consensus set
into the foreground region of the piece’s counterpart. To de-
termine whether this is the case we use the signed distance of
each point in Cj; to the nearest boundary point of the other
fragment. Let the coordinates for a pair of points ¢, = (¢', §')
be denoted by P*[i'] and P*[j]. Then, if cither

s {d(ﬁs @], h(ﬁt))} >T )
or N ~
max {d(h(P'J). P*)} > T @

exceeds threshold T" we do not add h to H;; (see line 10 in
alg. 1). Note that h(-) refers to transformed coordinates after
applying h. All remaining hypotheses are then ranked accord-
ing to their accuracy in aligning points from the consensus set.
For this purpose we compute a (truncated) squared euclidean
distance between transformed points from ¢ and their coun-
terparts from s as follows:

ehiCy) = > [I1P°1] = h(PU7))]

Ck»ECLj

2 Dpas | 3)

We write |-, -] and [-,-] in short for the min- and max-
operation, respectively. From all initial models we finally add
only the best scoring hj = argminy,cq, {e1(h; Cij)} to set
H?! of locally verified hypotheses.

4.5. Global Geometric Verification

We recap that up to this point, only correspondences within
consensus sets have been used to preemptively discard wrong

alignment models. After this initial verification, we must now
validate only very few hypotheses in terms of global geome-
try, where pieces are dealt with as a whole. For this purpose,
we first use the same criteria as for our local verification step
(eq. (1), (2)), however, we now check all support points from
s and t for content-overlap. Only those hypotheses that also
pass this global verification (line 16 in alg. 1) are retained in
set H2. Finally, our aim is to select only one hypothesis from
this set that best aligns the two fragments onto each other.

To accomplish this, all remaining models must be ranked
according to our conception of an optimal alignment result.
Hence we introduce the following function that, individually
for pieces s and ¢, penalizes content overlap as well as spa-
tially disconnected boundaries:

ex(h) = D (D[, h(PY) + 38 (h(P'[j]), P) - (4)
i=1 j=1
Variables ns and n; correspond to the number of support
points on the two fragments. Using d = d(p, P) as substitute
for the signed nearest distance (see section 4.3) we define:

5(p. P) = [Id. Do), 0] + [L=d, DoJ™.0]  (5)

Considering all remaining hypotheses we finally choose
5 = argming,cy,2{€2(h)} as the best model to align frag-
ment ¢ onto s. Parameters D, and D, control the maximum
distance of each point to the boundary before it is considered
as outlier. Besides, exponents e, and e; control the behav-
ior of the error function regarding points that lie on the inside
and outside of the polygons, respectively. Either of the two
criteria can be emphasized by using different exponents, in
which case the error function becomes asymmetric. Note that
all parameters were chosen empirically, based on qualitative
results on the training and validation set.
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Fig. 3. Performance evaluation in terms of min-overlap vs. recall, for different levels of connectivity (figure 3a and 3b), as well

as for the full dataset (figure 3c).

5. CONTENT-BASED PRIOR INFORMATION

For text pages, content-based prior information about the ori-
entation of documents pieces can be obtained by running a
text detector (e.g. [13]) in advance. In the following we as-
sume that despite the absolute orientations 85 and 6, for pieces
s and t are unknown, one may still infer an estimate for their
relative orientation from the detector output. By running the
detector individually for both pieces, one obtains an estimate
for the true orientations and their enclosed angle &.

In our algorithm we use this estimate to discard all hy-
potheses that do not conform with the predicted relative orien-
tation. For this purpose we model the uncertainty associated
with a detector as Gaussian noise with standard deviation o.
Therefore, any hypothesis that predicts a relative orientation
ay ¢ [&@— Ko,& + Ko| is omitted. We note that estimate
oy, is presumably only correct up to 180°, because a detector
is likely to output the text orientation, but not its direction.
For our experiments in section 6.1 we set K empirically to
balance the number of hypotheses that can be discarded with-
out falsely omitting correct hypotheses.

6. EVALUATION

In this section we discuss the performance criteria used for
our experiments on the bdw082010 dataset, which has been
described in section 3.1. For our evaluation we first introduce
the notion of connectivity, which can be considered a measure
for the adjacency of two pieces in the intact document.

