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ABSTRACT

Predicting interestingness of media content remains an impor-
tant, but challenging research subject. The difficulty comes
first from the fact that, besides being a high-level semantic
concept, interestingness is highly subjective and its global
definition has not been agreed yet. This paper presents the use
of up-to-date deep learning techniques for solving the task.
We perform experiments with both social-driven (i.e., Flickr
videos) and content-driven (i.e., videos from the MediaEval
2016 interestingness task) datasets. To account for the tem-
poral aspect and multimodality of videos, we tested various
deep neural network (DNN) architectures, including a new
combination of several recurrent neural networks (RNNs), to
handle several temporal samples at the same time. We then
investigated different strategies for dealing with unbalanced
datasets. Multimodality, as the mid-level fusion of audio and
visual information, brought benefit to the task. We also estab-
lished that social interestingness differs from content interest-
ingness.

Index Terms— Video interestingness prediction, social
interestingness, content interestingness, multimodal fusion,
deep neural network (DNN), MediaEval 2016.

1. INTRODUCTION

In our fast moving world, the amount of shared data such as
images and videos is growing exponentially. Thus the abil-
ity to understand such content so as to select the relevant
ones plays a key role in e.g., information retrieval and rec-
ommendation systems. Different concepts may intervene in
the understanding of content. While the lower level concepts,
such as visual saliency and aesthetics, have been studied for
a long time [1, 2], some recent research targets higher level
(and potentially less well-defined) concepts such as emo-
tion, popularity and interestingness [3, 4, 5, 6]. Focusing
solely on interestingness, this paper proposes computational
models for video interestingness prediction. Note that while
image interestingness has been widely studied in the litera-
ture [7, 8, 9, 10, 11, 12], video interestingness has been much

∗The author performed the work while working at Technicolor.

less investigated with, to our knowledge, only two publica-
tions providing benchmark datasets [13, 6].

Predicting media interestingness has several potential ap-
plications in, e.g., education, advertising, selective encoding
or content management. As interestingness is highly subjec-
tive, media sharing websites such as Flickr and Pinterest ex-
tract interestingness of their content, to which we refer as so-
cial interestingness in the following, based on social-driven
criteria such as the number of views, tags, comments, user
reputations and viewer’s profiles1. In line with this defini-
tion, Liu et al. [11] proposed to estimate the interestingness
of images based on viewer data and investigated the impact
of viewer’s profiles. Rajani et al. performed research in pre-
dicting interestingness of fashion products for online shop-
ping, where they assumed that all pins related to fashion on
Pinterest are interesting [10]. Chu et al. investigated the ef-
fect of familiarity in the perceived interestingness of images
in [8]. Readers are referred to [9] for a review of existing
work in predicting social image interestingness. Moving to-
ward video, Liu et al. [7] used web photos such as Flickr im-
ages as an indicator to measure the interestingness of frames
in travel videos, with the assumption that video frames are
interesting if they are found similar to some Flickr photos.
Jiang et al. presented a pioneer work on video interestingness
where a first video benchmark dataset and its annotation are
also collected from Flickr interestingness API. In this work,
they investigated the use of different hand-crafted features,
and used support vector machines as classification technique.

Another axis of research uses direct human annotation of
content where users are asked to freely judge the interesting-
ness of images [14, 15, 6], image sequences [16], or videos
[13, 6] based on their own opinion. We refer to this as con-
tent interestingness since the annotation is purely based on
the perceived content itself. In line with this definition, a
first benchmark on Predicting Media Interestingness was re-
cently proposed in the MediaEval 2016 campaign2. The task
which is described in details in [6], has raised a huge interest
in the research community, confirming the need for under-
standing the perceptual characteristics of multimedia content.

1https://www.flickr.com/explore/interesting/
2http://www.multimediaeval.org/mediaeval2016/
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The task targets content interestingness of both images and
videos, thanks to two separated subtasks, defined in the con-
text of a real use case scenario: the illustration of a Video-
On-Demand web site by movie excerpts, so that it helps a
user decide whether he/she is interested in watching a given
content.

This paper states several contributions to the emerging
task of predicting video interestingness. First we propose sev-
eral efficient computational models based on up-to-date DNN
architectures, and describe techniques for dealing with unbal-
anced datasets while training such models. We confirm the
benefit of multimodal-based systems, as the mid-level fusion
of audio and visual features, to the task. We also bring some
insights in the study of the two concepts: social driven in-
terestingness and content driven interestingness, and on how
their prediction differs.

