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ABSTRACT

We present an approach for unsupervised object segmentation
in unconstrained videos. Driven by the latest progress in this
field, we argue that segmentation performance can be largely
improved by aggregating the results generated by state-of-
the-art algorithms. Initially, objects in individual frames are
estimated through a per-frame aggregation procedure using
majority voting. While this can predict relatively accurate
object location, the initial estimation fails to cover the parts
that are wrongly labeled by more than half of the algorithms.
To address this, we build a holistic appearance model using
non-local appearance cues by linear regression. Then, we in-
tegrate the appearance priors and spatio-temporal information
into an energy minimization framework to refine the initial es-
timation. We evaluate our method on challenging benchmark
videos and demonstrate that it outperforms state-of-the-art al-
gorithms.

Index Terms— Video object segmentation, data fusion,
appearance model

1. INTRODUCTION

We propose an approach for unsupervised video object seg-
mentation, which aims to automatically separate foreground
objects from background in a video. This task is of great
importance because determining accurate object boundaries
in videos is crucial for video summarization and human-
computer interaction. In a complex scene, this problem is
challenging due to object photometric and geometric varia-
tions, motion blur and background clutter, etc. In recent liter-
ature, many sophisticated algorithms [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11] have been proposed to address these difficulties, and
have shown significant performance improvement on public
benchmarks.

However, as shown in Tab. 1, each method can work well
on different sequences, but none of them can perform better
than others for all the cases. For instance, while [10] achieves
excellent performance in girl and monkeydog sequences, it
yields inferior performance in birdfall and cheetah. Further-
more, consider the segmentation results for the exemplar al-
gorithms on several frames illustrated in Fig. 1. We can see
that within a single frame, only parts of the original object ap-
pear in each segmentation result, and different results are able
to capture different parts, thereby complementing each other.

a) KeySeg b) FastSeg c) DAGSeg

d) SeamSeg e) JOTSeg f) Ours

Fig. 1. (Best viewed in color) Segmentation results of the 5th
frame in girl sequence by different methods. a) KeySeg [2],
b) FastSeg [7], c) DAGSeg [6], d) SeamSeg [8], e) JOTSeg
[9], f) Ours. We can see that none of the other 5 algorithms
can perfectly delineate the contour of the girl. For instance,
the segments in a) and b) are not accurate in terms of the girl’s
head, however, only in b), the two arms are segmented with
excellent accuracy. Taking advantage of their complemen-
tary roles, we achieve more accurate segmentation result, as
shown in f).

Thus, it will be beneficial to combine these methods so that
they can collaboratively contribute to better results.

Upon these observations we suggest an aggregation
method for video object segmentation that fuses multiple seg-
mentation results into a better one. Our algorithm benefits
from three main properties. First, within each frame, an
initial coarse foreground estimation is effectively computed
using majority voting, which accumulates all the segmenta-
tion maps in each frame generated by various existing meth-
ods. The maps represent regions likely to encompass different
parts of a target object. Through fusion, we are able to exploit
the complementary roles of these approaches and enable them
to improve each other. Second, we train a long-term holistic
appearance model based on the initial foreground estimation
using linear regression. The model helps improve the spatial
accuracy of the segmentation as well as discover the missed
parts in the initial estimation. Last, the initial result is refined
by integrating the appearance and spatial-temporal informa-
tion into an energy minimization framework.



To summarize, our main contributions are:

• an aggregation model that exploits the strengths of
many state-of-the-art approaches for object segmen-
tation in videos. To our knowledge, this is the first
method that aims for improving segmentation quality
with an aggregation model.

• a long-term holistic appearance model that are robust
to partial occlusion, illumination variations, etc.

Our experimental evaluation on a set of standard, pub-
licly available video sequences confirms the advantage of ex-
ploiting the aggregation scheme. We are able to improve the
overall segmentation performance by more than 5% over the
whole SegTrack dataset in comparison with the existing best
algorithm.

2. RELATED WORK

Early work on video object segmentation can be roughly
divided into three categories: trajectory-based, superpixel-
based and objectness-based.

Motion clustering of long-term point trajectories is a ro-
bust tool to extract moving objects from video shots, as re-
cently demonstrated, e.g., in [12, 3, 13, 14, 4]. The work
formulates video segmentation as a spatio-temporal grouping
problem in the trajectory domain and classifies the trajecto-
ries into foreground or background. The use of point trajecto-
ries in contrast to static appearance cues or per frame optical
flow, provides temporally consistent clusters since grouping
naturally propagates over time, and does not rely on motion
information in a particular frame. However, the methods usu-
ally result in over-segmentation because low-level trajectories
cannot accurately capture object-like appearance and motion.

