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ABSTRACT

Multiview autostereoscopic displays are considered as the
future of 3DTV. However, these displays suffer from a high
level of crosstalk, which negatively impacts quality of ex-
perience (QoE). In this paper, we propose a system to im-
prove 3D QoE on multiview autostereoscopic displays. First,
the display is characterized in terms of luminance distribu-
tion. Then, the luminance profiles are modeled using a lim-
ited set of parameters. A Kinect sensor is used to determine
the viewer position in front of the display. Finally, the pro-
posed system performs an intelligent on the fly allocation of
the output views to minimize the perceived crosstalk. The
user preference between 2D and 3D modes and the proposed
system is evaluated. Results show that picture quality is sig-
nificantly improved when compared to the standard 3D mode,
for a similar depth perception and visual comfort.

Index Terms— 3D, multiview autostereoscopic display,
crosstalk, viewer tracking, quality of experience

1. INTRODUCTION

Current stereoscopic technologies still require the user to
wear bulky glasses. This factor has a significant impact on
quality of experience (QoE), especially for users who already
wear glasses. Multiview autostereoscopic displays can be the
solution to this problem. They provide glasses-free 3D to sev-
eral viewers simultaneously. Even though this technology is
not yet mature enough for a wide acceptance in the consumer
market, it is promising. However, multiview autostereoscopic
displays suffer from a high crosstalk level between the differ-
ent views, which is one of the main perceptual factors con-
tributing to image quality and visual comfort [1].

To improve the QoE provided by multiview autostereo-
scopic displays, researchers have proposed to exploit viewer
tracking. Dodgson [2] has analyzed an ideal 3-view display,
where only two views are actually displayed, to better deal
with the transition of one eye between two adjacent zones.
Boev et al. [3] have developed a single-viewer system based
on user-tracking. The system performs on-the-fly visual opti-
mization to achieve continuous head parallax, i.e., to avoid
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the repetition effect between the lobes, mitigate crosstalk,
and improve brightness. Kooima et al. [4] have proposed
three techniques to improve the user experience: perspec-
tive tracking, channel tracking, and channel reassignment.
Nam et al. [5] have proposed another approach to actively
reduce crosstalk based on the user position. This technique
reduces the crosstalk level form 19.1% to only 2.6% for a
multiview display using sub-pixel rendering. Recently, ad-
vanced multi-user autostereoscopic displays have been de-
veloped within the European Union-funded projects MUTED
and HELIUM 3D [6]. These displays utilize multi-user head-
tracking to provide a proper 3D image to each viewer, based
on the eyes position. However, none of these works provides a
full description and subjective evaluation of a complete active
crosstalk reduction system for current multiview autostereo-
scopic display technology.

In this paper, we describe and evaluate a system to im-
prove the QoE provided by current and future multiview au-
tostereoscopic display technologies. In particular, our solu-
tion aims to reduce the amount of crosstalk perceived by the
viewer. The idea is to determine the viewers position, hence
the views they can see, and to adjust the different displayed
views in real time such that the quality of experience is maxi-
mized for each viewer. We implemented our solution consid-
ering a single viewer scenario for a 52-inch full HD 28-view
Dimenco BDL5231V autostereoscopic display with slanted
lenticular sheet. First, the multiview autostereoscopic display
was characterized by taking several measurements of the lu-
minance profile of the different views using a DSLR camera.
Then, the luminance profiles were modeled using a limited
set of parameters. A Kinect sensor was used to determine
the viewer position in front of the display using face tracking.
Based on this information and the luminance profiles obtained
from the display characterization, the views perceived by each
eye were determined. Finally, the proposed system performed
an intelligent allocation of the output views to minimize the
perceived crosstalk in real time. The user preference between
2D and 3D modes and the proposed system was evaluated
in terms of image quality, depth quality, and visual comfort
through an informal subjective evaluation conducted with five
expert viewers. Results show that picture quality is signifi-
cantly improved when compared to 3D mode, for a similar
depth perception and visual comfort.
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Fig. 1: Schematic of the display characterization setup.

The remainder of the paper is organized as follows. The
display characterization and proposed system are described
in Sec. 2 and 3. In Sec. 4, the evaluation methodology is de-
scribed. Results are presented and analyzed in Sec. 5. Finally,
concluding remarks and future work are given in Sec. 6.

