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ABSTRACT
Image retrieval is the process of finding images from a large
collection, satisfying a user-specified criterion. Content-
based retrieval has been the traditional paradigm, in which
one wishes to find images whose content is similar to a query.
In this paper we explore a novel criterion for image search,
based on forensic principles. We address the problem of re-
trieving all the photos in a collection that have been acquired
by a specific device which is presented to the system as a
query. This is an important forensic problem, whose solu-
tion could be very useful for detecting improper usage of
pictures. We do not rely on metadata such as Exif head-
ers because they can be unavailable, or easily manipulated,
and in most cases cannot identify the specific device. We
rely instead on a forensic tool called Photo Response Non-
Uniformity (PRNU), which constitutes a reliable fingerprint
of a camera sensor. We examine recent advances in compres-
sion of such fingerprints, which allow to address the previ-
ously unexplored image retrieval problem on large scales.

Index Terms— Random projections, PRNU, image
forensics, image retrieval

1. INTRODUCTION

Millions of pictures are uploaded and shared over the Internet
every day, creating a huge amount of data that calls for effi-
cient solutions for its management. In this sense, very com-
mon tasks are the retrieval of pictures of interest and the clas-
sification of similar photos. Classical image retrieval tech-
niques usually aim at finding pictures having similar content
with respect to a query image [1]. However, forensic-oriented
retrieval techniques may be of interest as well, for example if
one wants to find pictures that have been acquired by a spe-
cific device.

If we imagine a search engine which, given as a query
a specific device, returns all the webpages containing photos
acquired by that device, this technology could be very use-
ful for detecting improper usage of pictures. For example,
professional photographers could use it to prevent improper
diffusion of their photos, large websites could avoid being

This work is supported by the European Research Council under the
European Communitys Seventh Framework Programme (FP7/2007-2013) /
ERC Grant agreement n.279848.

fingerprint
DB

core module crawler

Internet

Fig. 1. High-level block diagram of the proposed system

sued for redistributing unlicensed pictures, police investiga-
tors who have come across a digital camera or even just pic-
tures linked to an unlawful act, e.g., child pornography, could
look for other pictures taken by the same camera in either pub-
lic databases (e.g., social networks) or large internal databases
managed by the police.

When a picture is acquired by a digital sensor, slight im-
perfections in the manufacturing of single pixels produce a
unique fingerprint, usually referred to as photo-response non-
uniformity (PRNU) [2]. The PRNU can be considered as
a noise-like, yet deterministic, pattern affecting every image
taken by a sensor, and can be used to determine if a picture
has been acquired by a given sensor, or if two or more pictures
have been taken by the same camera. Several works demon-
strate that the PRNU is a robust fingerprint, usually surviving
processing like lossy compression and image resizing [3, 4].

The use of PRNU as a fingerprint for camera identifica-
tion has so far focused on tasks involving a small number of
cameras or photographs, as it is the case when it has to be
used as evidence in a trial. Typically, in such scenarios one
has to verify whether a picture, or a small set of pictures, has
been taken by a specific camera and is concerned with having
the best matching accuracy and low probability of false alarm.
However, interesting scenarios involve the use of camera fin-
gerprints on larger scales. One of them is using the PRNU
for classifying a set of images according to the device that
acquired them, which has received some attention in recent
literature [5, 6, 7]. Another interesting problem, apparently
overlooked in the literature, is retrieving all pictures in a large
database that have been taken by a given camera.

In this paper, we present a problem of large-scale image
retrieval based on PRNU fingerprints. The proposed system is
a realistic example of the envisioned search engine, and can
be used to demonstrate the the above technology is indeed
feasible. The system is depicted in Fig. 1. We assume that a



large collection of photos is available, for example, it can be
obtained by scanning portions of the web. From this collec-
tion, a large fingerprint database is automatically generated
by extracting the PRNU pattern of each individual photo. A
query is presented to the system in the form of a fingerprint
of a camera, and the goal is to retrieve all the photos acquired
by the same device.

Since the database could keep several millions of finger-
prints, and PRNU patterns have the same size as the imag-
ing sensor, which typically counts tens of millions of pix-
els, a technique for obtaining a compact representation of
PRNU fingerprints is essential to deal with such a system.
Notice that this image retrieval problem is significantly dif-
ferent from the problems addressed by the well-researched
area of content-based image retrieval where the content of an
image is the query and the user searches for images with simi-
lar content. Moreover, due to the specific properties of PRNU
patterns, namely the fact that they are noise-like, traditional
approaches, e.g., based on feature descriptors [8] do not work
for the presented problem.