A recent trend in video object segmentation is to exploit
superpixel [7, 9, 10, 11] rather than pixelwise models. These
approaches assume that an object can be formed by a combi-
nation of superpixels, and one can reliably extract it by group-
ing superpixels together according to spatio-temporal simi-
larity [7, 11] or perceptual organization [10]. The superpixel
provides a desirable computational reduction as well as video
segmentation performance improvement.

Object proposal is one of the very-well researched area in
computer vision, e.g., [15, 16]. Their aim is to extract ob-
ject likely regions that cover the entire object boundary with
high accuracy. Recently, work of [2, 6, 5] has introduced ob-
ject proposal into video object segmentation. These methods
generally require two stages to segment objects in videos: ob-
ject proposal generation, in which a pool of object-like seg-
ments are extracted as foreground candidates, and segment
selection, which aims to select primary objects with accurate
boundaries using both appearance and motion cues.

We observe from the above analysis that methods in dif-
ferent categories can only capture single aspect of objects,

e.g., pixelwise, superpixel-wise, or object-wise. Hence, we
believe that one can largely improve the segmentation perfor-
mance by fusing these methods with diverged properties. The
idea has been employed to improve the performance of many
vision applications, e.g., visual saliency detection [17] and
object tracking [18]. However, to our knowledge, the topic is
novel in video object segmentation. In this work, we build on
the aforementioned approaches and show how to aggregate
them to obtain better segmentation quality.

3. VIDEO OBJECT SEGMENTATION
AGGREGATION

In this section we present our approach to segment and track
primary objects in videos. We begin by describing a base-
line method to obtain an initial estimation. Then, we propose
to refine the estimation in a spatio-temporal graph cut frame-
work.

Given a video shot of F frames, we firstly compute a set
of segmentation results {Mi}i=1:N using N separate state-
of-the-art video segmentation algorithms. The description for
selection of the algorithms can be found in the Experiment
section. Every result Mi is represented by F binary masks
{Mi

t}t=1:F , whereMi
t indicates the segmentation result by

the i-th algorithm at frame t.

3.1. The Baseline Method

Our baseline method attempts to combine binary segmenta-
tion masks in each frame using majority voting. Given the
segmentation masks {Mi}i=1:N , we label the pixel p in each
frame t as foreground or background by:

M∗t (p) =

{
1 if 1

N

∑N
i=1Mi

t(p) > 0.5,

0 otherwise
(1)

Such a frame-independent method, although simple,
achieves surprisingly accurate segmentation results, since it
allows us to combine the strengths of various methods and
meanwhile avoids their weakness. However, the baseline is
limited in that 1) it cannot recover parts that are wrongly la-
belled by more than half of algorithms; 2) it estimates the la-
bel for each pixel individually without considering its spatial
and temporal relationship with neighboring pixels.

3.2. Proposed Approach

In this section, we present our main aggregation model for
video object segmentation. We address the limitations of the
baseline method from two aspects: 1) An appearance model is
trained by means of linear regression using information over
the whole video. It can capture object parts wrongly seg-
mented even by all the algorithms. 2) The initial estimation by
the baseline is refined by integrating the appearance cues with



a spatio-temporal graph cut framework, in which the segmen-
tation task is formulated as a pixel labelling problem. Notice
that pixelwise segmentation is prohibitively computation ex-
pensive. Therefore, we opt for performing segmentation at
the superpixel level.

Formally, given the superpixel set St at time t, in which
each superpixel sit ∈ St is associated with a label lit ∈ {0 :
background, 1 : foreground}, our goal is to find, for all super-
pixels in all frames, an optimal labelling L = {lit}t,i accord-
ing to the criterion:

L∗ = argmin
L

E(L) = argmin

{∑
t,i

Φg(l
i
t)+

∑
t,i

Φa(lit) +
∑

(i,j)∈Ew

Φw(lit, l
j
t ) +

∑
(i,j)∈Eb

Φb(l
i
t, l

j
t+1)

}
(2)

where the unary potentials Φg(l
i
t) and Φa(lit) are measures of

confidence for superpixel si belonging to an object accord-
ing to the baseline method and appearance cues, respectively,
while the pairwise potentials Φw(lit, l

j
t ) and Φb(l

i
t, l

j
t+1) re-

spectively penalize the assignment of different labels to spa-
tially or temporally similar neighboring superpixels.

