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ABSTRACT

This paper presents a novel method for learning a pose lex-
icon comprising semantic poses defined by textual instruc-
tions and their associated visual poses defined by visual fea-
tures. The proposed method simultaneously takes two input
streams, semantic poses and visual pose candidates, and sta-
tistically learns a mapping between them to construct the lex-
icon. With the learned lexicon, action recognition can be cast
as the problem of finding the maximum translation proba-
bility of a sequence of semantic poses given a stream of vi-
sual pose candidates. Experiments evaluating pre-trained and
zero-shot action recognition conducted on MSRC-12 gesture
and WorkoutSu-10 exercise datasets were used to verify the
efficacy of the proposed method.

Index Terms— Lexicon, semantic pose, visual pose, ac-
tion recognition.

1. INTRODUCTION

Human action recognition is currently one of the most active
research topics in multimedia content analysis. Most recog-
nition models are typically constructed from low to middle
level visual spatio-temporal features and directly associated
with class labels [1, 2, 3, 4, 5]. In particular, many meth-
ods [1, 6, 7, 8] have been developed based on the concept that
an action can be well represented by a sequence of key or
salient poses and these salient poses can be identified through
visual features alone. However, these salient poses often do
not necessarily possess semantic significance thus leading to
the so-called semantic gap. We refer to the salient poses de-
fined using visual features as “visual poses”.

The textual instruction of how a simple or elementary ac-
tion should be performed is often expressed using Talmy’s ty-
pology of motion [9]. In this typology a motion event is one in
which an entity experiences a change in location with respect
to another object and such event can be described by four se-
mantic elements including Motion (M), Figure (F), Ground
(G) and Path (P), where M refers to the movement of an en-
tity F that changes its location relative to the reference object
G along the trajectory P (including a start and an end). For
a complex action or an action that involves many body parts,

a sequence of basic textual instructions will suffice. Each in-
struction, describing a part of the action, will be made up of
the four elements. A simplification of the trajectory P for hu-
man actions entails retaining the starting Ps and end Pe, status
or configuration of the body parts, and ignoring intermediate
parts of the trajectory. We refer to both Ps and Pe as “seman-
tic poses”. Hence, an action can be described by a sequence
of semantic poses if F is defined as the whole human body.
Alternatively, if F refers to a body part, multiple sequences of
semantic poses can be used. Semantic poses can be obtained
by parsing the textual instructions.

This paper proposes a method to construct a pose lexicon
comprising a set of semantic poses and the corresponding vi-
sual poses, by learning a mapping between them. It is as-
sumed that for each action there is a textual instruction from
which a set of semantic poses can be extracted through nat-
ural language parsing [10] and that for each action sample
a sequence of visual pose candidates can be extracted. The
mapping task is formulated as a problem of machine trans-
lation. With the learned lexicon, action recognition can be
considered as a problem of finding the maximum posterior
probability of a given sequence of visual pose candidates be-
ing generated from a given sequence of semantic poses. This
is equivalent to determining how likely the given sequence of
visual pose candidates follow a sequence of semantic poses.
Such a lexicon bridges the gap between the semantics and
visual features and offers a number of advantages includ-
ing text-based action retrieval and summarization, recogni-
tion of actions with small or even zero training samples (also
known as zero-short recognition), and easy growth of seman-
tic poses for new action recognition since poses in the lexicon
are sharable by many actions.

The rest of this paper is organized as follows. Section 2
provides a review of previous work related to semantic ac-
tion recognition. The proposed method for learning pose lex-
icon and action classification is developed and formulated in
Section 3. In Section 4, experiments are presented to demon-
strate the effectiveness of the proposed method in recognition
tasks using MSRC-12 Kinect gesture [11], WorkoutSU-10 ex-
ercise [12] datasets and novel actions extracted from the two
datasets. Finally, the paper is concluded with remarks in Sec-
tion 5.
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2. RELATED WORK

