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ABSTRACT

In real-word visual applications, distribution mismatch be-
tween samples from different domains may significantly de-
grade classification performance. To improve the generaliza-
tion capability of classifier across domains, domain adapta-
tion has attracted a lot of interest in computer vision. This
work focuses on unsupervised domain adaptation which is
still challenging because no labels are available in the target
domain. Most of the attention has been dedicated to seek-
ing domain-invariant feature by exploring the shared structure
between domains, ignoring the valuable discriminative infor-
mation contained in the labeled source data. In this paper, we
propose a Dictionary Evolution (DE) approach to construc-
t discriminative features robust to domain shift. Specifically,
DE aims to adapt a discriminative dictionary learnt based on
labeled source samples to unlabeled target samples through a
gradual transition process. We show that the learnt dictionary
is endowed with cross-domain data representation ability and
powerful discriminant capability. Empirical results on real
world data sets demonstrate the advantages of the proposed
approach over competing methods.

Index Terms— Unsupervised domain adaptation, dictio-
nary learning, knowledge transfer

1. INTRODUCTION

In machine learning based visual systems, a classifier is learnt
from a source domain and applied to a target domain. Recent
works [1] show that the classification performance would be
dramatically degraded when distribution mismatch between
the source and target domains occurs. This problem, known
as domain shift, always happens in real world visual applica-
tions, e.g. training and test faces in a face recognition task are
captured by different lighting conditions and viewing angles.
To address domain shift, domain adaptation approaches are
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developed to transfer knowledge between domains by making
their data distributions consistent. Domain adaptation has be-
come an increasingly important technique in domain shift re-
lated visual learning for its promising results in cross-domain
object classification [2, 3, 4], object detection [5], video-event
detection [6] and face recognition [7].

Domain adaptation assumes that the samples of source
and target domains are drawn from a common observation
space, while domain shift is caused by the distribution di-
vergence of samples. The main task of domain adaptation
is to alleviate the distribution divergence so that the classifier
trained based on source samples remains effective for target
samples. Two typical approaches of domain adaptation are
feature adaptation and classifier adaptation. In feature level,
the samples from both domains are represented in a shared
feature space where they obey a similar distribution. Then a
classifier such as SVM or logistic regression is learnt using
labeled samples with expectable generalization performance.
The feature space could be obtained by feature transformation
[8, 9], feature argumentation [10, 11], or sparse decomposi-
tion with a given dictionary [12, 7]. In classification level, do-
main adaptation is achieved by designing an objective func-
tion for typical classifiers such as SVM [6], multiple kernel
learning [13] to reduce the distribution mismatch. A resen-
t work [14] tries to tackle domain shift by jointly learning
domain-invariant feature and classification model.

Domain adaptation also assumes that there are plenty of
labeled samples in source domain, and few or no labeled
samples in the target domain. According to the availabili-
ty of labeled samples in the target domain, domain adapta-
tion approaches fall into two categories:semi-supervised do-
main adaptation and unsupervised domain adaptation. Semi-
supervised domain adaptation usually constructs learning
model using the priori information from the class labels of
the source and target samples [11], or the pairwise similarity
between them [3, 4]. As no class label nor similarity infor-
mation of the source and target samples is available, unsuper-
vised domain adaptation often exploits the underlying geom-
etry structure [15, 16] or the intrinsic probability distribution



of data across domains to bridge the gap of domains [9, 17].
In this paper, we focus on the issue of unsupervised visual
domain adaptation, which is more common in real world ap-
plications and relatively more challenging as well.