The rest of the paper is organized as follows. In Section 2
we present the proposed computational models for video in-
terestingness prediction as well as the considered techniques
used for dealing with unbalanced data. Experiment results on
two datasets are summarized in Section 3. We discuss the
proposed systems and their results in Section 4, and finally
conclude in Section 5.

2. PROPOSED COMPUTATIONAL MODELS
The general workflow for our multimodal interestingness pre-
diction system (see Fig. 1) consists of several major steps: au-
dio modality learning, visual modality learning, multimodal
fusion and joint-feature learning, followed by a classification
layer with voting for the final predicted label. Each process-
ing block is described in details in the following subsections.
Note that for comparison with monomodal approaches, the
considered workflows for visual-based and audio-based sys-
tems are presented with blue dash lines and green dash-dot
lines, respectively in Fig. 1.

2.1. Low-level visual and audio features
For the visual modality, we use the well-known convolution
neural network (CNN) feature extracted from the CaffeNet
model 3, a variant of AlexNet [17]. In this pre-trained CNN
model, the coefficients of the last dense layer (fc7) before the
softmax are chosen, yielding a feature of size 4096. In or-
der to fit the input size of CaffeNet (i.e., 227 × 227), the
video frames are first re-scaled so that their smaller dimension
is 227, then center-cropped. Additionally, their mean values
are subtracted as an input normalization to meet the protocol
upon which the model was trained.

For the audio modality, we extract a vector of 60 Mel-
frequency cepstral coefficients (MFCC) [18], together with
its first and second derivatives over a window size of 80ms,
as the feature for each audio frame. The resulting audio fea-
ture size is therefore 180. The mean values over the whole

3https://github.com/BVLC/caffe/wiki/Model-Zoo#caffenet-fine-tuned-
for-oxford-flowers-dataset

video are calculated and subtracted from each MFCC feature
vector in order to perform input normalization. Note that, to
synchronize audio and visual representations, the overlapping
windows for the short-term Fourier transform of the audio sig-
nal are centered around each frame of the video, resulting in
the same number of audio and visual feature vectors.

2.2. Temporally-motivated feature learning and multi-
modal fusion
As temporal evolution is an important property of a video
signal, for the two steps of higher-level monomodal fea-
ture learning, we exploit the long-short term memory
(LSTM) [19] architecture, which is well-known for the mod-
eling of long-term dependencies. We expect that LSTM lay-
ers will learn a representation that accounts for the temporal
evolution encoded in the low-level frame-based feature vec-
tors (i.e., CNN and MFCC). Besides, motivated by the effec-
tiveness of the recently proposed residual network (ResNet)
for training very deep CNNs [20], we exploit this architecture
for LSTM layers so as to learn the residual functions with
reference to the LSTM layer inputs. To our knowledge, this
is the first work to use the ResNet blocks with LSTM layers
for a video. Besides, we incorporate a multilayer perceptron
(MLP) layer at the beginning of the visual block to reduce the
visual feature size to the same order as the audio feature size
for balancing the two modalities. Note that in the implemen-
tation, we have used different parameter settings (layer types,
layer input/output sizes, dropout, activation functions, etc.,)
for both the visual and audio modalities.

After this monomodal higher-level feature modeling, both
modalities are simply concatened, in the multimodal fusion
step, to form a multimodal feature representation.

2.3. Multimodal feature learning
From the separated learning of modal-specific features, we
expect to jointly build a higher-level representation from the
two modalities. We investigate two DNN architectures for
this purpose as it will be described in Sections 2.3.1 and 2.3.2.

2.3.1. (LSTM/Resnet)-based architecture
To account for the temporal correlation of the derived multi-
modal feature vectors, LSTM is again a natural choice at this
step. Like what is proposed for the monomodal branches in
Section 2.2, we couple LSTM with the ResNet architecture
so as to potentially avoid overfitting during training. Again in
the implementation, several parameter settings and network
architectures have been explored.