Despite the good progress made in action recognition over the
past decade, few studies have reported methods based on se-
mantic learning. Earlier methods bridged the semantic gap
using mid-level features (eg. visual keywords) [13]) obtained
by quantizing low-level spatio-temporal features which form
visual vocabulary. However, mid-level features are not suffi-
ciently robust to obtain good performance on relatively large
action dataset. This problem has been addressed by proposing
high-level latent semantic features to represent semantically
similar mid-level features. Unsupervised methods [14, 15]
were previously applied for learning latent semantics based
on topic models; example include probabilistic latent seman-
tic analysis [16] and latent Dirichlet allocation (LDA) [17].
Recently, multiple layers model [18] based on LDA was pro-
posed for learning local and global action semantics. The
intuitive basis of using mid- and high-level latent semantic
features is that frequently co-occurring low-level features are
correlated at some conceptual level. It is noteworthy that
these two kinds of semantic features have no explicit seman-
tic relationship to the problem; a situation different from the
proposed semantic poses.

Apart from learning latent semantics of actions, other ap-
proaches focused on defining semantic concepts to describe
action or activity related properties. Actions were described
by a set of attributes that possess spatial characteristics. Un-
fortunately, the attributes are not specific enough to allow sub-
jects to recreate the actions [19, 20]. It is also difficult to
describe them as there is no a common principle for describ-
ing different actions. In our work, textual instructions use
a common principle (four semantic elements) for action rep-
resentation and they also provide unambiguous guideline for
performing actions. Activity was represented by basic actions
and corresponding participants such as subjects, objects and
tools [21, 22]. The method for representing activities ties the
object and action together. The work presented in this paper
focuses on single actions which do not depend on other ob-
jects.

3. PROPOSED METHOD

Visual poses can be extracted from either RGB, depth maps or
skeleton data. In this work, we take skeleton data as an exam-
ple to illustrate the proposed method. Inspired by the trans-
lation model for image annotation [23], a translation model
from visual poses to semantic poses, namely “visual pose-to-
semantic pose translation model” (VS-TM), is proposed for
learning a pose lexicon from skeleton data with instructions.
Figure 1 illustrates the action recognition framework based
on the VS-TM. In the training phase, a pose lexicon is con-
structed in two main steps. First, a parallel corpus is con-
structed based on a stream of semantic poses and a stream
of visual pose candidates. Second, a mapping between the
two streams is learned from the parallel corpus to generate
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Fig. 1: Framework of the proposed method.

the lexicon for inferring optimal visual poses from the candi-
dates. In the test phase, actions are classified according to the
maximum translation probability (MTP) of a semantic pose
sequence given a sequence of visual pose candidates.

3.1. Parallel corpus construction

An action instance is represented by two streams; semantic
pose and visual pose candidate. The parallel corpus consists
of multiple such data streams that have been constructed from
each action instance through vector quantization on the sets
of semantic pose and visual pose candidate. In the following
Sections 3.1.1 and 3.1.2 we focus on how to construct the two
sets.

3.1.1. Semantic poses generation

Semantic poses are constructed based on start and end se-
mantic poses Ps and Pe. Ps refers to the configuration of
human body in which the action starts and Pe indicates the
point at which body parts reach a salient configuration, e.g.
maximum extension. Ps and Pe are normally encoded by
preposition phrases in the textual instruction. Constituency-
based parser (i.e. Berkeley [10]) can be used for extract-
ing Ps and Pe. Note that parsing is not the focus of paper.
Suppose an action instance contains G elementary or sim-
ple actions. The semantic pose sequence can be written as
{Ps1 , Pe1 , . . . , Psi , Pei , . . . , PsG , PeG}, where Psi and Pei
denote semantic poses of the i-th elementary action. Once
the semantic poses are extracted, similar semantic poses are
replaced by a single symbol and the semantic pose set is eas-
ily constructed.

3.1.2. Visual pose candidates generation

Key frames are firstly extracted from each action instance to
visually represent the start and end semantic poses. Visual
pose candidates are further generated through clustering key
frames of all action instance. In this paper, we consider key
frames as frames when body parts reach maximum or min-
imum extension. If we consider skeleton joints as observa-



tions, the covariance matrix of joint positions at an instant
time captures the stretch of body parts or distribution of joints
in space at this instant time. Hence, the covariance of joint
positions is applied for extracting key frames.