In this paper, we propose to solve the above problem by
using compressed fingerprints obtained via proper quantiza-
tion of random projections. Recent works [9] have shown
that random projections permit to obtain very compact repre-
sentations with limited performance loss in terms of matching
accuracy. Hence, this technique appears to be one of the best
candidates for performing image retrieval based on camera
fingerprints in very large scale scenarios.

The paper is organized as follows. Section 2 introduces
the notation and provides background material on PRNU pat-
terns. Section 3 describes the image retrieval problem and
discusses in detail how an efficient implementation can be
achieved with fingerprints compressed via random projec-
tions. Section 4 focuses on numerical experiments and sec-
tion 5 draws some conclusions.

2. BACKGROUND

2.1. Notation

We denote (column-) vectors and matrices by lowercase and
uppercase boldface characters, respectively. The `-th element
of column vector v is v`. The i-th column of the matrix A
is ai. The notation A · B denotes the elementwise product
between matrices A and B, while A/B denotes elementwise
division. The notation 〈a,b〉 denotes the scalar product be-
tween vectors a and b, and ‖a‖2 =

√
〈a,a〉.

2.2. PRNU patterns

The PRNU of a digital imaging sensor constitutes a highly
informative pattern that allows to uniquely identify a photo-
graphic device. The PRNU pattern is due to slight variations
in the properties of individual pixels, which respond in a dif-
ferent manner to the incident light field, thus causing pixel-
dependent gain variations. This pattern is deterministic, yet it

has noise-like characteristics and it is unique of each sensor.
It constitutes a robust fingerprint because it is stable in time,
and survives processing like image compression, resizing, or
many enhancement operations. It is thus possible to extract
an estimate of the PRNU pattern of a particular sensor from
one or more photos acquired. An acquired image o can be
modeled as

o = oid + oid · k + e , (1)
where oid is the ideal sensor output, k is the PRNU term and e
collects other sources of noise. Assuming to be able to obtain
through proper filtering a denoised version of o, referred to
as odn, then this can be used as an approximation of the ideal
sensor output and subtracted from each side of (1) to obtain
the so-called noise residual, which can be modeled as:

w = o− odn = o · k + q̃ , (2)

where q̃ accounts for e and for the non-idealities of the model.
Refer to [10] for more details on the model. It is thus seen
that the noise residual is a modulated version of the PRNU
where the modulating term is the current image, thus an esti-
mate of the fingerprint k can be obtained by dividing the noise
residual by the image. When C photos acquired by the same
camera are available, the maximum likelihood estimate can
be obtained as follows:

k̂ =

C∑
`=1

(
w(`) · o(`)

)/ C∑
`=1

(o(`))2 (3)

PRNU patterns have been successfully used in many
forensic tasks such as determining whether a photo has been
acquired by a specific camera. This is the most classic ap-
plication of PRNU and it is often used in court trials since it
has been declared admissible as evidence. Recently, variants
of this problem have been studied in terms of classification or
clustering problems, such as associating n photos to k cam-
eras. As an example, a system is presented with n photos of
unknown origin and it is told they come form k cameras, so
that the task is determining the k clusters of photos according
to the similarity of their PRNU patterns [5, 6, 7].

Few works recently started considering the problem of
compression of PRNU fingerprints. In [11, 12], the authors
introduced a so-called fingerprint digest obtained by keep-
ing only a fixed number of the largest fingerprint values and
their positions, which enables a fast search strategy with con-
stant size fingerprints [13]. In [14], the authors proposed to
represent sensor fingerprints in binary-quantized form: even
though the size of binary fingerprints scales with sensor res-
olution, binarization can considerably speed-up the finger-
print matching process and considerably reduce the storage
requirements. In [9] the authors proposed a compact repre-
sentation of PRNU fingerprints based on a fixed number of
random projections. Moreover, random projections can be bi-
nary quantized, leading to an extremely compact fingerprint
representation. Thanks to the Johnson-Lindenstrauss (JL)



lemma [15], results indicated that randomly-projected com-
pressed fingerprints achieve identification performance close
to the uncompressed fingerprints at a fraction of the storage
space and considerably reduced computational cost for the
matching operation. Moreover they are also a very flexible
scheme in the sense that they allow to tune the number of
projections to the desired tradeoff between speed and accu-
racy. They are thus the most promising technique to handle
large scale scenarios. The details on how to use random pro-
jections to compress PRNU fingerprints are presented in the
next section along with the novel contributions in this paper.

