
ANALYZING THE GROUP SPARSITY BASED ON THE RANK MINIMIZATION METHODS

Zhiyuan Zha†, Xin Liu‡, Xiaohua Huang‡, Henglin Shi‡, Yingyue Xu‡, Qiong Wang†,∗, Lan Tang†, Xinggan Zhang†

† School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.
‡ The Center for Machine Vision and Signal Analysis, University of Oulu, 90014, Finland.

ABSTRACT
Sparse coding has achieved a great success in various image
processing studies. However, there is not any benchmark to
measure the sparsity of image patch/group because sparse dis-
criminant conditions cannot keep unchanged. This paper an-
alyzes the sparsity of group based on the strategy of the rank
minimization. Firstly, an adaptive dictionary for each group
is designed. Then, we prove that group-based sparse coding
is equivalent to the rank minimization problem, and thus the
sparse coefficients of each group are measured by estimating
the singular values of each group. Based on that measure-
ment, the weighted Schatten p-norm minimization (WSNM)
has been found to be the closest solution to the real singular
values of each group. Thus, WSNM can be equivalently trans-
formed into a non-convex `p-norm minimization problem in
group-based sparse coding. Experimental results on two ap-
plications: image inpainting and image compressive sensing
(CS) recovery show that the proposed scheme outperforms
many state-of-the-art methods.

Index Terms— group sparsity, rank minimization, the
weighted schatten p-norm, `p-norm, adaptive dictionary.

1. INTRODUCTION

Traditional patch-based sparse coding assumes that each
patch of an image can be precisely modeled as a sparse linear
combination of basic elements. It has been successfully used
in various image processing applications [1, 2, 3]. Howev-
er, patch-based sparse coding model of natural images usual-
ly suffers from some limits, such as dictionary learning with
great computational complexity, neglecting the relationships
among similar patches.

Instead of using patch as the basic unit of sparse coding,
group-based sparse coding can offer a powerful mechanism
of combining local sparsity and nonlocal self-similarity of im-
ages simultaneously in a unified framework [4, 5]. To be con-
crete, an image X with size N is divided into n overlapped
patches of size

√
d ×
√
d, and each patch is denoted by the

vector xi ∈ <d, i = 1, 2, ..., n. Then for each patch xi, its k
similar patches are selected from a I×I sized search window
to form a set Si. After this, all the patches in Si are stacked
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into a matrix Xi ∈ <d×k, i.e., Xi = {xi,1, xi,2, ..., xi,k}. The
matrix Xi consisting of all the patches with similar structures
is called a group, where xi,k denotes the k-th similar patch
of the i-th group. Similar to patch-based sparse coding [1],
given a dictionary Di, each group Xi can be sparsely repre-
sented as αi = D−1i Xi and solved by the following `0-norm
minimization problem,

αi = argmin
αi

{1
2
||Xi − Diαi||2F + λ||αi||0} (1)

where λ is the regularization parameter, || ∗ ||2F denotes the
Frobenius norm, and || ∗ ||0 is `0-norm, counting the non-zero
entries of αi.

However, since || ∗ ||0 norm minimization is a difficult
combinatorial optimization problem, solving Eq. (1) is NP-
hard. For this reason, it is often replaced by the `1-norm
or the reweighted `1-norm to make the optimization problem
easy [6]. Nonetheless, the solution of these norm minimiza-
tions is only the estimation of the real sparsity solution under
certain conditions. For instance, Candès et al. [7] proposed
that solving `1-norm optimization problem can recover a K-
sparse signal x ∈ <N from M = O(Klog(N/K)) random
measurements in compressive sensing (CS). However, the `1-
norm minimization cannot still obtain the real sparsity solu-
tion, one important reason is nobody can guarantee the invari-
ance of sparse discriminant conditions. In other words, there
is not any benchmark to measure the sparsity of a signal.