2.3.2. Proposed n-RNN-based architecture
In addition to the previous up-to-date architectures, we pro-
pose another architecture exploiting several recurrent neural
network (RNN) nodes altogether in order to attempt for a bet-
ter temporal modeling. These n RNN nodes share the same
weights W,U, V , which are learned during training. At each
time instance t, this architecture takes into account n input



Fig. 1: Proposed computational models for video interestingness prediction. Black arrows represent the workflow for our
multimodal approach, whereas blue dash lines and green dash-dot lines represent monomodal workflows for visual-based and
audio-based systems, respectively.

samples xi,t (i = 1, ..., n) together with n internal states si,t
to produce the corresponding n internal outputs yi,t as in the
following:

xi,t = xt−n+i (1)
si,t = f(Wxi,t + Usi,t−1) (2)
yi,t = g(V si,t), (3)

where f, g are the non-linear activation functions. Then
the internal outputs yi,t are fed into a time-delayed neural
network (TDNN) [21] to produce the final temporal output
ỹt. The unfolding of the proposed architecture is compared to
the traditional RNN in Fig. 2. By taking into account multiple
successive samples simultaneously, the proposed architecture
would potentially better grasp the idea of time moment in the
video where the learned output ỹt could represent a higher
level of abstraction instead of trying to memorize every de-
tail. Note also that we use TDNN instead of a simple pooling
strategy, with the hope that the best combination of the in-
ternal outputs yi,t can be smartly learned during the training.
Also the training of TDNN is actually much faster as com-
pared to other DNN architectures such as MLP.

Fig. 2: Comparison between a standard RNN (a) and our new
architecture with several RNN nodes (b).

2.4. Classification layer and voting
Outputs from the multimodal feature learning block are fed
into a logistic regression layer (i.e., softmax [22]) to produce
frame-based interestingness prediction results. Finally these
results are averaged, as a voting strategy, to obtained the final
interestingness prediction result for the whole video.

2.5. Training with unbalanced datasets
To cope with the small size and unbalance of one of our
datasets, we investigated two techniques:
Up-sampling: Every sample from the minority class is re-
peated during training. In our case, interesting videos are used
multiple times during each training epoch.
Random sampling: Interesting and non-interesting videos
are separated in two sets. During training, samples are then
randomly picked up from both sets with a given probability.

3. EXPERIMENTS
3.1. Datasets
The above learning-based systems were trained successively
with two datasets. The first dataset, which we call Jiang’s
dataset in the following, was proposed in [13]. It is composed
of 1200 videos, with an average duration of one minute and
20 hours in total, from Flickr interestingness API. It must be
noticed that this API is based on social interactions around
the content, meaning that there may be some discrepancy be-
tween the resulting social interestingness annotation and a
genuine content interestingness groundtruth. Those videos
were collected by searching with a set of 15 keywords and
keeping the top 10% videos as the interesting subset and the
bottom 10% as non interesting samples. Note that Jiang’s
dataset is equally balanced and contains diverse types of con-
tent, non necessarily professional. During our training with
this dataset, random video samples of 60 frames were used,
due to hardware capability limitations. We split this dataset
into 70%, 15%, 15% for training, validation, and testing, re-
spectively.



The second dataset is the Mediaeval 2016 video
dataset [6]. It contains 5,054 shots for the development data,
and 2,342 shots for the test data, with an average duration
of 1s per shot. These shots were extracted thanks to a man-
ual segmentation of 78 Hollywood-like movie trailers, hence
from professional content. This second dataset is highly un-
balanced with 8.3% (resp. 9.6%) of interesting content for
the development set (resp. test set). This time, the annota-
tion was solely based on the content itself, therefore leading
to content-driven interestingness assessment. For optimizing
the computational models, we split the development set into
80% and 20% for training and validation, respectively.

3.2. Systems and prediction results
We present our study for predicting social-driven interesting-
ness with Jiang’s dataset in Section 3.2.1, and content-driven
interestingness with the MediaEval dataset in Section 3.2.2.

3.2.1. Results with Jiang’s dataset
We experimented different parameter settings (number of
DNN layers, layer type and size, activation function, etc.,) to
chose the most performing architecture for each monomodal
and multimodal approaches as proposed in Fig. 1.

For the audio modality alone, a simple architecture of
one single LSTM layer of output size 180 (with ReLu activa-
tion, dropout=0.5) in the temporally-motivated feature learn-
ing block before the classification layer (softmax) and voting
part happened to perform well.