2. DISPLAY CHARACTERIZATION

The characterization of multiview autostereoscopic displays
is usually performed by measuring the luminance emitted by
each view at different positions in front of the monitor, which
is commonly known as luminance profiles. Significant ef-
forts have been devoted to multiview autostereoscopic dis-
play characterization over the recent years. The International
Committee for Display Metrology has recently proposed a
standardized way to measure crosstalk at a given point in
space [7]. However, this approach is time-consuming and
expensive, as dedicated measurement devices, e.g., photome-
ters mounted on a rotating stage, high resolution conoscopic
cameras, luminance meters, and Fourier Optics [8] are often
required. Consequently, we adopted a simpler yet effective
approach, which was already used to characterize mobile au-
tostereoscopic display [9]. The main idea is to display a spe-
cific test pattern and acquire an estimation of the luminance
profiles at a given distance using a DSLR camera. In this
paper, a 52-inch full HD 28-view Dimenco BDL5231V au-
tostereoscopic display with slanted lenticular sheet was used.

2.1. Setup

The luminance was measured on a vertical flat projection sur-
face, which was parallel to the display and placed at a fixed
distance of 3.5m from the display. This distance is chosen to
be the optimal viewing distance of the display. The measure-
ments were performed in a dark room environment. Since the
camera cannot be placed at the center of the display without
interfering with the measurements on the projection surface,
the camera was placed on top of the monitor and controlled
remotely. Figure 1 illustrates the setup. We ensured that the
camera was parallel to the 3D display and to the projection

Fig. 2: Resulting luminance at 3.5 m from the display, cap-
tured by the camera placed on top of the monitor, when one
view is set to white and all other views are set to black. The
red box represents the display area.

screen to minimize any distortion. All camera parameters
were kept constant during the experiments. The test patterns
displayed on the monitor were generated by setting one par-
ticular view to white and all other views to black. This process
was repeated for each view to measure the luminance profile
of the corresponding view. Figure 2 depicts the resulting lu-
minance at 3.5m from the display. As it can be observed, the
luminance distribution consists of five slanted cones, due to
the use of a slanted lenticular sheet. The luminance distribu-
tion is similar for all views, up to a horizontal shift.

2.2. Luminance Extraction

For each view, four images were captured and averaged to
reduce noise. The averaged images were further cropped to
the region of interest (the area of the projection surface). For
computation ease, only 30% of the initial size of the picture
was kept and a median filter of size 10 × 10 pixels was ap-
plied to further reduce artifacts due to noise. The luminance
information was then extracted by converting the gamma en-
coded sRGB to linear XYZ values and by keeping only the Y
channel. Note that the luminance values are defined up to a
scale factor, as no reference luminance value was measured.

2.3. Luminance Profile Fitting

Figure 3 depicts the variation of all luminance profiles along
the horizontal axis, i.e., the x-axis, at the center of the dis-
play (y = 0). This corresponds to a cut along the x-axis on
Fig. 2, repeated on the luminance distribution generated by
each view. As it can be observed, the global intensity is maxi-
mum at the center of the display and decreases as the distance
from the center of the screen increases. Within the bound-
aries limited by the display frame (indicated by two red lines
on Fig. 3), the global intensity seems to have a Gaussian en-
velope. For each view, the envelope seems modulated by a
squared cosine (since the luminance values are always posi-
tive), with five maxima corresponding to the five cones. The



Fig. 3: Variation of all luminance profiles along the horizontal
axis at the center of the display (y = 0).

luminance profiles of the different views are similar up to a
translation, which corresponds to a phase factor in the cosine
modulation. A cut along the vertical axis, i.e., the y-axis, also
reveals a Gaussian shape (not represented here because of the
limited space). In this paper, we limited the study of the lu-
minance profiles to an area corresponding to the display area.