Given an action instance containing F frames, F feature
vectors are generated to represent this instance using a mov-
ing pose descriptor [24]. A covariance is calculated from each
feature vector, resulting in a 3×3 matrix. Suppose Σf denote
the covariance matrix at frame f (f ∈ {1, . . . , F}). The re-
lationships amongst the joints of the pose can be analysed by
performing eigen-decomposition on Σf . For each frame we
select the largest eigenvalue, denoted by λf and thus, produce
the sequence Λ = {λ1, λ2, . . . , λf , . . . , λF }.

To reduce the impact of noise in skeletons, we smoothen
the sequence Λ along the time dimension, with a moving
Gaussian filter of window size 5 frames. Then frames, at
whose smoothed largest eigenvalues are bigger or smaller
than those of neighbouring frames, are extracted as key
frames. In particular, frame f is a key frame if the follow-
ing conditions are met:

λf > λf+1

λf > λf−1
or

λf < λf+1

λf < λf−1.
(1)

The extracted key frames of all action instances are clus-
tered using k-means algorithm and cluster centers are consid-
ered as visual pose candidates. The selection of k depends on
the size of semantic pose set and the size of semantic pose set
is determined by the number of elementary actions. Hence,
it is available before learning the lexicon. One semantic pose
can be mapped to multiple visual pose candidates when these
visual pose candidates are similar. However, one visual pose
candidate corresponds to at most one semantic pose. There-
fore, k is chosen as equal or larger than the number of seman-
tic poses so that any semantic pose can correspond to at least
one visual pose candidate.

3.2. Lexicon Learning

3.2.1. Formulation

Given the parallel corpus which has underlying correspon-
dence between sequences of semantic pose and visual pose
candidate, the problem of learning an action lexicon entails
determining precise correspondences among the elements of
the two sequences. Let the set of visual pose candidates be
denoted by S = {S1, S2, . . . , Sp, . . .} and the semantic pose
set by T = {T1, T2, . . . , Tq, . . .}. The task of lexicon con-
struction is converted to finding the most likely visual pose
candidate given a semantic pose, based on conditional proba-
bility P (Sp|Tq).

The underlying correspondence between the two se-
quences provides an opportunity to use machine translation
to model the problem. The sequence pair encodes the starting
and end positions of actions which are discrete units. These
discrete units are actually analogous to words in translation

model. This observation makes the particular word-based
machine translation framework useful to our problem. The
sequence of visual pose candidate is analogous to the source
language and semantic pose sequence is similar to the target
language. According to the standard word-based translation
framework [25], learning a lexicon is converted to the partic-
ular problem - translation model. Hence, we develop a trans-
lation model from visual poses to semantic poses (VS-TM)
based on the parallel corpus to learn a pose lexicon.

We now illustrate the translation model (VS-TM). Let
Mn denote the number of visual pose candidates in
the n-th action instance. The sequence of visual pose
candidate, after quantization, can be written as sn =
{sn1, sn2, . . . , snj , . . . , snMn

}(snj ∈ S). Similarly, if Ln
represents the number of semantic poses in the n-th action in-
stance, then the semantic pose sequence of the action instance
can be written as tn = {tn1, tn2, . . . , tni, . . . , tnLn}(tni ∈
T ). VS-TM finds the most likely sequence of visual pose
candidate for each semantic pose sequence through the con-
ditional probability P (sn|tn).