3. PROPOSED TECHNIQUE

3.1. Scenario

The system is given N photos of unknown origin, e.g., they
can be photos collected from web pages, and extracts a fin-
gerprint estimate from each of them. Thus the system has to
store N fingerprint estimates along with some metadata such
as a URL for the actual photos. The system is queried with the
fingerprint of a camera and has to return a list of photos from
the database whose fingerprint estimate matches the one pre-
sented to the system. For simplicity, this paper considers per-
fectly synchronized images and fingerprints, thus having the
original sensor resolution and being geometrically aligned so
that no rotation or scale parameter has to be determined. The
techniques presented in this paper can be extended to provide
resilience to some geometric transformations. Some prelimi-
nary work in this direction can be found in [16].

The number N of fingerprint estimates to be stored can
be very large, in the order of several millions for a real sys-
tem, so compression techniques must be employed to have a
manageable system.

3.2. Efficient implementation via random projections

The compression technique presented in [9] is based on com-
puting a small number of random projections of a fingerprint
and quantizing them. It was shown that binary-quantized ran-
dom projections offer a very favorable tradeoff between de-
tection accuracy and storage requirements. Essentially, this
amounts to computing

y = sign(Φk̂) , (4)

where Φ is a sensing matrix made of realizations of ran-
dom variables of size m × n, with m � n, thus mapping
the original fingerprint k̂, composed of n pixels, to a lower-
dimensional space through m measurements. A naive imple-
mentation of random projections poses significant problems
of complexity since the most studied methods require a sens-
ing matrix made of independent and identically distributed
entries. This implies that mn random values must be either
generated on-the-fly with a pseudorandom number genera-
tor or stored in memory. Either way, the large values of n

(millions of pixels) and m (typically around 512000) make
this approach impractical. Even worse, the computationally-
expensive full matrix-vector product would be required to
compute y. The solution proposed in [9] is based on ran-
dom partial circulant matrices. Those matrices are shown to
perform very close to fully random matrices but allow fast
implementations of the sensing operation because only n ran-
dom values are to be generated and the operation Φk̂ can be
efficiently implemented via the FFT.

Hence, the system addressing the retrieval problem that
we present in this paper, computes the quantized random pro-
jections for all the N collected fingerprints and stores them.
Notice that the same matrix is used for all the fingerprints.
The issue of handling sensors with multiple different resolu-
tions is solved by using a submatrix of Φ whose number of
columns depends on the particular sensor resolution. Notice
that, in this work, we are only concerned on verifying the per-
formance of the retrieval based on fingerprint matching, so we
do not exploit any side information such as sensor resolution
which could indeed ease the task.

The query fingerprint is also compressed in the same way.
The compressed query fingerprint is then compared with all
the N compressed fingerprint stored in the database. Using
binary-quantized random projections, the Hamming distance
dH(a,b) = 1

m

∑m
i=1 ai⊕bi, where⊕ denotes the XOR oper-

ator, is used as dissimilarity metric. A match is declared when
the Hamming distance is lower than a predefined threshold τ .
The threshold can be set according to the desired probability
of false alarm, i.e., the probability that a non-matching finger-
print is incorrectly declared a match because its distance to
the query randomly happens to be below the threshold.

Using the results in [9], we assume that the binary random
projections y(i) and y(j) of two fingerprints of different de-
vices are perfectly incoherent. This means that a single mea-
surement (bit) is different with probability P

(
y
(i)
l 6= y

(j)
l

)
=

1
2 . The measurements can be considered independent with
good approximation, thus the Hamming distance follows a
Binomial distribution, which is well approximated by a Gaus-
sian with mean 1

2 and variance 1
4m . The false-alarm probabil-

ity is readily obtained as a function of the threshold τ :

PFA = P
(
dH(y(i),y(j)) < τ

)
=

1

2
+

1

2
erf

(
τ − 1

2
1√
2m

)
(5)

Finally, notice that random projections significantly speed
up the comparison operation as well as providing reduced
storage requirements. This is due to two reasons. First,
they provide an embedding into a lower dimensional sub-
space, thus the number of entries in a compressed fingerprint
is significantly smaller than the number of pixels in the orig-
inal (typical values are m = 512000 random projections and
n ≈ 107 pixels), so distances are more efficiently computed.
Second, the Hamming distance is a very efficient operation
because it just requires a XOR operation and a sum, thus re-



quiring much fewer clock cycles than floating point multipli-
cations needed to compute the correlation coefficient (or more
complex metrics, like the Peak-to-Correlation Energy [10]) as
it is done for uncompressed fingerprints.