With the above consideration, we analyze the group spar-
sity from the point of the rank minimization. To the best of
our knowledge, few works have exploited the rank minimiza-
tion methods to analyze the sparsity of image groups. The
contribution of this paper is as follows. First, an adaptive dic-
tionary for each group is designed with a low computational
complexity, rather than dictionary learning from natural im-
ages. Second, based on this dictionary learning scheme, we
prove the equivalence of group-based sparse coding and the
rank minimization problem, and thus the sparse coefficients
of each group are measured by calculating the singular values
of each group. Thus, we have a benchmark to measure the
sparsity of each group because the singular values of the orig-
inal image group can be easily computed by SVD operator.
Third, we exploit four nuclear norms (i.e., standard nuclear
norm [8], the weighted nuclear norm [9], Schatten p-norm



[10] and the weighted Schatten p-norm [11]) to analyze the
sparsity of each group and the solution of the weighted Schat-
ten p-norm minimization (WSNM) is the nearest to real sin-
gular values of each group. Therefore, WSNM is equivalent-
ly turned into a non-convex `p-norm minimization problem in
group-based sparse coding. Experimental results on two low-
level vision tasks, i.e., image inpainting and image compres-
sive sensing (CS) recovery have demonstrated that the pro-
posed scheme outperforms many state-of-the-art schemes.

2. BACKGROUND

2.1. Rank minimization method

The main goal of low rank matrix approximation (LRMA) is
to recover the underlying low rank structure from its degrad-
ed/corrupted observed version. In general, methods of LRMA
can be classified into two categories: the low rank matrix fac-
torization (LRMF) methods [12, 13] and the rank minimiza-
tion methods [8, 9, 10, 11]. In this work we focus on the latter
category. More specifically, given an input matrix Y, the rank
minimization methods aim to find a low rank matrix X, which
is as close to Y as possible under F -norm data fidelity and
one nuclear norm,

X̂ = argminX||Y − X||2F + λR(X) (2)

where λ is a trade-off parameter between the loss function
and the low rank regularization induced by one nuclear norm
R(X). We will briefly introduce several nuclear norms includ-
ing standard nuclear norm [8], the weighted nuclear norm [9],
Schatten p-norm [10] and the weighted Schatten p-norm [11]
in the next subsection.

2.2. Nuclear norms

In this subsection, we first introduce the weighted Schatten
p-norm [11] of a matrix X ∈ <m×n, which is defined as

||X||w,Sp
=

(∑min{m,n}

i=1
wiσ

p
i

) 1
p

(3)

where 0 < p ≤ 1, and σi is the i-th singular value of X.
w = [w1, ..., wmin{m,n}] andwi ≥ 0 is a non-negative weight
assigned to σi. Then the weighted Schatten p-norm of X with
power p is

||X||pw,Sp
=
∑min{m,n}

i=1
wiσ

p
i = Tr(W∆p) (4)

where W and ∆ are diagonal matrices whose diagonal entries
are composed of wi and σi, respectively.

The Schatten p-norm [10] of a matrix X can be represent-
ed by setting w = [1, 1, ..., 1] in Eq. (3),

||X||Sp =

(∑min{m,n}

i=1
σpi

) 1
p

=
(
Tr((XTX)

p
2 )
) 1

p

(5)

The weighted nuclear norm [9] of a matrix X can be rep-
resented by setting p=1 in Eq. (3),

||X||w,* =

(∑min{m,n}

i=1
wiσi

)
= Tr(W∆) (6)

A widely used standard nuclear norm [8] of a matrix X can
be represented by setting p=1 and w = [1, 1, ..., 1] in Eq. (3),

||X||∗ =
∑min{m,n}

i=1
σi = Tr((XTX)

1
2 ) (7)

3. ANALYZING THE SPARSITY OF GROUP BASED
ON THE RANK MINIMIZATION METHODS

Since the sparse discriminant conditions cannot keep un-
changed, there is not any benchmark to measure the sparsi-
ty of image group. Therefore, we analyze the group sparsity
from the point of the rank minimization. To this end, an adap-
tive dictionary for each group is designed with a low com-
putational complexity, rather than dictionary learning from
natural images. Based on this dictionary learning scheme,
we prove the equivalence of group-based sparse coding and
the rank minimization problem, i.e., the sparse coefficients of
each group are measured by calculating the singular values of
each group. Therefore, we possess a benchmark to measure
the sparsity of each group by rank minimization methods s-
ince the singular values of the original image group can be
easily obtained. In this way, we can achieve a clear visual
comparison effect to analyze the sparsity of each group based
on the rank minimization methods (See Fig. 1).

3.1. Adaptive dictionary learning

In this subsection, an adaptive dictionary learning method is
designed, that is, for each group Xi, its adaptive dictionary
can be learned from its observation Yi ∈ <d×k.