Based on the above analysis, the luminance profile,
L(x, y), was modeled as a 2D Gaussian envelope modulated
by a squared cosine function:

L(x, y) =A cos2 (ωx+ τy + φ)

· e−[a(x−xc)
2+2b(x−xc)(y−yc)+c(y−yc)

2] + o (1)
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where A and o are the amplitude and offset of the 2D Gaus-
sian, respectively, ω represents the frequency of the cosine
modulation, τ is phase factor to represent the slanted nature
of the luminance distribution, φ is the phase factor represent-
ing the translation between the different views, (xc, yc) is the
center of the 2D Gaussian, σx and σy represent the horizon-
tal and vertical standard deviations of the 2D Gaussian, re-
spectively, and ϕ is a tilt factor of the 2D Gaussian added to
improve the fitting.

2.4. Parameters Reduction

Each luminance profile of the 28 views was fitted indepen-
dently using Eq. (1), yielding to a total of 28 × 10 = 280
parameters. All parameters exhibited small variations, except
for φ, which evolved linearly with the view number (up to
a period π). These results are in line with the observations

reported in Sec. 2.3. Based on these observations, the param-
eter set was further reduced by computing the average value
of the different parameters, except for φ. For the parameter
φ, a linear regression was performed

φ = αv + β (3)

where v is the view number and α and β are the parameters
of the linear regression. The RMSE and coefficient of deter-
mination averaged over the 28 views increased from 1.9666
to 2.3113 and decreased from 0.9848 to 0.9789, respectively,
which shows that reducing the set of parameters from 280 to
11 parameters had little impact on the error between the mea-
sured and fitted values.

3. SYSTEM DESCRIPTION

3.1. User Tracking

The Microsoft Kinect and Face tracking SDKs were used to
track the face and face features. In particular, the features
corresponding to the left and right corners of each eye were
used. The center of the eye was computed as the mid-point
between the left and right corners, as this feature is not di-
rectly provided by the Face tracking SDK. The face tracking
application developed is highly reliable and robust, but sensi-
tive to lightning conditions. The face tracking was performed
in real time, with a frame rate varying between 25 and 30 fps,
depending on lighting conditions.

3.2. Intelligent View Assignment

Typically, an N-view autostereoscopic system takes M ≪ N
views as input, due to limitations imposed when using physi-
cal cameras. From the limited input views, the missing N−M
views are synthesized, for examples by using depth image-
based rendering (DIBR). In the most common approach, each
view corresponds to a slightly different viewpoint. The rea-
sons behind this approach are multiple: providing a motion
parallax effect when the observer moves his/her head in front
of the display, coping with different viewing distances, cop-
ing with different interpupillary distances, providing 3D ef-
fect for different viewers located at different positions, etc.
However, this approach might not be optimal in some cases,
for example when only one subject is watching the display
and standing still, and introduces crosstalk, as the profiles of
the different views overlap quite significantly (see Fig. 3).

To reduce perceived crosstalk, our idea consists in per-
forming an intelligent assignment of the different views based
on the luminance profiles and the observer’s position. Let us
assume that a single user is positioned such that his/her left
and right eyes see only views 3 and 7, respectively. In this
case, the optimal solution would be to assign to views 3 and
7 the content intended for the left and right eyes, respectively.
Unfortunately, in a practical scenario, the separation is not



Fig. 4: Luminance perceived by each eye at a given position.

that clear and each view is perceived by both eyes, at a differ-
ent level. However, each view is typically perceived more by
one eye than by the other. Therefore, the content that should
be assigned to each view can be determined by the eye that
sees the most this specific view.

From the eyes position determined by the user tracking
and luminance profiles, it is possible to determine for each
view the luminance perceived by each eye. Figure 4 illustrates
the luminance perceived by each eye at a given position, as a
function of the view number. These values are obtained by
evaluating Eq. (1) at the eyes positions for each view inde-
pendently. From this information, the eye for which the lu-
minance is maximum would determine the content assigned
to each view. In this case, a direct comparison of the lumi-
nance perceived by each eye would be performed for each
view. However, Fig. 4 can be seen as the sampled version
at fixed integer positions, corresponding to the view num-
bers, of a continuous function, as if the view numbering was
continuous instead of discrete. Since the luminance profiles
were fitted with a limited set of parameters where only φ was
depending on the view number, Eq. (1) can be evaluated at
non-integer view numbers. Figure 5 illustrates the luminance
perceived by each eye, as a continuous function of the view
number. Views for which the luminance curve corresponding
to the right eye lies above the luminance curve corresponding
to the left eye should display the right eye picture, and vice-
versa. The decision boundaries can easily be determined by
computing the two points at which the curves intersect.