3.2.1. Mask Aggregation Model Φg

The unary term Φg is calculated based on frame-level mask
aggregation, as previously discussed in the baseline method.
It defines the cost of assigning a superpixel as foreground ac-
cording to the votes by a set of algorithms. Formally, for each
superpixel sit at time t, the unary term Φg is as follows:

Φg(l
i
t) =

{
− log(φg(s

i
t)) if lit = 1,

− log(1− φg(sit)) if lit = 0
(3)

where φg(sit) =
∑
pi,jt ∈sit

M∗(pi,jt ) denotes the percentage

of pixels {pi,jt }j in sit that are voted by more than half of
algorithms.

3.2.2. Appearance Model Φa

Appearance model is used to refine the initial segments which
for complex objects are unlikely to be perfect. In each frame
t, we extract two feature vectors from foreground regionMi

t

and its surroundings, respectively. To obtain the surround-
ing region, we dilate the mask Mi

t using a flat disk-shaped
structuring element with radius R (R = 50 in our experi-
ments) to obtain a region that surely cover the entire object
as well as its surroundings, as shown in Fig. 2(b). For sim-
plicity, we use bag-of-words over RGB color features since
color is demonstrated more robust than shape or motion fea-
tures [19]. Given the features in all frames, we construct a

Fig. 2. (Best viewed in color) The illustration of our appear-
ance model. (a) Voted result of frame #18 in girl sequence in
Sec. 3.1. (b) Pixel set for the frame. Foreground pixels are
shown in red, while background ones are shown in yellow.
(c) The appearance prior computed by our appearance model.
Note that the appearance model captures the missed parts of
the target in the initial result, e.g., the right arm of the girl. (d)
The groundtruth.

few codewords, which are defined as centers of learnt clus-
ters. In our task, it is hard to determine a cluster number that
is suitable for all videos since they are often different in video
length and frame resolution. Therefore, in this work, we use
the Euclidean distance between features as a criterion to gen-
erate new centers. Given a feature, if its distances to all other
centers are above a threshold, we regard it as the center of
a new cluster; otherwise, the feature belongs to the existing
nearest cluster.

Let X = [X1|X2| . . . |Xn]T denote a n × d feature ma-
trix of a video where Xi is a 3-dimensional RGB color vector
and Y = [Y1|Y2| . . . |Yn]T be a binary indicator vector to in-
dicate foreground or background pixels (i.e., Yi = 1 means
Xi is a foreground pixel; Yi = 0 means Xi belongs to back-
ground). Given a k-word codebook C = {C1, C2, . . . , Ck},
we construct a n×k codebook histogram Z with each element
calculated as Zij = exp(−‖Xi−Cj‖

τ ), where τ is a constant.
Then, a regression weight matrix W is obtained by solving a
least-square problem:

min
W
‖ZW −Y‖2F + λ‖W‖2F (4)

where ‖ · ‖ is the Frobenius norm. The optimal solution is
given by the following system of linear equations:

(H + λI)W = U (5)



where H = ZTZ is the covariance matrix, and U = ZTY is
the correlation matrix.

For a pixel i with color feature Xi, we firstly compute a
codebook histogram Zi = [Zi1, Zi2, · · · , Zik] and thus the
probability of the pixel belonging to a target is equal to ZiW.
Then, the unary appearance term Φa(lit) is defined as:

Φa(lit) =

{
− log(φa(sit)) if lit = 1,

− log(1− φa(sit)) if lit = 0
(6)

where Φa(sit) is the sum of priors of all pixels in superpixel
sit. Note that one can actually learn an appearance model
for each algorithm and use them to vote the final appearance
prior. However, we find that this does little help for perfor-
mance improvement. Thus, we only train one single model
based on the initial estimation in Sec. 3.1.

3.2.3. Pairwise Terms Φw and Φb

The spatial and temporal smoothness terms encourage neigh-
bouring superpixels with similar appearance to have the same
label. In this work, we define these two energy terms follow-
ing the conventional definitions in [7]. We refer readers to the
corresponding paper for more details.

4. EXPERIMENTAL EVALUATION

In this section, we evaluate our video object segmentation
method on the standard SegTrack dataset [1], which consists
of 6 challenging videos (birdfall, cheetah, girl, monkeydog,
parachute and penguin). All the videos are provided with
pixel-level human annotated groundtruth for the primary fore-
ground objects. We follow the setup in the literature [2] and
use the first 5 videos for evaluation since the groundtruth for
the penguin sequence is not usable.

4.1. Selection of Methods

Notice that the performance of basic algorithms used in our
framework is significant for our method. Generally, if all the
basic algorithms perform well in a sequence, we will also
achieve good result. However, in many cases, the groundtruth
is not available for some sequences, and hence it will be diffi-
cult to measure the performance of an algorithm. Therefore,
we selected the state-of-the-art video object segmentation al-
gorithms only according to the availability of public code.
Moreover, we aimed to cover a large set of different working
regimes: 1) one pixelwise method: [12], 2) two superpixel-
based methods: [7] and [9], 3) two objectness-based methods:
[2] and [6], 4) other method: [8].