As the association between domains is hard to build with-
out any labeled target samples, how to learn sample repre-
sentation capturing the shared characteristics of domains is
crucial to unsupervised domain adaptation. In this context,
dictionary learning and sparse representation approaches have
attract a lot of interest. Recent studies include [12], which
proposed to interpolate a serial of dictionaries to character-
ize the intermediate domains between the source and target,
and [18], which proposed to learn a shared dictionary to re-
duce the mismatch of data distribution and preserve geometry
structure of data. Although these new methods have shown to
be better than the state of the art, there remains a common is-
sue that limit their performances: the discriminative ability of
the desired dictionary are largely ignored. So it is desirable to
explore the discriminant information from the source domain
to facilitate domain adaptation. We claim that a shared dictio-
nary joining discriminative power with representative ability
is more conductive to cross-domain visual recognition.

We propose a novel Dictionary Evolution (DE) approach
in this paper to achieve cross domain discriminant informa-
tion transfer. Specifically, our contributions include: (1)
we develop a gradual dictionary iteration process in which
a dictionary specific to the source domain evolves into a
shared dictionary with both representation and discrimina-
tive power; (2) based on the shared dictionary, we develop
a domain-invariant discriminative feature extraction scheme;
(3) Through extensive experiments, we demonstrate our DE
approach can be widely applied to cross domain object clas-
sification, cross dataset digit recognition, face recognition
across pose, and report the improved performance of DE over
existing methods for unsupervised visual domain adaptation.

2. CROSS-DOMAIN DICTIONARY EVOLUTION

2.1. Problem Statement

According to [19], a domain D is defined by a feature space
Y and a marginal probability distribution P (·), i.e. D =
{Y, P (y)}, where y ∈ Y . A task T associated with a spe-
cific domain D is defined by a label space L and a prediction
function f(·), i.e. T = {L, f(y)}, where f : Y 7→ L. In the
context above, traditional learning problem is stated as the es-
timation of function f(y) merely using training sample pairs
{(yi, li)} ∈ Y × L.

Domain adaptation considers two domains Ds (referred
as source) and Dt (referred as target) with the relations:
Ys = Yt, Ls = Lt, Ps(ys) 6= Pt(yt), and fs(ys) 6= ft(yt).
The goal is to estimate the target predictive function ft(·) for
target samples {yti}nti=1 with the aid of source sample pairs
{(ysi , lsi)}nsi=1.

In this paper, we try to find a domain-invariant feature
space in which distribution matching and classifier compati-
bility between domains are achieved. Specifically, our goal is
to learn a shared dictionary for domains leading to a discrimi-
native representation of samples satisfying Ps(·) = Pt(·) and
fs(·) ≈ ft(·).

2.2. The Learning Model

Our main idea is to adapt increasingly a discriminative dic-
tionary D0, learnt based on source samples, to target samples
through a dictionary evolution process. During the evolution
process, the dictionary is required to enhance the power of
data representation for samples and retain discriminative ca-
pability. Let Ys and Yt be source and target sample sets re-
spectively. At the k-step of dictionary evolution process, dic-
tionary Dk is required to provide sparse coding Xs and Xt

for source and target domains with low reconstruction error
and strong discriminative capability. To this end, we propose
the following learning model

arg min
(Dk,Xs,Xt)

Ft(Dk, Xt) + λFs(Dk, Xs) (1)

The first term controls the effectiveness of Dk to represen-
t target samples by sparse coding. The second term is the
loss of discriminative information during evolution process.
λ control the tradeoff between cross-domain representation
and discriminative capability of the learnt dictionary. Below,
we discuss the design of objective functions Ft(Dk, xt) and
Fs(Dk, Xs) used in each evolution step. To facilitate the nar-
rative, we abbreviate Ft(Dk, Xt) as F k

t , Fs(Dk, Xs) as F k
s ,

and define F k = F k
t + λF k

s throughout the rest of the paper.

2.3. Target Domain Oriented Objective

The initial dictionary D0 is learnt to represent source data,
while it can barely represent target data due to distribution di-
vergency between domains. To address this issue, we propose
to amend the dictionary gradually by Dnew = Dold + ∆D
so that lower reconstruction error to Yt could be obtained
by Dnew and the corresponding sparse coding. In particu-
lar, at the kth step of dictionary evolution, we aim to search
the change in dictionary ∆Dk by minimizing

F k
t = ‖Yt − (Dk−1 + ∆Dk)Xk

t ‖2F + αt

nt∑
i=1

‖xkti‖1 (2)

where Xk
t = [xkt1 , . . . , x

k
tnt

] is the sparse coding of target
samples based on dictionary Dk, and αt controls the sparsity
degree of xti .