In the word-based translation model, the conditional prob-
ability of two sequences is converted to the conditional prob-
ability of elements of the sequences. However, we do not
know the correspondence between individual elements of the
sequence pair. If we introduce a hidden variable an which
determines the alignment of sn and tn, the alignment of
N sequence pairs form a set which can be written as a =
{a1, a2, . . . , an, . . . , aN}. Based on an, the translation of
sequence pair is accomplished through summing conditional
probabilities of all possible alignments. Hence, we learn VS-
TM through element-to-element alignment models. P (sn|tn)
is calculated using

P (sn|tn) =
∑
an

P (sn, an|tn). (2)

If each visual pose candidate in the sequence can be
aligned to at most one semantic pose, we guarantee that
a visual pose candidate corresponds to only one seman-
tic pose. To ensure this constraint, we construct the
alignment from visual to semantic pose sentence. The
alignment of the n-th instance can be written as an =
{an1, an2, . . . , anj , . . . , anMn

}(anj ∈ [0, Ln]), where anj
represents the alignment position of the j-th visual pose can-
didate. If the j-th visual pose candidate is aligned to the i-th
semantic pose, we write, anj = i. anj = 0 refers to the sit-
uation in which no semantic pose corresponds to this visual
pose candidate; this happens when visual pose candidate is
noisy. According to alignment an, Equation (2) can be ex-
tended through structuring P (sn, an|tn) without loss of gen-
erality by chain rule as follows:

P (sn|tn) =
∑
an

Mn∏
j=1

P (anj |sn(j−1)n1 , a
n(j−1)
n1 , tnLn

n1 )

× P (snj |sn(j−1)n1 , anjn1, t
nLn
n1 ),

(3)



where the first item determines alignment probability,
the second encodes translation probability and xnjn1 =
{xn1, xn2, . . . , xnj}(x ∈ (s, t, a)). Since lexicon acquisition
aims to find conditional probability among visual and seman-
tic poses, we further assume that alignment probabilities are
equal (i.e. 1

Ln+1 ) and snj depends only on the sequence el-
ement at anj position which is tnanj (equal to tni). Hence,
Equation (3) can be rewritten as

P (sn|tn) =

Ln∑
anj=0

Mn∏
j=1

1

Ln + 1
P (snj |tnanj

), (4)

where the translation probability is constrained through∑
Sp
P (Sp|Tq) = 1 for any Tq .

For N action instances in the training parallel corpus,
the proposed model VS-TM aims to maximize the translation
probability P (s|t) through

P (s|t) =

N∏
n=1

Mn∏
j=1

Ln∑
i=0

1

Ln + 1
P (snj |tni). (5)

Here, it is easy to verify that the sum can be interchanged in
Equation (4).

3.2.2. Optimization

The expectation maximization (EM) algorithm is invoked
for the optimization by mapping the translation probability
P (Sp|Tq) to parameter θ and alignment a to the unobserved
data. The likelihood function L is defined as

Lθ(s, t, a) =

N∏
n=1

Mn∏
j=1

Ln∑
i=0

1

Ln + 1
P (snj |tni). (6)

Maximizing likelihood function L is further extended to seek
an unconstrained extremum of auxiliary function

h(P, β) ≡
N∏
n=1

Mn∏
j=1

Ln∑
i=0

1

Ln + 1
P (snj |tni)

−
∑
Tq

β(
∑
Sp

P (Sp|Tq)− 1)

(7)

In the E-step, the posterior probability among alignment
is calculated by

Pθ(anj |snj , tni) =
P (snj |tni)∑Ln

i=0 P (snj |tni)
(8)

In the M-step, parameter θ is updated through

P (Sp|Tq) = β−1
N∑
n=1

Mn∑
j=1

Ln∑
i=0

Pθ(anj |snj , tni)

× δ(Sp, snj)δ(Tq, tni).

(9)

Here, δ(., .) is 1 if two elements are equal and 0 otherwise. β
normalizes the probabilities.

3.3. Action classification

Once the translation model from visual pose candidates to
semantic poses is learned, the task of action classification is
converted to finding the most likely semantic pose sequence
given a sequence of visual pose candidate. This is the de-
coding process in machine translation system [25]. Since tex-
tual instructions of all action classes are available, we reduce
search space to the possible solution space containing instruc-
tions of all trained actions.