For the video modality alone, a slightly more compli-
cated architecture was selected as the most performing one,
with one MLP which reduces the size of the input features
from 4096 to 1024, one LSTM layer of output size 256 and
one ResNet structure with another LSTM layer of output
size 256, again all with ReLu activation and dropout=0.5. It
should be noted that another simple architecture with only
one MLP (output dim=1024, dropout=0.5), followed by one
single LSTM layer (output dim=256, dropout=0.5) gave com-
parable results.

For multimodality, we focused our testing of different ar-
chitectures on the multimodal processing part only as pro-
posed in Fig. 1, while keeping simple architectures for the
two monomodal branches (i.e., temporally-motivated feature
learning blocks). For the audio, we elected the above most
performing architecture with one single LSTM layer, while
for the video branch, we chose the second best architecture,
also for simplicity, with one MLP layer (output dim=1024)
followed by only one LSTM layer (output dim=256). For
the multimodal feature learning block, the best performing
archictecture was also quite simple: only two LSTM layers of
output sizes 436 and 218, respectively (with ReLu activation).
Table 1 shows the results obtained with monomodal and mul-
timodal systems. It can be seen that on the test set, the video
modality works slightly better than the audio modality with an
increase of 2% of accuracy. The multimodal LSTM/ResNet
approach for the multimodal feature learning block results in

Systems Acc. validation Acc. test
LSTM/ResNet - A 65% 69%
LSTM/ResNet - V 65% 71%
LSTM/ResNet - A+V 72% 74%
Jiang et al. [13] 78, 6%± 2, 5%

Table 1: Results on Jiang’s dataset in terms of accuracy (%)
for the prediction of video interestingness. A: audio; V: video

turn in the highest accuracy values for both the validation and
test sets. This confirms the expectation that multimodality
brings benefit to the task. Note that the comparison with the
work from Jiang et al. is not completely fair as we did not per-
form the training and testing on the complete video samples
as in [13].

3.2.2. Result with the MediaEval dataset
For the MediaEval dataset, we focused our investigation on
the architecture of the multimodal feature learning block,
while keeping the simple monomodal architectures from
Jiang’s dataset. By varying the number of LSTM/ResNet lay-
ers, we found again that simple architectures were in general
performing as good as the more complex ones, probably due
to the small size of the dataset. In the end, we selected a sin-
gle ResNet structure with one LSTM layer of output size 436
for this block (dropout=0.5).

We also tested our new structure for temporal modeling
for both the monomodal and multimodal cases. Each time
our RNN-based structure contained 5 RNNs successively ar-
ranged so as to process 5 successive temporal samples at the
same time. Compared to the previously tested monomodal
systems, we simply replaced the LSTM and potential ResNet
layers by this new temporal modeling in the monomodal
learning step. For the multimodal approach, we kept the
monomodal branches as they were before and replaced the
LSTM/Resnet architecture in the multimodal feature learning
block by this 5 RNN-based architecture.

To cope with the unbalance of the MediaEval dataset,
data augmentation thanks to either resampling or upsampling
strategies of the input data, as explained in section 2.5, has
proven to bring benefits to the performances. Indeed, we
tested the different architectures with and without resam-
pling and upsampling techniques (and with different resam-
pling probabilities and upsampling factors). Each time, per-
formances were increased thanks to resampling or upsam-
pling, the best performance being achieved with an upsam-
pling of factor 9 (meaning that interesting samples are re-
peated 9 times during training), which we decided to keep
for all architectures.

Table 2 presents the results we obtained with the different
systems in terms of mean average precision (MAP) values,
the official evaluation measure in the MediaEval campaign.
As can be seen, upsampling to balance the training samples
is helpful also for the new n-RNN-based architecture. We



Systems MAP -
val

MAP -
test

LSTM/ResNet (A) - upsampling 0.1946 0.1689
LSTM/ResNet (V) - upsampling 0.1944 0.1397
LSTM/ResNet - (A+V) - upsampling 0.2690 0.1512
LSTM/ResNet - (A+V) - TF 0.2263 0.1411
5-RNNs - A - no upsampling 0.1687 0.1612
5-RNNs - V - no upsampling 0.2273 0.1365
5-RNNs - (A+V) - no upsampling 0.1962 0.1618
5-RNNs - A - upsampling 0.1985 0.1449
5-RNNs - V - upsampling 0.1993 0.1434
5-RNNs - (A+V) - upsampling 0.2472 0.1706
Best MediaEval system - 0.1815
3rd best MediaEval system - 0.1704
Random baseline 0.1471 0.1436
Worst MediaEval system - 0.1362