2.4. Source Domain Oriented Objective

For multiclass discrimination, the dictionary in evolution
should meet two conditions. First, it’s able to provide sparse



representation to optimally reconstruct the source data so that
the dictionary is robust to domain shift. Second, it can pro-
duce similar sparse representations of source data as those
produced by D0 so that the original discriminative informa-
tion can be preserved. To this end, we propose the objective
function Fs as

F k
s =


‖Ys − (Dk−1 + ∆Dk)Xk

s ‖2F +

αs

ns∑
i=1

‖xksi‖1 + β‖Xk
s −X0

s‖2F

 (3)

where Xk
s = [xks1

, . . . , xksns
] is the sparse coding of source

samples based on dictionary Dk, and αs controls the sparsi-
ty degree of xsi , and β controls the weight of discriminative
information presevation.

The basic principle of the last term in (3) is that the simi-
larity between dictionaries can be transformed as the similar-
ity between the corresponding sparse representations. Thus,
the last term means that the sparse representation based on
Dk is discriminative, which indicates the discriminativeness
of the atoms in Dk.

2.5. Optimization Algorithm

By incorporating Eqs.(2) and (3) into Eq.(1), we have the fol-
lowing DDE model:

arg min
(∆Dk,Xk

s ,Xk
t )


‖Rk−1

t −∆DkX
k
t ‖2F + αt‖Xk

t ‖1+

λ
(
‖Rk−1

t −∆DkX
k
s ‖2F +

αs‖Xk
s ‖1 + β‖Xk

s −X0
s‖2F

)
 (4)

where Rk−1
t = Yt − Dk−1X

k
t and Rk−1

s = Ys − Dk−1X
k
s

are reconstruction residues based on Dk−1; ‖Xk
t ‖1 =∑nt

i=1 ‖xkti‖1 and ‖Xk
s ‖1 =

∑ns
i=1 ‖xksi‖1 denote the sum of

l1-norm of sparse codings.
The objective function in Eq.(4) is not convex forDk, Xk

s

and Xk
t simultaneously, but fortunately it is convex to one of

them when the other two are fixed. We search the optimal
Dk, Xk

s andXk
t iteratively by using the following three-stage

update process.
Learning Dk with fixed Xk

s and Xk
t By fixing Xk

s and
Xk

t , Eq.(4) can be rewritten as

arg min
∆Dk

‖Rk−1
t −∆DkX

k
t ‖2F + λ‖Rk−1

t −∆DkX
k
s ‖2F (5)

Eq.(5) is a least square problem whose optimal solution is
given by

∆D∗k =

(Rk−1
t (Xk

t )T + λRk−1
s (Xk

s )T )(Xk
t (Xk

t )T + λXk
s (Xk

s )T )−1

(6)
Learning Xk

t with fixed Dk and Xk
s By fixing Dk and

Xk
s , Eq.(4) can be rewritten as

arg min
Xk

t

‖Rk−1
t −∆DkX

k
t ‖2F + αt‖Xk

t ‖1 (7)

Eq.(7) is a typical sparse coding problem. Here we follow the
work of[20] to obtain the optimal Xk

t by using a variant ver-
sion of the Iterative Projection Method(IPM). The derivative
of the objective term ‖Rk−1

t −∆DkX
k
t ‖2F w.r.t Xk

t is given
by

∇Xk
t

= 2(DT
kDkX

k
t −DT

k Y
k
t ) (8)