Let stest = {s′1, . . . , s′j , . . . , s′m}(s′j ∈ S) denote the
sequence of visual pose candidate in a test action instance
and ttest = {t′1, . . . , t′i, . . . , t′l}(t′i ∈ T ), its semantic
pose sequence. The alignment atest is written as atest =
{a′1, . . . , a′j , . . . , a′m}. Given the model parameter θ, ac-
tion is classified based on P (stest|ttest) which is calculated
through finding the best alignment to avoid summing all pos-
sible alignment probability. In particular, it is formulated as

{ttest, atest} = arg max
{ttest,atest}

m∏
j=1

Pθ(a
′
j |s′j , t′i). (10)

4. EXPERIMENTS AND RESULTS

4.1. Datasets and experimental setup

Two action datasets, MSRC-12 Kinect gesture [11] and
WorkoutSU-10 [12], were used to evaluate our method.
MSRC-12 Kinect gesture dataset is collected from 30 subjects
performing 12 gestures and contains 594 video sequences of
skeletal body part movements. Each sequence contains 9 to
11 instances. In total, there are 6244 instances in this dataset.
WorkoutSu-10 dataset is collected from 15 subjects perform-
ing 10 fitness exercises. Each exercise has been repeated 10
times by each subject. It contains 510550 frames resulting
in 1500 instances and large time span for each instance. The
large time spans make our method valuable in key frames ex-
traction.

Textual instructions of actions in the two datasets and lin-
guistics description of extracted semantic poses are manually
described which shown in supplementary material1. How-
ever, it is not difficult to automatically obtain textual instruc-
tions as they are often used by sports trainers and may be
available online. In total, 16 and 15 semantic poses are re-
spectively applied to MSRC-12 and WorkoutSu-10 datasets.
The ground truth lexicon can be seen in Figure 2 which il-
lustrates corresponding optimal visual pose of semantic pose.
Here, symbols have been used to represent semantic poses.

Experiments were conducted to evaluate the proposed
method on two classification problems including trained and
untrained actions. In order to compare with the state-of-the-
art algorithms, cross-subject evaluation scheme was applied
on the instance level of actions. Moreover, the initial value of

1 Supplementary material is attached at the end of paper.
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Fig. 2: Ground truth optimal visual poses corresponding to
semantic poses.

translation probability P (Sp|Tq) is assigned a uniform prob-
ability based on

∑
Sp
P (Sp|Tq) = 1.

4.2. Results

4.2.1. Trained action classification

We separately test two datasets and learned a lexicon (see
Figure 3 and 4) for each dataset used for action recognition.
Comparing the learned lexicon with the ground truth lexicon,
one finds the lexicon for MSRC-12 and WorkoutSu-10 are al-
most consistent with ground truth except the semantic pose
T4 in MSRC-12 dataset. Notice also that corresponding pose
of semantic pose T4 is confused with T5. These two semantic
poses are used by only one action “Push right”, which re-
duces the performance of the proposed method by fewer co-
occurrence of semantic pose and visual pose candidates. The
variation among subjects performing this action also results in
confusion as subjects may ignore the elementary action from
T1 to T4.

The learned lexicon was further verified through ac-
tion recognition. The accuracy gained with MRSC-12 and
WorkoutSu-10 dataset are respectively 85.86% and 98.71%.
Comparative results with discriminative models are shown in
Table 1. Although the performance on MSRC-12 is slightly
worse than discriminative models [26, 12, 27], it is a reason-
able result when considering the fact that we do not model ref-
erence object (G) and simply consider the whole body as ob-
ject. Consequently, it is hard to distinguish actions “Googles
and “Had enough which have particular reference objects.
The result based on WorkoutSu-10 dataset outperforms the
discriminative model RDF [12] even though the number of
instances in [12] was 300 fewer than in our experiment.

To demonstrate the performance of semantic action recog-
nition with the aid of textual instruction, we compare the pro-
posed method with state-of-the-art semantic learning meth-
ods. As attributes [19, 20] are hard to describe and not com-
parable, we opt to compare it with state-of-the-art latent se-
mantic learning. The comparisons are made with generative

T1 T2 T3 T4 T5 T6 T7 T8

T9 T10 T11 T12 T13 T14 T15 T16

Fig. 3: A lexicon based on MSRC-12 dataset.