Table 2: Prediction results on the MediaEval validation and
test datasets in terms of MAP values (MAP = 1: expected
samples are ranked first; MAP = 0: all non expected sam-
ples are ranked first). Upsampling of a factor 9 when men-
tionned, (training, validation) = (80%, 20%). A: audio; V:
Video. TF: transfer learning from Jiang’s model.

also observe that, once again, multimodal approaches (either
with LSTM/ResNet or with our new n-RNN-based architec-
ture for the multimodal feature learning) perform generally
better than monomodal ones. These results also show that
the task happens to be much more difficult on the MediaE-
val dataset than on Jiang’s dataset, not taking into account
the change of evaluation metrics, as MAP values are some-
what lower than accuracy values. Furthermore, we showed
that our new n-RNN-based modeling performed similarly on
the validation set and even better on the test set than the up-
to-date LSTM/ResNet architecture. For comparison with the
state of the art, we also give the performances achieved by
some official submissions to the MediaEval Predicting Con-
tent Interestingness task. Note that our new architecture per-
formed better than the random baseline (each sample is ran-
domly classified in one of the two classes) and similarly to the
3rd best official system out of 28 submissions4.

4. DISCUSSION
From our experiments, we may draw several insights. First,
as highlighted by the results presented in Table 1 and Ta-
ble 2, multimodal systems were able to perform better than
monomodal ones. The only two cases where multimodal sys-
tems performed worse were: 1/ when using LSTM-based sys-
tems on the MediaEval test set and 2/ when using our new n-

4http://www.slideshare.net/multimediaeval/
2016-mediaeval-interestingness-task-overview?qid=
109a4620-f4bb-4b10-ba3b-2ffb51b52bd7&v=&b=&from_
search=7

RNN-based modeling without upsampling. In the first case,
it can be explained by the low generalization capability of the
multimodal system, due in part to the small size of the dataset.
The size issue coupled with the unbalance of the dataset when
no upsampling is applied is in turn one potential explanation
of the second case.

Our results on the two datasets also differ substantially.
We envision several reasons for this matter of fact. First,
this may show once again that we encountered a generaliza-
tion issue for the MediaEval dataset, due to either the size
of the dataset, or to the concept of content-driven interesting-
ness being much more difficult to infer than the social-driven
interestingness. This leads to the hypothesis that both con-
cepts differ significantly. This was confirmed by some trans-
fer learning experiment we conducted (see results in Table 2),
in which we used the DNN-based multimodal model learned
on Jiang’s dataset to infer interestingness on the MediaEval
dataset. The low performance, i.e., MAP = 0.1411, tends
to prove this conceptual difference. Nevertheless this may
also be partly due to the difference of data type, i.e., mostly
user-generated for the first case vs. professional content for
the second case. Another reason for the overall low perfor-
mance on the MediaEval dataset might also be the quality of
the dataset and its annotations, which contains a large part
of small and blurred shots. This raises also the question of
the subjectivity of interestingness and the difficulty to assess
content-based video interestingness from users.

Nevertheless, the best MAP value obtained by our new n-
RNN-based structure is significantly higher than the baseline,
leading us to the conclusion that the system indeed learns the
interestingness concept, eventhough the dataset sizes might
not be enough to train complex DNN architectures. Over-
all, our new n-RNN-based structure, by taking into account
several temporal samples at the same time, offers better per-
formances than state-of-the-art DNN architectures based on
LSTM and Resnet. This shows the potential of our approach
for other tasks where temporal modeling of the data is essen-
tial.

5. CONCLUSION
In this paper, we propose a generic computational model for
predicting interestingness of video content, based on up-to-
date deep learning architectures. We investigate its effective-
ness on two video datasets, respectively with social-driven or
content-driven interestingness annotations. We confirm that
multimodal-based approaches, with mid-level fusion of au-
dio and visual features, outperform monomodal-based sys-
tems for both datasets. We conclude that the two concepts
social interestingness and content interestingness differ sub-
stantially. Our future work would be devoted to collect a
larger dataset with reliable annotation, to understand better
the intrinsic interestingness of a video. We will also orient
our research toward the modeling of contextual interesting-
ness, to better take into account the subjectivity of the notion.
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