Learning Xk
s with fixed Dk and Xk

t When Dk and Xk
t

are fixed, Eq.(4) can be rewritten as

arg min
Xk

s

‖Rk−1
s −∆DkX

k
s ‖2F + αs‖Xk

s ‖1 + β‖Xk
s −X0

s‖2F

(9)
Eq.(9) is also a sparse coding problem that can be solved
by the IPM. The derivative of the objective term ‖Rk−1

s −
∆DkX

k
s ‖2F + β‖Xk

s −X0
s‖2F w.r.t Xk

s is given by

∇Xk
s

= 2(DT
kDkX

k
s −DT

k Y
k
s + β(Xk

s −X0
s )) (10)

The above three alternative optimizations are convex, so
we can obtain the optimal solutions of Eq.(4) until the itera-
tion is convergent. The algorithm of dictionary evolution is
summarized in Algorithm 1.

Algorithm 1 Dictionary Evolution
Require: source samples Xs, target samples Xt, initial dic-

tionary D0, tradeoff parameter λ, sparse coding parameter
αs and αt, regularization parameter β.

Ensure: dictionary Dk, sparse representations Xk
s , and Xk

t

X0
s ←− by sparse decomposition for Xs with D0

X0
t ←− by sparse decomposition for Xt with D0

for all k ≥ 1 such that F k ≤ F k−1 do
Xk

s ←− Xk−1
s , Xk

t ←− Xk−1
t

while not convergent do
Dk ←− by Eq.(6);
Xk

t ←− by solving sparse coding problem Eq.(7);
Xk

s ←− by solving sparse coding problem Eq.(9);
end while;

end for;
return Dk, Xk

s , and Xk
t .

2.6. Classification Scheme

To use Dk for visual classification, we propose the following
scheme including four steps:

Step 1 Reconstruct the source and target samples by Ỹs =
DkX

k
s and Ỹt = DkX

k
t respectively, then form a train-

ing set Ỹtrain = [Ỹs, Ỹt]

Step 2 Perform PCA on Ỹtrain to learn a linear projection
P by preserving %98 variance energy of training sam-
ples1.

1Any other dimension reduction method can be chosen for this step.



Step 3 For a test target sample, ytest, compute its sparse rep-
resentation withDK then reconstruct it as ỹtest. Project
ỹtest onto the subspace spanning by P to get the corre-
sponding feature.

Step 4 A classifier trained from the source features is applied
to classify the test sample2.

3. EXPERIMENTAL RESULTS

3.1. Datasets and Experimental settings

We conduct experiments on Office+Caltech, USPS+MNIST
and PIE(refer to Figure1) which are benchmark datasets wide-
ly adopted to evaluate visual domain adaptation algorithms.

Amazon Caltech DSLR Webcam

MNIST USPS PIE(−F,−U,−D, −L,−R)

Fig. 1. Examples of Office+Caltech, USPS+MNIST and PIE

Office+Caltech We adopt the public Office+Caltech dataset-
s released by [2] consisting of 2533 images from the 10 ob-
ject classes common to all four datasets, in which the images
is represented by SURF descriptors quantized into histograms
of 800 bag-of-visual words and standardized by z-score nor-
malization. For the four domains, C (Caltech-256), A (A-
mazon), W (Webcam), and D (DSLR), all the 12 possible
source-target domain pairs are considered. We use the data
splits suggested by [12].
USPS+MNIST USPS [21] consists of 7, 291 training im-
ages and 2, 007 test images of size16 × 16. MNIST [22] has
a training set of 60, 000 examples and a test set of 10, 000 ex-
amples of size 28 × 28. They share 10 classes of digits. To
speed up experiments, we construct one dataset USPS vs M-
NIST by randomly sampling 1, 800 images in USPS to form
the source data, and randomly sampling 2, 000 images in M-
NIST to form the target data. We switch source/target pair to
get another dataset MNIST vs USPS. We uniformly rescale
all images to size 16×16, and represent each one by a feature
vector encoding the gray-scale pixel values.
PIE CMU-PIE dataset [23] has 68 individuals with face im-
ages captured by different poses and different illuminations
and/or expressions.In these experiments,we adopt five subset-
s of PIE, each corresponding to a different pose. Specifically,
we choose PIE-F (C27, frontal pose) as the source domain,
PIE-L (C05, left pose), PIE-U (C07, upward pose), PIE-D

2The feature is expected to be compact, discriminative and robust to do-
main shift, which benefits from the shared dictionary.