T1 T17 T18 T19 T20 T21 T22 T23

T24 T25 T2 T3 T26 T27 T28

Fig. 4: A lexicon based WorkoutSu-10 dataset.

Table 1: Comparative results: trained action classification.

Methods MSRC-12 WorkoutSu-10
Cov3DJ [26] 91.70% -
RDF [12] 94.03% 98%
ELC-KSVD [27] 90.22% -
LDA[14] 74.81% 92.27%
HGM [18] 66.25% 82.37%
Ours 85.86% 98.71%

models and results are shown in Table 1; the proposed method
can be catgorised as a generative model. In particular, we
compare it with classical latent Dirichlet allocation (LDA)
model [14] and a hierarchical generative model (HGM) [18]
which is a two-layer LDA. In both models, word is similar
to visual pose candidate of the proposed method and topic is
similar to semantic pose. Hence, in LDA the number of top-
ics is equal to the number of semantic poses. In HGM, the
number of global topics is same as the number of semantic
poses. Comparative results show that the proposed method
outperforms HGM and LDA, clearly indicating its semantic
representation power for action recognition. Moreover, ex-
periments investigating the role of k (set size of visual pose
candidate) showed an increased rate for the proposed method
with increased value of k, levelling off when k is about 5 or 6
times as many as the size of semantic pose set 2.

4.2.2. Zero-shot classification

Zero-shot classification is to recognize an action that has not
been trained before. Notice that the four semantic poses are
shared in different actions among two datasets including T1,
T2, T3 and T7. This motivated the selection of all actions
that used these semantic poses for experiments. We also con-

2 Graphical result is available in the supplementary material.



Table 2: Results of zero-shot classification.

Testing set Accuracy

Single action
Lift arms 92.72%

Duck 61.40%
Wind up 54.70%

Composite activity
A1 then A2 99.30%
B2 then B3 100%
C1 then C2 98.67%

structed a synthesized set of composite activities by concate-
nating single actions from WorkoutSu-10 in order to enlarge
the number of test actions. Specifically, training actions in-
clude: Cheap weapon, Beat both, Hip flexion (A1), Trunk ro-
tation (A2), Hip adductor stretch (B2), Hip adductor stretch
(B3), Curl-to-press (C1) and Squats (C2). Three single ac-
tions and three composite activities are used for testing and
recognition accuracy is shown in Table 2. Results demon-
strate that the proposed method based on action semantic
poses is effective in zero-shot action recognition.

5. CONCLUSION

This paper has presented a novel method of learning a pose
lexicon that consists of semantic poses and visual poses.
Experimental results showed that the proposed method can
effectively learn the mapping between semantic and visual
poses and was verified in both pre-trained and zero-shot ac-
tion recognition.

The proposed method can be easily extended to seman-
tic action recognition based on RGB or depth datasets and
provides a foundation to build action-verb and activity-phrase
hierarchies. A unique large lexicon can also be learned for
action recognition involving different datasets. In addition,
the future work about representing semantic poses will be ex-
plored to improve the proposed method through modelling
reference objects and middle part of trajectories since we only
considered start and end positions of trajectories.
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Supplementary material:
In this supplementary material, the textual instructions of the
actions in the MSRC-12 gesture [11] and WorkoutSu-10 ex-
ercise [12] datasets are described in the first section. The sec-
ond section details the extracted semantic poses of the two
datasets. In the third section, the experimental results on the
recognition accuracy vs. the number of visual pose candidates
are presented.

Textual instructions
Beginning with a starting configuration of the body, the in-
structions consist of a sequence description of the elementary
motions that constitute an action. The instructions can be un-
derstood and followed by a subject with average literacy to
perform the action.

MSRC-12
• Lift outstretched arms:

– Begin in standing position with arms beside body.

– Raise outstretched arms from sides to should
height until overhead.

– Return to starting position.

• Duck:

– Begin in standing position with arms beside body.

– Slightly bend knee.

– Return to starting position.