More specifically, we apply the singular value decompo-
sition (SVD) to Yi,

Yi = UiΣiVTi =
∑m

j=1
σi,jui,jvTi,j (8)

where µi = [σi,1,σi,2, ...,σi,m], m = min(d, k), Σi =
diag(µi) is a diagonal matrix whose non-zero elements are
represented by µi, and ui,j , vi,j are the columns of Ui and
Vi, respectively.

Moreover, we define each dictionary atom di,j of the
adaptive dictionary Di for each group Yi as follows:

di,j = ui,jvTi,j , j = 1, 2, ...,m (9)

Finally, by learning an adaptive dictionary Di =
[di,1, di,2, ..., di,m] from each group Yi. The proposed dic-
tionary learning method is efficient due to the fact that it only
requires one SVD operator for each group.



3.2. Prove the equivalence of group-based sparse coding
and the rank minimization problem

To prove that the group-based sparse coding is equivalent to
the rank minimization problem, we firstly give two following
lemmas.
Lemma 1 The minimization problem

x = argmin
x

1

2
||x− a||22 + τ.||x||1 (10)

has a closed form, which can be expressed as

x̂ = soft(a, τ) = sgn(a, τ).max(abs(a)− τ, 0) (11)

Proof: see [14].
Consider the SVD of a matrix P ∈ <n1×n2 of rank r

P = UΣVT ,Σ = diag({σi}1≤i≤r) (12)

where U ∈ <n1×r and V ∈ <n2×r are orthogonal matrices,
respectively. σi is the i-th singular value of P. For each τ ≥ 0,
the soft-thresholding operator Dτ is defined as

Dτ (P) = UDτ (Σ)VT , Dτ (Σ) = soft(σi, τ) (13)

Lemma 2 For each τ ≥ 0, and Q ∈ <n1×n2 ,the singular
value shrinkage operator Eq. (13) satisfies

Dτ (Q) = argmin
P
{1
2
||P− Q||2F + τ ||P||∗} (14)

Proof: see [8].
Now, the classical `1-norm group-based sparse coding

problem can be represented as

αi = argminαi{
1

2
||Yi − Diαi||2F + λ||αi||1} (15)

According to the above design of adaptive dictionary Di,
we have the following conclusion.
Theorem 1

||Yi − Xi||2F = ||µi −αi||22 (16)

where Yi = Diµi and Xi = Diαi.
Proof: see supplementary material.

Theorem 2
The equivalence of the group-based sparse coding and

the rank minimization problem is satisfied under the adaptive
dictionary Di.

Proof: see supplementary material.
It can be similarly proven that the reweighted `1-norm and

`p-norm minimization are equivalent to the weighted nuclear
norm minimization (WNNM) [10] and the weighted Schatten
p-norm minimization (WSNM) [11], respectively.

Note that the main difference between sparse coding and
the rank minimization problem is that sparse coding has a dic-
tionary learning operator and the rank minimization problem
does not involve.

(c) comparison of NNM, WNNM and WSNM(a) Original image

(b)  80% pixels misisng (d) comparison of NNM, SNM and WSNM

1#

2#

Fig. 1. Analyzing the sparsity of each group based nuclear
norms minimization.

3.3. Analyzing the sparsity of group based on the nuclear
norms minimization

Based on Theorem 2, the group-based sparse coding can be
turned into the rank minimization problem. Now, four nu-
clear norms are used to constrain Eq. (2) to analyze the spar-
sity of each group, i.e., nuclear norm minimization (NNM)
[8], the weighted nuclear norm minimization (WNNM) [9],
Schatten p-norm minimization (SNM) [10] and the weighted
Schatten p-norm minimization (WSNM) [11]. In these exper-
iments, a gray image Barbara is used as an example in the
context of image inpainting, where 80% pixels are damaged
in Fig. 1(b). We generate two groups based on 1# position
and 2# position which are shown in Fig. 1(a). As shown in
Fig. 1(c) and Fig. 1(d), it can be seen that the singular values
of WSNM result are the best approximation to the ground-
truth in comparison with other methods. Therefore, based
on Theorem 2, WSNM can be equivalently transformed into
solving the non-convex `p-norm minimization to measure the
sparsity in group-based sparse coding.