3.3. A remark on Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is a technique used to solve
the approximate nearest neighbor problem and it is indeed
very successful at dealing with large-scale scenarios [17, 18].
This problem is concerned with finding the nearest neigh-
bors, within a predefined distance, of a query point, among
the N points in a database. LSH allows to create an efficient
data structure to solve the problem, thus avoiding exhaustive
search over the N points, and achieving sublinear complex-
ity. In a nutshell, this is done by using locality-sensitive hash
functions, i.e., functions that return the same value with prob-
ability p1 (ideally high) if two points are “close” to each other,
or with probability p2 (ideally low) if they are “far”. The gap
between the two probabilities is amplified by using multiple
hash tables. Such system is able to achieve aO(Nρ) retrieval
complexity where ρ < 1 is the ratio between the radius of
the ball enclosing the true neighbors and the distance beyond
which the other points are supposed to lie. In principle, the
retrieval problem presented in this paper well fits the class of
problems solved by LSH. However, the peculiar characteris-
tics of PRNU patterns make it impossible to use LSH effi-
ciently. In fact, fingerprint estimates extracted from one or
even multiple photos from the same device present very low
correlation [14], thus making the factor ρ very close to 1. For
example, the correlation coefficient of two matching uncom-
pressed fingerprints is typically around 0.1. This implies a
value of ρ ≈ 0.95, so it is clear that LSH would not improve
much over linear search. Moreover, the result is asymptotic
and reaching it would require an impractically large number
of hash tables and hash functions.

A final remark concerns the random projections used in
this work and in [9]. Random projections are indeed used by
LSH methods as a locality-sensitive function to create keys to
hash tables. However, this work is only concerned with di-
mensionality reduction of the fingerprints to create a compact
representation for storage and computational complexity re-
duction of the matching operations, without the objective to
create a data structure to avoid exhaustive search.

4. NUMERICAL RESULTS

The performance of the compressed retrieval system is as-
sessed using the publicly available database of photographs
assembled by TU Dresden [19]. This database is well known
in the forensic community as it is composed of both flatfield
images, i.e., photos of uniform subjects, that can be used to
extract high quality fingerprint estimates, as well as natural
images in outdoor and indoor environments. We selected 53
cameras having both flatfield images and natural images. A

Table 1. Size of the fingerprint database (N = 10965)
Uncompressed Binary Random projections

378.70 GB 11.83 GB 669.25 MB

Table 2. Complexity of query
Uncompressed Binary Random projections

Time 154.8 sec 21.2 sec 1.2 sec
O(Nn) O(Nn) O(Nm)

Cost floating point XOR XOR
multiplications

total of N = 10965 natural photos are available, and a finger-
print estimate is extracted from each of them. A query to the
system is emulated by using fingerprint estimates extracted
from the flatfield images. Each camera has a variable number
of flatfield images, usually about 30 to 50, which are jointly
used to extract a single high-quality estimate of the camera
fingerprint. The Dresden image database is not very large but
has been used in this paper for several reasons. First, it is well
known in the literature, and being publicly available easily al-
lows reproducible results. Moreover, we wanted to present a
comparison with the ideal results of the uncompressed sys-
tem, which quickly becomes unmanageable in terms of stor-
age requirements and computational complexity as the size of
the database grows.

We analyse three methods to solve the presented image
retrieval problem. They are based on uncompressed finger-
prints (single-precision floating point values), on the binariza-
tion method of [14] (1 bit per pixel), and the binary random
projections of [9] (512000 binary-quantized random projec-
tions). Other methods exist, trying to address large scales and
fast fingerprint matching, e.g., some works based on finger-
print digests [13, 20, 21]. The simple fingerprint digest based
on retaining the k entries of a fingerprint with largest mag-
nitude was shown in [9] to have very similar performance to
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Fig. 2. Recall as function of query camera. Average recall: uncom-
pressed = 0.912; binary = 0.911; random projections = 0.875.
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Fig. 3. Precision as function of query camera. Average precision:
uncompressed = 0.999; binary = 0.998; random projections = 0.983.

real-valued random projections, but it was not competitive if
compared to binary random projections. Some works studied
data structures based on fingerprint digests that should accel-
erate the matching process when the fingerprints are highly
correlated. However, in light of the aforementioned results,
it is unclear how well they scale to million-entries datasets of
fingerprints. A more exhaustive comparison with such meth-
ods will be the subject of future work.