(C09, downward pose) and PIE-R (C29, right pose) as the
target domains. In each domain (pose), 15 images of each in-
dividual are randomly sampled. In this way, the source and
target data are constructed using face images from different
poses, thus will follow significantly different distributions. To
shorten experiment time, the images are resized to 16× 16.

3.2. Comparison Methods

The proposed DE approach is compared with two baseline
methods and four state-of-the-art (related) methods for un-
supervised domain adaptation: Fisher Discriminative Dictio-
nary Learning (FDDL) [20],Geodesic Flow Kernel (GFK)
[2], Subspace Alignment (SA) [24],Subspace Interpolation
via Dictionary Learning (SIDL) [12], Transfer Sparse Cod-
ing (TSC) [18].

In particular, SIDL and TSC are two dictionary learning
based feature adaptation method that aim to achieve robust-
ness of sparse coding with a shared dictionary. In our experi-
ments, the initial dictionary of SIDL is provided by perform-
ing K-SVD(referred as SIDL1) or FDDL(refereed as SIDL2)
in the source domain.

For classification, a SVM with Gaussian kernel is used
with all the methods but FDDL, which is developed with
a specific classification scheme [20]. The width parameter
of Gaussian kernel is determined by method [25], and the
C parameter of SVM is tuned by 5-fold cross-validation on
the source over the range {0.001, 0.01, 0.1, 1, 10, 100, 1000}.
Our DE method has four main parameters (λ, αs, αt, β)
that are also chosen by 5-fold cross validation on the source.
Note that as the target data are unlabeled, it is only fea-
sible to tune the parameters on the source. In particu-
lar, the parameter λ was tuned in {0.1, 0.2, . . . , 1}, β in
{10, 20, . . . , 90, 100, 200, . . . , 1000}. The sparse parameter
αs and αt are tuned in 0.05 and 0.1 respectively according to
the offered initial dictionary D0.

3.3. Experimental Results

Table1 shows a comparison of the recognition accuracies of
different methods on 18 source-target domain pairs. The pro-
posed DE algorithm outperforms the considered methods in
13 pairs out of 18 and gains performance improvements in
average accuracy of 1.64%, 1.19%, and 1.79% compared to
the best method for comparison on the three datasets respec-
tively. The results demonstrate that DE is effective to adapt a
discriminative dictionary from the source domain to the tar-
get domain, thereby producing domain-invariant feature with
discriminative power.

We observe that DE significantly outperforms TSC and
SIDL, which are two state-of-the-art sparse coding based un-
supervised domain adaptation methods. Instead of only lay-
ing emphasis on the representation ability of dictionary as
TSC and SIDL do, DE pay additional attention to discrimina-
tory information transfer between different domains, which



Table 1. Accuracy(%) on cross-domain visual datasets(bold
numbers indicate the best results).