4. IMAGE RESTORATION USING GROUP-BASED
SPARSE CODING WITH NON-CONVEX `P -NORM

MINIMIZATION

In this section, we verify the proposed scheme in the applica-
tion of image restoration (IR). IR aims to reconstruct a high
quality image X from its degraded observation Y,

Y = HX + N (17)

where H is the degraded operator and N is usually assumed
to be additive white Gaussian noise. In this paper, we will fo-



cus on image inpainting and image compressive sensing (CS)
recovery.

In the scenario of IR, what we observed is the degraded
image Y via Eq. (17), and thus the goal is to employ the pro-
posed scheme to recover the original image X from Y by solv-
ing the following non-convex `p-norm minimization problem,

α = argmin
α

1

2
||Y −HDα||22 + λ||wα||p (18)

4.1. ADMM based for non-convex `p-norm minimization

Solving the objective function of Eq. (18) is very difficult, s-
ince it is a large scale non-convex optimization problem. To
make the proposed scheme tractable and robust, in this pa-
per we present the alternating direction method of multipliers
(ADMM) [15] to solve Eq. (18). Specifically, we introduce
an auxiliary variable Z and Eq. (18) can be rewritten as

α = argmin
Z,α

1

2
||Y−HZ||22+λ||wα||p, s.t. Z = Dα (19)

Therefore, Eq. (19) can be translated into three iterative
steps:

Zt+1 = argmin
Z

1

2
||Y −HZ||22 +

ρ

2
||Z− Dαt − Ct||22 (20)

αt+1 = argmin
α
λ||wα||p +

ρ

2
||Zt+1 − Dα− Ct||22 (21)

and
Ct+1 = Ct − (Zt+1 − Dαt+1) (22)

It can be seen that the minimization for Eq. (19) involves
splitting two minimization sub-problems, i.e., Z and α sub-
problem. Next, we will show that there is an efficient solution
to each sub-problem. To avoid confusion, the subscribe tmay
be omitted for conciseness.

4.1.1. Z sub-problem

Given α, the Z sub-problem denoted by Eq. (20) becomes

min
Z

L1(Z) = min
Z

1

2
||Y −HZ||22 +

ρ

2
||Z− Dα− C||22 (23)

Clearly, Eq. (23) has a closed-form solution and its solution
can be expressed as

Ẑ = (HTH + ρI)−1(HTY + ρ(Dα+ C)) (24)

where I represents the identity matrix.

4.1.2. α sub-problem

Given Z, similarity, according to Eq. (21), the α sub-problem
can be written as

min
α

L2(α) = min
α

1

2
||Dα− R||22 +

λ

ρ
||wα||p (25)

where R = Z− C.
However, due to the complex structure of ||wα||p, it is dif-

ficult to solve Eq. (25), Let X = Dα, Eq. (25) can be rewritten
as

min
α

L2(α) = min
α

1

2
||X − R||22 +

λ

ρ
||wα||p (26)

To enable a tractable solution of Eq. (26), in this paper, a
general assumption is made, with which even a closed form
can be achieved. Specifically, R can be regarded as some type
of noisy observation of X, and then the assumption is made
that each element of E = X−R follows an independent zero-
mean distribution with variance σ2. The following conclusion
can be proved by this assumption.
Theorem 3 Define X,R ∈ <N , Xi, Ri, and e(j) as each
element of error vector e, where e = X−R, j = 1, ..., N . As-
sume that e(j) follows an independent zero mean distribution
with variance σ2, and thus for any ε > 0, we can represent the
relationship between 1

N ||X − R||22 and 1
K

∑n
i=1 ||Xi − Ri||22

by the following property,

lim
N→∞
K→∞

P{| 1
N
||X − R||22 −

1

K

∑n

i=1
||Xi − Ri||2F | < ε} = 1

(27)
where P(•) represents the probability and K = d× k×n. The
detailed proof of Theorem 3 is given in supplemental matarial.