Assigning only two different images, i.e., the left and right
eye pictures, following the methodology described here above
did not look very pleasant on the display for two reasons.
First, the luminance profiles have a significant overlap: the
view that maximizes the luminance perceived by the right eye
leaks quite significantly into the left eye, and vice-versa (see
Fig. 4). Second, the edges at the objects’ boundaries corre-

Fig. 5: View assignment for a given position.

sponding to sharp depth transitions did not look very pleas-
ant because of the sub-pixel interlacing. This effect does not
appear in standard 3D mode, because the multiple views con-
tain somewhat similar information, which tends to smooth out
the depth transitions and blur objects’ boundaries. To over-
come these issues, three intermediate pictures, correspond-
ing to equidistant viewpoints, located in between the left and
right eye pictures, were used for the views near the decision
boundary (see Fig. 5). For example, near the right eye picture
to left eye picture decision boundary (brl), the center-right
(pcr), center (pc), and center-left (pcl) intermediate pictures
are assigned as

vn =


pcr if n ∈ [brl − δe, brl − δc[

pc if n ∈ [brl − δc, brl + δc]

pcl if n ∈ ]brl + δc, brl + δe]

(4)

where vn is the n-th view. Therefore, 5 pictures were assigned
to the 28 views, but with a different spacing for each picture,
whereas 28 different pictures are used in the 3D mode with
regular spacing, as each view uses a different picture. The
number of intermediate pictures and parameters (δc = 1 and
δe = 4) were determined empirically to achieve the best ren-
dering. This solution smooths the image and enhances the
visual comfort when compared to using only two pictures.

3.3. Multiview Shuffling

The Dimenco BDL5231V monitor uses an LCD panel com-
posed of 1920×1080 pixels. However, the shuffling of the 28
views is done at a sub-pixel level. Dimenco provides a soft-
ware for shuffling 28 full HD video sequences corresponding
to the 28 views into a single full HD video to be displayed
on the monitor. This tool was reversed engineered, by using
simple input patterns, to determine the sub-pixel arrangement,



i.e., to determine which sub-pixel corresponds to which view.
This information allows us to perform the multiview shuffling
in our application, which is also much faster than the original
software provided by Dimenco.

3.4. Final System and Implementation

To reduce the impact of the user tracking imprecision and
increase visual comfort, small head movements (less than
2 cm in any direction) were discarded. Additionally, to
avoid flickering when a new picture is assigned, fading was
performed between two successive renderings. The fading
was performed by computing three intermediate images us-
ing weighted addition of the old and new pictures to display,
whose weights increased gradually in favor of the new pic-
ture. For our experiments, the system was implemented in
C++ using the OpenCV library and achieved a rendering at
about 30 fps.

4. SUBJECTIVE EVALUATION

To evaluate the performance of the proposed system over the
2D and 3D modes of the display, an informal subjective eval-
uation was performed with five expert viewers.

4.1. Dataset

Four multiview video plus depth (MVD) contents were used
in the experiments: GT Fly, Poznan Street, Shark, and Undo
Dancer. These contents are used by the Joint Collaborative
Team on 3D Video Coding Extension Development (JCT-3V)
of VCEQ and MPEG [10]. Poznan Street is a real scene with
estimated depth maps, whereas the three remaining contents
are computer-generated scenes with ground truth depth maps.
One key frame, which maximizes the amount of depth, was
selected for each content.

4.2. Test Methodology

The paired comparison methodology [11] was chosen as judg-
ing the quality of different 2D and 3D rendering systems in-
dividually may be quite difficult. Pairs of images, A and B,
which resulted from different rendering systems, were pre-
sented in succession order on the display. Subjects were asked
to judge which image in a pair (A or B) is preferred in terms
of picture quality, depth quality, and visual comfort [11]. The
option same was also included to avoid random preference
selections. For each of the 4 test contents, all the possi-
ble combinations of the 3 conditions (2D mode, 3D mode,
and proposed system) were considered, leading to a total of
4×

(
3
2

)
= 12 paired comparisons.