Connectivity. In this work the connectivity of two pieces is
defined as the length of the adjacent boundary segments rela-
tive to their overall contour length. Intuitively, pieces having
a high connectivity provide significant evidence for being ad-
jacent in the document. As a consequence, finding the correct
contour segments for examples with low connectivity is inher-
ently more difficult, as is reflected by our first experiment in

section 6.1. Some qualitative results for examples with differ-
ent degree of connectivity are depicted in figure 2. We would
like to point out that all of those fragments have been aligned
according to the hypotheses resulting from algorithm 1.

Overlap between Contour Segments. For any predicted hy-
pothesis that aligns two pieces s and ¢, we infer contour seg-
ments /5 and [;, one along each fragment’s boundary, where
pieces complement each other (e.g. green and red lines in fig-
ure 2). Since correct line segments /s and [; are known from
ground truth data, we define their pairwise overlap as the min-
imum intersection over union from both sides, i.e.

. I.Nle I,Nl
min-overlap(ls, 1) Lt

LLuly I, ul,

(6)

The min-overlap evaluates to 1 for two predicted line seg-
ments only if they are a perfect match regarding ground truth
data. This measure is suitable for assessing the quality of an
hypothesis, because it gives gradually smaller values if either
of the segments is not located correctly, while likewise penal-
izing segments that are too long or short.

6.1. Experiments

Our first experiment evaluates the effectiveness of the pro-
posed method in terms of min-overlap vs. recall. We compute
an upper bound for the maximal achievable performance by
assuming that the absolute orientation of fragments is known
and held fixed, so that each hypothesis estimates only a trans-
lation. In this scenario we achieve a recall of 93.6% on the
full dataset, as can be seen in figure 3c. With higher degree of
connectivity, the recall increases from 87.1% for hard exam-
ples (figure 3b) to 99.9% for relatively ones (figure 3a).

In a second scenario we assume that the orientation of
pieces is unknown, but can be estimated from content-based
information in advance (see section 5). Because a text detec-
tor only allows for an approximately correct orientation as-
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Fig. 4. Number of hypotheses at different stages of 2p—PCM-—
MSAC, for varying o. Each group consists of 3 boxplots with
their median value (circle) as well as the 25th and 75th per-
centiles. See text for details on stages 1-4.

signment, we plot overlap-recall curves for different levels of
uncertainty o € {1,2,4,8} (in degrees) about this estimate.
As can be seen in figures 3a and 3b, having a more accurate
prediction for the picces’ orientation (smaller o) constantly
improves the performance in all cases. However, this is more
pronounced for examples with low connectivity. Finally we
also run an experiment without using any content-based prior
information, in which case we still achieve a recall of 76.1%
on the full dataset (see figure 3c). Examples for aligned frag-
ments are given in figure 2. Pieces with less than four inliers
were not considered in our experiments, since they are almost
entirely disconnected in the document and hence should be of
little interest for most document reconstruction approaches.
In our second experiment we evaluate the number of hy-
potheses at four stages of algorithm 1, depending on the un-
certainty of our simulated text detector. We observe from fig-
ure 4 that the number of hypotheses decreases over stages 1-4
regardless of o. Stage 1 only counts hypotheses that conform
to the estimated orientation of the text detector. The second
stage refers to hypotheses retained after the local geometric
verification step, followed by stage 3 which retains only the
best hypothesis per consensus set. We note that evaluating hy-
potheses in the initial stage only depends on very few points
(from the consensus sets), which makes this local verification
very efficient. Finally, we plot the number of hypotheses for
stage 4, in which the global error function e, defined in eq.
(4) needs to be evaluated. As can be seen, only very few (in
the order of 102) hypotheses are retained for this last round of
selection, after which only the best alignment is retained.

7. CONCLUSION

In this work we presented an approach for aligning pairs of
hand-shredded document pieces based on boundary informa-
tion. We discussed how content-based prior information can

be used to speed up the alignment process while also improv-
ing the system’s performance. Furthermore, we showed that
constructing consensus sets from boundary points is effective
for identifying correct hypotheses. We conclude that our ap-
proach needs about four orders of magnitude less global ver-
ifications compared to a naive random sampling strategy.
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