• Push right:

– Begin in standing position with arms beside body.

– Bring right hand in front of tummy.

– Slide right hand towards the right until same plane
as torso.

– Return to starting position.

• Goggles:

– Begin in standing position with arms beside body.

– Raise hands through tummy, chest until eyes.

– Return to starting position.

• Wind up:

– Begin in standing position with arms beside body.

– Raise arms through tummy, chest until shoulder
height.

– Bring arms back and and return to starting posi-
tion.

• Shoot:

– Begin in standing position with arms beside body.

– Stretch arms out in front of body with clasped
hands.

– Slightly bring up hands.

– Return to starting position.

• Bow:

– Begin in standing position with arms beside body.

– Bend forwards with torso parallel with the floor.

– Return to starting position.

• Throw:

– Begin with standing position.

– Step left foot forward while raising right hand
overhead and back to the point of maximum ex-
ternal shoulder rotation.

– Accelerate right arm forward until elbow is com-
pletely straight.

– Return to starting position.

• Had enough:

– Begin with standing position.

– Raise arms with hands on the head.

– Return to starting position.

• Change weapon:

– Begin with standing position.

– Reach over left shoulder with right hand.

– Bring both hands in front of tummy as if they are
holding something.

– Return to starting position.

• Beat both:

– Begin with standing position.

– Raise hands to the head level.

– Beat hands sidewards for a few times.

– Return to starting position.

• Kick:

– Begin with standing position.

– Step left foot forward while raising right foot to
the right knee.

– Straighten right leg forward.

– Return to starting position.



WorkoutSu-10
• Hip flexion (A1)

– Begin in standing position with arms beside body.

– Place hands on the waist.

– Flex left leg at the hip up to 90 degree and bend
the knee.

– Return to starting position.

• Torso rotation (A2)

– Begin in standing position with arms beside body.

– Outstretch arms at shoulder height with clasped
hands and flex left leg at knee.

– Rotate torso towards left side at almost 45 de-
grees.

– Rotate torso to the right.

– Return to starting position.

• Lateral stepping (A3)

– Begin in standing position with arms beside body.

– Place hands on the waist.

– With right foot step laterally to the right.

– Bring left foot beside right foot.

– Repeat the last two elementary actions for several
times.

– With left foot step laterally to the left.

– Bring right foot beside left foot.

– Repeat the last two elementary actions for several
times.

– Return to starting position.

• Thoracic rotation (B1)

– Begin in standing position with arms are flexed at
elbow and hands raised at shoulder height.

– Rotate torso to left side.

– Return to starting position.

• Hip Adductor stretch (B2)

– Begin in standing position with arms beside body.

– Spread legs beyond shoulder width.

– Shift body weight to right leg by bending the knee
up to 90 degree and straighten left leg.

– Return to starting position.

• Hip adductor stretch (B3)

– Begin in standing position with arms beside body.

– Spread legs beyond shoulder width.

– Bend forwards with torso parallel with the floor
while arms are hanging down.

– Return to starting position.

• Curl-to-press (C1)

– Begin in standing position with arms beside body.

– Flex arms at elbow and raise arms in front of body
and overhead.

– Return to starting position.

• Freestanding squarts (C2)

– Begin in standing position with arms beside body.

– Bend knee up to 90 degrees and arms are out-
stretched at shoulder height in front of the body.

– Return to starting position.

• Transverse horizontal punch (C3)

– Begin in standing position with arms beside body.

– Rotate torso towards left side and punch with right
hand in front of the body until arm is straight.

– Rotate torso towards right side and punch with left
hand in front of the body until arm is straight.

– Return to starting position.

• Oblique stretch (C4)

– Begin in standing position with arms beside body.

– Spread legs beyond shoulder width.

– Raise left arm laterally overhead and lean torso
towards the right.

– Return to starting position.

Semantic poses
Semantic poses extracted from the MSRC-12 gesture and
WorkoutSu-10 exercise datasets are show in Table 3 and 4
and their linguistic descriptions are as follows.

T1 Arms are beside legs.