Viewers were allowed to move freely (within a range de-
fined by the monitor frame) along a line parallel to the display,
at the optimal viewing distance of 3.5 m, which corresponded
to the measurement distance (see Sec. 2.1).

4.3. Analysis of the Results

First, the winning frequency wij of stimulus i against stimu-
lus j and tie frequency tij between the two stimuli were com-
puted from the individual ratings. Note that tij = tji and
wij + wji + tij = N , where N is the number of subjects.

Then, the Bradley-Terry-Luce model [12] was used to
convert the winning frequencies to continuous-scale quality
scores, which are equivalent to mean opinion scores (MOS).
In this model, the empirical probability Pij of choosing stim-
ulus i is defined as

Pij =
πi

πi + πj
(5)

where πi satisfying πi ≥ 0 and
∑
i

πi = 1 can be consid-

ered as the quality score for stimulus i and can be obtained
via maximum likelihood estimation. Ties were considered as
half way between the two preference options and equally dis-
tributed between Pij and Pji [12]. The confidence intervals
(CI) for the maximum likelihood estimates of the scores were
obtained using the Hessian matrix of the log-likelihood func-
tion. The results were normalized to the range [0, 100] for a
better representation.

5. RESULTS AND DISCUSSION

Figure 6 left shows the preference and tie probabilities ob-
tained over all test images for picture quality, depth qual-
ity, and visual comfort. As it can be observed, the proposed
system significantly improves picture quality when compared
to the 3D mode, as it has a preference probability of 70%,
whereas the 3D mode has a preference probability of only
20%. With the proposed system, less crosstalk was percepti-
ble and there was no unpleasant transition between the differ-
ent viewing cones. The 2D mode and proposed system were
perceived as similar in 60% of the test stimuli, which shows
that the proposed system provided a picture quality compara-
ble to that of the 2D mode.

Regarding depth quality, the 3D mode showed a clear ad-
vantage over the 2D mode. Results show a slight preference
for the 3D mode over the proposed system, with a preference
probability of 45%. Nevertheless, the depth quality of the
proposed system is still much better than that of the 2D mode,
despite the absence of motion parallax depth cues when com-
pared to the 3D mode. In terms of visual comfort, 2D mode
is preferred most of the time. The proposed system also im-
proves visual comfort when compared to the 3D mode, as it is
preferred in 55% of the test stimuli, whereas the 3D mode is
preferred in only 30% of the test stimuli. From the comments
of the viewers, this can be explained by the fact that they had
some difficulties to predict the behavior of the system as they
moved when compared to the 3D mode, where they could find
a predictable and fixed sweet-spot.



Fig. 6: Preference probabilities (left) and normalized quality scores (right) for 2D mode, 3D mode, and proposed system (PS).

Figure 6 right shows the MOS and CI obtained over all
test images for picture quality, depth quality, and visual com-
fort. As it can be observed, the proposed system significantly
enhances picture quality when compared to the 3D mode and
provides similar depth perception, as the CIs overlap signifi-
cantly. However, the improvement in terms of visual comfort
is not significant.

6. CONCLUSION

In this paper, we proposed a system to improve 3D QoE
on multiview autostereoscopic displays. The proposed sys-
tem relies on display characterization and viewer tracking to
perform an intelligent allocation of the output views on the
fly to minimize perceived crosstalk. The system was imple-
mented to improve 3D QoE on a 52-inch full HD 28-view
Dimenco BDL5231V autostereoscopic display with slanted
lenticular sheet. A Kinect sensor was used to track the viewer
and a simple display characterization was performed using a
DSLR camera. The user preference between standard 2D and
3D modes and the proposed system was evaluated. Results
showed that picture quality is significantly improved when
compared to 3D mode, for a similar depth perception and vi-
sual comfort.

In a future study, we plan to improve the system and to
perform a complete subjective evaluation of the improved ver-
sion with naı̈ve viewers. Improvements include better assign-
ment of the views, especially near the decision boundary, bet-
ter fading, and better filtering of the user position. We also
plan to extend the measurements and luminance model for
different viewing distances to allow the user to move back
and forth. The final goal is to develop a system that can han-
dle several viewers, located at different positions.
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