Table 1 shows the amount of storage required for the fin-
gerprint database using the three methods analysed in this sec-
tion. In the following experiments, we compare each query
fingerprint with all the fingerprints in the database. The un-
compressed system uses as test metric the correlation coef-
ficient between the uncompressed query fingerprint d(i) and
the database fingerprint k(j).

c(i, j) =
〈d(i),k(j)〉
‖d(i)‖‖k(j)‖

, j = 1, . . . , N

A match is declared when the correlation coefficient is above
a predefined threshold, i.e., c(i, j) > τun. The binary fin-
gerprints of [14] are compared using Hamming distance as
dissimilarity metric. Since the image size may vary, the fin-
gerprints are cropped to the smallest one. A match is declared
when the Hamming distance is below a threshold τbi. Finally,
the random projections technique uses compressed query and
test fingerprints with m = 512000 binary-quantized random
projections. A match is declared when the Hamming distance
is below a threshold τrp.

The performance is evaluated in terms of recall and pre-
cision. The retrieved photos are those which have been de-
clared a match according to the previously-defined test met-
rics. The recall is the number of retrieved photos acquired
by the same camera of the query fingerprint, normalized by
the total number of photos of that camera within the database.
The precision is the number of retrieved photos acquired by
the same camera of the query fingerprint, normalized by the
total number of retrieved photos. Several ways of comparing
the performance of the different techniques are possible. For

example, a typical way would be setting the detection thresh-
olds of the various methods in order to achieve the same false
alarm probability, thus actually presetting the expected preci-
sion, as exemplified in Section 3.2. The experiments shown
in Figs. 2 and 3 use a different method, based on using the
threshold that gives the best F-score1 for each of the methods.
This choice allows to compare the methods at their best oper-
ating point in terms of precision-recall trade-off. Figs. 2 and
3 show the recall and precision values, respectively, as a func-
tion of the camera used as query. It can be noticed that a few
cameras perform poorly, even in the uncompressed regime.
This is a well known fact, as explained in [22], and it is due
to non-unique artifacts introduced by onboard processing of
the photos for some particular camera models under certain
conditions (e.g. optical distortion correction when the optical
zoom is used). We did not correct such artifacts, thus leaving
the fingerprint extraction process blind to the actual camera
models. The results show that the binary fingerprints obtain
performance nearly indistinguishable from the uncompressed
ones. However, their bit-size scales with the number of pix-
els in the camera, so each binary fingerprint requires about
1-2 MB of storage. Binary random projections use a fixed
number of projections resulting in file sizes of about 64 kB
per fingerprint. The results show that they are quite success-
ful at achieving performance close to the uncompressed case,
only suffering minor degradation in terms of precision and
recall. Fig. 4 shows the precision-recall curve obtained using
the average precision and recall over all the cameras and by
sweeping the threshold values. Finally, Table 2 reports some
figures about the time required to respond to a query for the
various methods, as well as the computational complexity of
such operation in big-O notation. Note that those times are
based on our MATLAB implementation, which is not opti-
mized for speed, and runs on a machine with 32 cores and
32GB of RAM. Moreover, they are estimated assuming that
all the N fingerprints are loaded in RAM. This is indeed true
for the random projections method and for the binarized fin-
gerprints. However, since the N uncompressed fingerprints
do not fit in the main memory, the query time of the uncom-
pressed system is extrapolated from a subset of the N finger-
prints. This highlights how the huge size of uncompressed
fingerprints makes the retrieval problem highly impractical,
requiring several machines in parallel or very long response
times. On the contrary, quantized random projections allow
very fast response times and modest memory requirements
while having close-to-ideal performance.

5. CONCLUSIONS
In this paper, we presented an image retrieval problem where
the goal is to retrieve photos acquired by a specific device
in a large collection of photos. We showed how recent ad-
vances in compression techniques for PRNU patterns enable

1Calling precision P and recall R, the F-score is F = 2 PR
P+R
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Fig. 4. Precision-Recall curve. Area under curve (AUC): uncom-
pressed AUC = 0.9188; binary AUC = 0.9184; random projections
AUC = 0.9061.

efficient solutions to this problem, achieving precision and re-
call performance close to the one of the uncompressed system
at a fraction of storage and computational complexity. Future
work should also address methods that enable resilience to ge-
ometrical transformations of the images and allow large-scale
scenarios.
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