Dataset FDDL GFK SA SIDL1 SIDL2 TSC DE
A→ C 33.10 40.49 39.49 40.20 39.78 36.79 40.94
A→ D 32.90 35.10 35.61 37.23 36.78 31.75 36.62
A→W 32.14 39.73 38.20 38.64 38.98 37.20 38.66
C→ A 33.03 40.92 38.27 37.49 38.88 40.26 41.11
C→ D 33.85 38.95 37.99 38.34 37.90 34.14 39.49
C→W 28.78 33.92 31.49 34.29 33.22 30.53 36.22
D→ A 31.47 37.20 34.71 39.03 37.68 35.94 40.66
D→ C 29.46 33.34 34.46 34.16 33.54 33.68 34.38
D→W 74.37 74.17 68.00 77.39 73.64 79.54 79.05
W→ A 32.24 36.26 36.30 34.82 37.16 37.28 37.41
W→ C 27.56 30.53 31.06 29.02 30.83 32.63 31.21
W→ D 69.39 69.11 57.32 69.55 66.53 71.21 74.11
Average 38.19 42.48 40.24 42.51 42.08 41.75 44.16
M→ U 59.39 23.89 51.44 53.72 52.22 61.56 62.28
U→M 47.00 31.25 46.40 39.65 32.55 52.50 54.15
Average 53.20 27.57 48.92 46.69 42.39 57.03 58.22
P:F→ U 69.41 64.71 66.08 68.53 66.57 68.33 71.18
P:F→ D 69.12 70.59 71.57 74.80 69.22 70.88 72.45
P:F→ L 50.20 43.04 45.98 49.12 47.94 53.43 55.00
P:F→ R 38.53 40.29 42.25 42.45 41.18 42.75 43.92
Average 56.82 54.66 56.47 58.73 56.23 58.85 60.64

is more favorable to visual recognition. We also notice that
SIDL2 underperforms SIDL1 in general, outperforms FDDL
just on 1 out of 3 datasets. This indicates that the dictionary
interpolation principle of SIDL helps to transfer the represen-
tation capability of a dictionary to new domains, but can not
guarantee the transfer of discriminative ability of dictionary.
This meanwhile indirectly verifies the effectiveness of the dis-
criminant analysis in our dictionary learning model.

3.4. Empirical analysis of algorithm property

We conducted experiments for parameter sensitivity and con-
vergence property analysis of the DE algorithm. Figure 2
shows the results on W→ D, U→M and P:F→ L, while sim-
ilar trends on all other datasets are omitted due to space limi-
tation. The implications are briefly discussed below

1. Parameter λ: Theoretically, λ controls the weight of
discriminative item in the objective of DE. Larger val-
ues of λ will produce obstructs to dictionary evolution
causing the lack of cross-domain robust, while small-
er values of λ may cause trouble for matrix invers-
ing in formular(6). We plot the classification accura-
cy w.r.t. different values of λ in Figure2(a), and can
choose λ ∈ {0.1, 0.2, . . . , 1}.

2. Parameter β: Intuitively, smaller values of β will
lead to deficiency of discriminative power of dictio-
nary atoms, while with larger values of β, DE tends
to left the evolved dictionary keep the same as the ini-
tialization dictionary. We plot classification accuracy
w.r.t. different values of β in Figure2(b), and choose
β ∈ {10, 20, . . . , 100, 200, . . . , 1000].

3. Convergence: We also empirically check the conver-
gence property of DE. Figure2(c) shows that the ob-
jective function value associated with the intermedi-
ate dictionary during evolution decreases steadily. We
observe that dictionary evolution can reach the bal-
ance between cross-domain representation and discrim-
inaiveness shortly after several iterations. After that the
objective function value increases, which terminates
dictionary evolution due to the terminating condition
of DE, so the optimal dictionary being in equilibrium
is obtained. Note that because there are differences
in magnitude of objective function value on the three
datasets, we normalize them according to the maximum
objective function value on each dataset.

4. CONCLUSION

Pervious unsupervised domain adaptation methods based on
sparse coding and dictionary learning exclusively focus on the
cross-domain representation ability of dictionary. We argue
that the discriminativeness of sparse representation is impor-
tant to cross-domain feature adaptation, and present a novel
Dictionary Evolution (DE) approach to learn a shared dictio-
nary between different domains with discriminative capabili-
ty. Specifically, the evolution direction of DE is controlled by
both the cross-domain representational ability and discrimi-
native power. Extensive experimental results on the object,
digit and face recognition databases have shown that, by tak-
ing advantage of dictionary learning with discrimination in-
formation transfer, DE outperforms other competing methods
for unsupervised visual domain adaptation.
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