Based on Theorem 3, we have the following equation with
a very large probability (restricted 1) at each iteration,

1

N
||X − R||22 =

1

K

∑n

i=1
||Xi − Ri||2F (28)

Based on Eqs. (26) and (28), we have

min
α

1

2
||X − R||22 +

λ

ρ
||wα||p

= min
αi

(
∑n

i=1

1

2
||Xi − Ri||2F + τi||wiαi||p)

= min
αi

(
∑n

i=1

1

2
||Ri − Diαi||2F + τi||wiαi||p)

(29)

where τi = λiK/ρN and Di is a dictionary. Clearly, Eq. (29)
can be viewed as a sparse coding problem by solving n sub-
problems for all the group Xi. Based on Theorem 1, Eq. (29)
can be rewritten as:

α̂i = min
αi

∑n

i=1

1

2
||γi −αi||22 + τi||wiαi||p (30)

where Ri = Diγi and Xi = Diαi.
To obtain the solution of Eq. (30) effectively, in this pa-

per, the generalized soft-thresholding (GST) algorithm [16] is
used to solve Eq. (30). Therefore, a closed-form solution of
Eq. (30) can be computed as

α̂i = GST(γi, τiwi, p) (31)

For more details about the GST algorithm, please refer
to [16]. For each weight wi, large values of sparse coeffi-
cient αi usually transmit major edge and texture information.



Table 1. ADMM method for the Proposed Scheme.
Input: the observed image Y and the measurement matrix H.
Initialization: t, C, Z, α, I, d, k, ρ, p, σ, ε, ε;
Repeat

Update Zt+1 by Eq. (24);
Rt+1 = Zt+1 − Ct;

For Each group Ri;
Construct dictionary Di by computing Eq. (9);
Update λit+1 by computing λi = 2

√
2σ2/δi + ε;

Update τ t+1
i computing by τi = λiK/ρN;

Update wt+1
i computing by wi = τi/|γi|+ ε;

Update αt+1
i computing by Eq. (31);

End For
Update Dt+1 by concatenating all Di ;
Update αt+1 by concatenating all αi ;
Update Ct+1 by computing Eq. (22) ;
t← t+ 1;

Until
maximum iteration number is reached.

Output:
The final restored image X̂ = Dα̂.

Fig. 2. All test images.

This implies that to reconstruct Xi from its degraded one, we
should shrink large values less, while shrinking smaller ones
more, and thus we have wi = 1/(|γi| + ε), where ε is a s-
mall constant. Inspired by [17], the regularization parameter
λi of each group Ri is set as: λi = 2

√
2σ2/(δi + ε), where

δi denotes the estimated variance of γi, and ε is a small con-
stant. After solving the two sub-problems, we summarize the
overall algorithm for Eq. (19) in Table 1.

5. EXPERIMENTAL RESULTS

In this section, we report our experimental results in the ap-
plications of image inpainting and image CS recovery. All the
experimental images are shown in Fig. 2. The Matlab code
can be download at: https://drive.google.com/
open?id=0B0wKhHwcknCjSll5YnM1RFhIVUk.

In image inpainting, two interesting examples of image
inpainting with different masks are conducted, i.e., image
restoration from partial random samples and text inlayed sam-
ple. The parameters are set as follows. The size of each patch√
d ×
√
d is set to be 8 × 8 and 10 × 10 for partial random

samples and text inlayed, respectively. Similar patch number-
s k = 60, I = 25, σ =

√
2, ε = 0.1, ε = 0.3. (ρ, p) are

set to (0.0003, 0.45), (0.0003, 0.45), (0.03, 1), (0.04, 1) and

(a) Original image (b) 80% missing ( PSNR=6.70dB) (c) BPFA (PSNR=24.55dB) (d) IPPO (PSNR=26.33dB) (e) Aloha (PSNR=25.33dB) (f) Proposed (PSNR=26.99dB)

(a) Original image (b) Text Inlayed ( PSNR=12.84dB) (c) BPFA (PSNR=28.55dB) (d) IPPO (PSNR=29.92dB) (e) Aloha (PSNR=28.38dB) (f) Proposed (PSNR=30.49dB)

(a) Original image (b) 80% missing ( PSNR=6.70dB) (c) BPFA (PSNR=24.55dB) (d) IPPO (PSNR=26.33dB) (e) Aloha (PSNR=25.33dB) (f) Proposed (PSNR=26.99dB)

(a) Original image (b) Text Inlayed ( PSNR=12.84dB) (c) BPFA (PSNR=28.55dB) (d) IPPO (PSNR=29.92dB) (e) Aloha (PSNR=28.38dB) (f) Proposed (PSNR=30.49dB)

(a) Original image (b) 80% missing  
PSNR=6.70dB

(c) BPFA 
PSNR=24.55dB

(d) IPPO
PSNR=26.33dB

(e) Aloha
PSNR=25.33dB

(f) Proposed
PSNR=26.99dB

Fig. 3. Visual comparison of Mickey by image inpainting with
80% missing pixels.