Besides the selected methods, we also compare to other
several approaches [1], [5], [11], [10], and our baseline
method, as shown in Tab. 1.

Fig. 3. Overlap plots for the SegTrack dataset. The methods
are ranked using area under curve of each plot.

4.2. Experimental Results

We use two metrics for quantitative analysis of the above
methods. The first one is the average per-frame pixel error
rate in comparison with groundtruth:

err =
xor(R,GT)

F
(7)

where R indicates the segmentation results of a video, and GT
is the groundtruth of the video.

Furthermore, we introduce overlap plot to evaluate the
overall performance of each method. The intersection-over-
union overlap metric is used in [5] to overcome misleading of
the first metric. However, we note that the metric still can-
not measure the overall performance. Thus, in this paper, we
count the number of successful frames whose overlaps are
above a threshold T . The overlap plot shows the ratios of
successful frames at the thresholds varied from 0 to 1. Using
one success rate value at a specified threshold (T = 0.5) may
not be fair. Instead, we use the area under curve (AUC) of
each overlap plot to rank the segmentation methods.

As can be seen from Tab. 1, we achieve comparable re-
sults using majority voting in our baseline method. Note that
the baseline method is insensitive to the results of a single
method. For example, although [12] performs poorly on most
video sequences, our method is not affected by this approach
and still produces satisfactory results. However, we also no-
tice that on average, the baseline method still performs worse
than the methods [8] and [10]. After refinement, we achieve
great performance improvement on all sequences in compari-
son with the baseline. In particular, in three sequences (bird-
fall, cheetah and parachute), our method achieves the best
segmentation performance in comparison with the state-of-
the-art approaches.

Furthermore, we evaluate the overall performance of the
methods, as illustrated in Fig. 3. The score for each method



Table 1. Results on the SegTrack dataset. We measure the average per-frame pixel error for each sequence. When compared
with the state-of-the-art, our scheme outperforms all existing video object segmentation methods in terms of the average pixel
error over the whole database.

birdfall cheetah girl monkeydog parachute average
Trajectory-based [12] 217 890 3859 284 855 868
SegTrack v1 [1] 252 1142 1304 563 235 594
KeySeg [2] 288 905 1785 521 201 592
FastSeg [7] 189 806 1698 472 221 542
DAGSeg [6] 155 633 1488 365 220 452
SegTrack v2 [5] 242 1156 1573 483 328 618
SeamSeg [8] 186 535 761 358 249 372
SaliencySeg [11] 209 796 1040 562 207 503
JOTSeg [9] 163 806 1904 342 275 528
SuperpixelSeg [10] 278 824 1029 192 251 397
Baseline 173 535 1408 316 215 414
Ours 153 458 1105 264 180 342

is calculated according to the area under curve of the corre-
sponding overlap plot. We can clearly see that our method
largely boosts the segmentation performance. Note that the
rankings of some methods in Tab. 1 and Fig. 3 are slightly
different. For instance, [8] is better in Tab. 1 than our base-
line, while in Fig. 3 is worse. The reason for this lies in that in
Tab. 1 we directly use the results of other methods (e.g., [8])
presented in corresponding papers, while in Fig. 3 we re-ran
their results using the authors’ codes for overlap plots. The re-
sults we obtained are slightly different from those presented
in the papers.

Fig. 4 illustrates the exemplar frames for the 5 video shots.
We can clearly see that the proposed algorithm can accurately
delineate the objects in most frames. In birdfall sequence,
even though the bird is very small, our algorithm can local-
ize the object and segment it with accurate boundaries. In
cheetah, girl and monkeydog, we are able to obtain accurate
boundaries of objects that are under large deformation. Al-
though the results are slightly inaccurate due to motion blur
and background clutter in frame #17 and #21 of girl sequence,
our results are still satisfactory. In parachute, the target un-
dergoes great illumination changes during falling down. Our
method is insensitive to these changes and outperforms all
other algorithms on this sequence.

5. CONCLUSION

This paper introduced a novel aggregation scheme for the
challenging task of video object segmentation. In this
scheme, an initial estimation is firstly computed according to
a per-frame aggregation procedure using majority voting; a
long-term holistic appearance model is then trained with lin-
ear regressor to refine the initial results; and the graph model
encourages smoothness between superpixels that are spatio-

temporally adjacent and similar in appearance. Both quan-
titative and qualitative results demonstrate that our method
outperforms the state-of-the-art.
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