T2 Arms are overhead with elbows above shoulder level.

T3 Thighs at an angle to the shins.

T4 Right arm is in front of stomach.

T5 Horizontally outstretched right arm is in the right of the
body.

T6 Hands are on the corresponding eyes.



T7 Two arms are in front of stomach.

T8 Horizontally outstretched arms are in front of the body.

T9 Torso is parallel to floor.

T10 Left foot is one step in front of the right foot. Right el-
bow is at shoulder level.

T11 Left foot is one step front of the right foot. Horizontally
outstretched right arm is in front of the body.

T12 Hands are on the head.

T13 Horizontally outstretched right arm is in front of the
body.

T14 Two elbows are at shoulder level.

T15 Left foot is one step in front of the right foot.

T16 Raised and outstretched right leg is in front of the body.

T17 Forward raised left knee is with thigh at almost 90 de-
grees to the shin.

T18 The trunk faces the left side at almost 45 degrees. Hori-
zontally outstretched arms are in front of the body. Left
shin is at almost same level as right knee.

T19 The trunk faces the right side at almost 45 degrees. Hor-
izontally outstretched arms are in front of the body.
Right shin is at almost same level as left knee.

T20 Two hands on the hips. Thighs at a slight angle to the
shins.

T21 Raised two arms are beside the body with hands at al-
most shoulder level.

T22 The trunk faces one side at almost 45 degrees. Raised
two arms are beside the body with hands at almost
shoulder level.

T23 One thigh at an angle to the corresponding shin. The
other leg is outstretched.

T24 Separate legs are much wider than shoulder.

T25 Separate legs are much wider than shoulder. Torso is par-
allel to floor and hanging arms are down besides legs.

T26 Trunk faces the left side at almost 90 degrees. Horizon-
tally outstretched right arm is in front of the body.

T27 Trunk faces the right side at almost 90 degrees. Horizon-
tally outstretched left arm is in front of the body.

T28 The trunk is bent obliquely to one side. The stretched
opposite side arm is over the head.

Table 3: Semantic poses used in MSRC-12 dataset.

Gestures Semantic poses
Lift outstretched arms T1, T2
Duck T1, T3
Push right T1, T4, T5
Goggles T1, T6
Wind up T1, T7, T2, T7
Shoot T1, T8
Bow T1, T9
Throw T1, T10, T11
Had enough T1, T12
Change weapon T1, T13, T7
Beat both T1, T14, T2
Kick T1, T15, T16

Table 4: Semantic poses used in WorkoutSu-10 dataset.

Exercises Semantic poses
Hip flexion (A1) T1, T17
Trunk rotation (A2) T1, T18, T19
Lateral stepping (A3) T1, T20
Thoracic rotation (B1) T21, T22
Hip adductor stretch (B2) T1, T23
Hip stretch (B3) T1, T24, T25
Curl-to-press (C1) T1, T2
Freestanding squats (C2) T1, T3
Transverse horizontal punch (C3) T1, T26, T27
Oblique stretch (C4) T1, T28
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Fig. 5: Recognition accuracy versus the number of visual
pose candidates.

Impact of the number of visual pose
candidates
The recognition accuracy versus the number of visual pose
candidates is shown in Figure 5, where 12 and 10 in the



legends represent MSRC-12 and WorkoutSu-10 datasets re-
spectively. Specifically, the number of visual pose candidates
ranges from one to seven times as many as the number of se-
mantic poses. Results have shows that the recognition rate
of the propose method increases first with the increase of the
number of visual pose candidates and then levels off when
the number of visual pose candidates reaches 5 or 6 times as
many as the number of semantic poses.

We also compare the proposed method with the latent
Dirichlet allocation (LDA) model [14] and a hierarchical gen-
erative model (HGM) [18] on the MSRC-12 and WorkoutSu-
10 datasets, where the number of words was set to one to
seven times as many as the number of topics in LDA and the
number of global topics in HGM respectively. Experimental
results have shown that the proposed method is more robust
than LDA and HGM with respect to the number of visual pose
candidates.
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