(a) Original image (b) BM3D ( PSNR=31.04dB) (c) ADS (PSNR=33.12dB) (d) SGSR (PSNR=32.53dB) (e) MRK (PSNR=32.38dB) (f) Proposed (PSNR=33.86dB)

(a) Original image
(b) BM3D

PSNR=31.04dB
(c) ADS

PSNR=33.12dB
(d) SGSR

PSNR=32.53dB)
(e) MRK

PSNR=32.38dB
(f) Proposed

PSNR=33.86dB

(a) Original image
(b) BM3D

PSNR=17.78dB
(c) ADS

PSNR=24.24dB
(d) SGSR

PSNR=26.57dB
(e) MRK

PSNR=20.67dB
(f) Proposed

PSNR=27.31dB

Fig. 4. Visual comparison of Fence by CS recovery with 0.1N
measurements.

(0.06, 0.95) when 80%, 70%, 60%, 50% pixels missing and
text inlayed, respectively.

We have compared the proposed scheme with three other
competing methods: BPFA method [2], IPPO method [18],
Aloha method [19]. Table 2 lists the average PSNR compar-
ison results for a collection of 10 color images among three
competing methods. The visual comparison of the image in-
painting methods is shown in Fig. 3. It can be seen that BPFA
could not reconstruct sharp edges and fine details. The IPPO
and Aloha methods produce images with a much better visual
quality than BPFA method, but still suffer from some unde-
sirable artifacts, such as the ringing effects. The proposed
scheme not only preserves sharper edges and finer details, but
eliminates the ringing effects.

In image CS recovery, we generate the CS measurements
at the block level by utilizing a Gaussian random projection
matrix to test images, i.e., the CS recovery with block size
32 × 32. The parameters are set as follows. The size of each
patch

√
d ×
√
d is set to be 7 × 7. Similar patch numbers

k = 60, I = 20, σ =
√
2, ε = 0.1, ε = 0.4. (ρ, p) are set to

(0.0001, 0.65), (0.0005, 0.5) and (0.05, 1) when 0.1N , 0.2N
and 0.3N measurements, respectively.

We have compared the proposed method based image CS
recovery against four other competing approaches including
BM3D method [20], ADS method [3], SGSR method [21]
and MRK method [22]. The average PSNR results are shown
in Table 3. The average gain of the proposed scheme over
BM3D, ADS, SGSR and MRK methods can be as much as
3.31dB, 1.04dB, 1.24dB and 2.11dB, respectively. The visual
comparison of the image CS recovery is shown in Fig. 4. It
can be seen that the BM3D, ADS, SGSR, and MRK method-
s still suffer from some undesirable artifacts or over-smooth
phenomena. By contrast, the proposed method not only re-
moves most of the visual artifacts, but also preserves large-
scale sharp edges and small-scale fine image details more ef-
fectively.



Table 2. Average PSNR results (dB) of image inpainting
Method 80% 70% 60% 50% Inlay text
BPFA 24.35 26.26 28.03 29.83 31.42
IPPO 25.40 27.34 29.19 30.93 32.90
Aloha 25.13 26.92 28.51 30.13 31.12

Proposed 25.91 28.04 29.98 31.95 33.58

Table 3. Average PSNR results (dB) of image CS recovery
Ratio BM3D ADS SGSR MRK Proposed

0.1 24.23 27.65 27.93 27.14 28.89
0.2 30.60 32.42 32.36 31.22 33.50
0.3 34.11 35.68 34.87 34.20 36.50

6. CONCLUSION

This paper analyzed the group sparsity based on the rank min-
imization methods. An adaptive dictionary learning method
for each group was designed. We proved the equivalence
of the group-based sparse coding and the rank minimization
problem, and thus the sparse coefficients of each group were
measured by computing the singular values of each group.
Four nuclear norms were used to analyze the sparsity of each
group and the solution of the weighted Schatten p-norm min-
imization (WSNM) is the best approximation to real singular
values of each group. Therefore, WSNM can be equivalently
transformed into a non-convex `p-norm minimization prob-
lem in group-based sparse coding. Experimental results on
image inpainting and image CS recovery have demonstrat-
ed that the proposed scheme achieves significant performance
improvements over the current state-of-the-art methods.
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