
ar
X

iv
:1

70
4.

08
76

8v
1 

 [
cs

.M
M

] 
 2

7 
A

pr
 2

01
7

CO-PROJECTION-PLANE BASED 3-D PADDING FOR POLYHEDRON PROJECTION FOR

360-DEGREE VIDEO

Li Li∗, Zhu Li∗, Xiang Ma⋆, Haitao Yang⋆ and Houqiang Li†

∗ University of Missouri Kansas City
⋆ Huawei Technologies Co., Ltd.

† University of Science and Technology of China
{lil1, lizhu}@umkc.edu, {maxiang6, haitao.yang}@huawei.com, lihq@ustc.edu.cn

ABSTRACT

The polyhedron projection for 360-degree video is becom-

ing more and more popular since it can lead to much less

geometry distortion compared with the equirectangular pro-

jection. However, in the polyhedron projection, we can ob-

serve very obvious texture discontinuity in the area near the

face boundary. Such a texture discontinuity may lead to se-

rious quality degradation when motion compensation crosses

the discontinuous face boundary. To solve this problem, in

this paper, we first propose to fill the corresponding neigh-

boring faces in the suitable positions as the extension of the

current face to keep approximated texture continuity. Then

a co-projection-plane based 3-D padding method is proposed

to project the reference pixels in the neighboring face to the

current face to guarantee exact texture continuity. Under the

proposed scheme, the reference pixel is always projected to

the same plane with the current pixel when performing mo-

tion compensation so that the texture discontinuity problem

can be solved. The proposed scheme is implemented in the

reference software of High Efficiency Video Coding. Com-

pared with the existing method, the proposed algorithm can

significantly improve the rate-distortion performance. The

experimental results obviously demonstrate that the texture

discontinuity in the face boundary can be well handled by the

proposed algorithm.

Index Terms— 360-degree video compression, polyhe-

dron projection, inter prediction, padding, high efficiency

video coding

1. INTRODUCTION

Along with the emergence and popularity of one virtual real-

ity (VR) product after another, such as Oculus Rift, Gear VR,

and HTC Vive, video contents are becoming one of the most

important applications for the VR product. To support the

content representation from all directions and create a fully

This paper is partially supported by the UMKC strategic funding on big
imaging and smart city center

immersed experience, the VR video needs to contain the in-

formation from all 360 degrees. Therefore, the VR video,

also named as 360-degree video, should be with very high

spatial resolution even higher than 8K to maintain relatively

good visual quality. Such high resolution videos can bring

many challenges to the video compression technologies, and

the need to develop specified compression method for these

video becomes quite urgent.

Since the original 360-degree video is a sphere, to adapt to

the modern video coding standards such as H.264/Advanced

Video Coding (AVC) [1], and H.265/High Efficiency Video

Coding (HEVC) [2], the 360-degree video is always projected

to a 2-D format for compression. According to the investiga-

tion in [3], there are actually lots of projection methods such

as equirectangular and polyhedron including cube map, oc-

tahedron, icosahedron. Comparing the equirectangular and

polyhedron formats, the polyhedron formats present less ge-

ometry distortion so that they can lead to better coding effi-

ciency [4] [5]. However, the polyhedron formats also have

their disadvantages that very obvious texture discontinuities

exist in the area near the face boundary. The texture discon-

tinuities can be divided into two kinds, which are obviously

shown in Fig. 1 for the typical 4 × 3 cubic format. One kind

of the discontinuities is caused by the face unfold from 3-D

cubic to 2-D image, which is represented by the green rectan-

gles. The other kind of discontinuities is brought by the pro-

jection to different planes (or faces) from sphere to cubic for-

mat, which is shown by the red rectangles. When the motion

vector (MV) happens to cross the face boundary, the current

motion compensation (MC) scheme will obtain an unreason-

able prediction block with quite obvious texture discontinuity,

which will lead to serious coding efficiency decrease.

In the current standard-based video coding scheme, a

simple padding scheme, which extends the picture bound-

ary pixel to the outside of the picture, is implemented in the

HEVC reference software [6] to both guarantee the picture

size as the multiple of the coding unit size and prevent the

MC operation from crossing the picture boundary. Li et al.

[7] have also tried to optimize the padding scheme for arbi-

978-1-5090-6067-2/17/$31.00 c©2017 IEEE

http://arxiv.org/abs/1704.08768v1


Fig. 1. Typical example of texture discontinuity

trary size picture using the fundamental rate distortion opti-

mization (RDO) theory. However, since these schemes only

consider the picture itself and have not considered the specific

360-degree information of the 360-degree video, they are not

the best ways to solve the problems of texture discontinuity

in the face boundary for the 360-degree video.

Therefore, in this paper, to better solve the problem of

texture discontinuity in the face boundary, we try to make full

use of all the information from the 360-degree video. To be

more specific, we first fill the neighboring faces in the suit-

able positions for the current face to keep approximate texture

continuity. Then we propose a co-projection-plane based 3-D

padding method to project the reference pixels in the neigh-

boring face to the current face to guarantee exact texture con-

tinuity. Under the proposed scheme, the reference pixel is al-

ways projected to the same plane with the current pixel when

performing MC so that the texture discontinuity problem in

the face boundary can be solved.

This paper is organized as follows. In Section 2, we will

give a brief introduction of the polyhedron projection. The

proposed co-projection-plain based 3-D mapping method will

be described in detail in Section 3. The detailed experimental

results will be shown in Section 4. Section 5 concludes the

whole paper.

2. A BRIEF INTRODUCTION OF THE

POLYHEDRON PROJECTION

As its name implies, polyhedron projection is to project the

inscribed sphere (360-degree video) to each face of the poly-

hedron, such as cube, octahedron, and icosahedron. As a typ-

ical example, the detailed projection process from inscribed

sphere to the cube map can be seen from Fig. 2. For each

point N in the face of the cube, we will connect a line be-

tween the center point O and N . Then the line and the sphere

will have an intersection point M , and the pixel value of point

A B

C D

E F

G H

O

N

M

Fig. 2. Cube map projection from inscribed sphere

Front

Top

Bottom

Right Rear Left

(a) 4× 3

Front TopBottom

Right Rear Left

(b) 3× 2

Fig. 3. Typical unfold cubic format

M will be used as the value of point N . Since the point M

may not be in the integer sampling position of the sphere, the

pixel value of point M will be interpolated through surround-

ing integer pixels. To be more specific, the Luma component

is interpolated using the Lanczos3 (6 × 6) [8] interpolation

filter, and the Chroma component is interpolated using the

Lanczos2 (4× 4) [8] interpolation filter.

After the projection from a sphere to a polyhedron, the

polyhedron will then be unfolded to obtain the 2-D image for

compression. There are various kinds of unfolding methods

for a polyhedron including non-compact and compact meth-

ods. Especially, for the cube map projection, as shown in Fig.

3, mainly two methods of unfolding by putting different faces

in different positions are introduced, including 4×3 and 3×2
formates. And in the following sections, the 4 × 3 cube map

projection will be used as an example to introduce the pro-

posed co-projection-plain based 3-D mapping methods.

3. THE PROPOSED CO-PROJECTION-PLAIN

BASED 3-D PADDING

The proposed co-projection-plain based 3-D padding method

will be introduced in two aspects. We will first fill the cor-

responding neighboring faces in the suitable positions as the

extension of the current face to keep approximated texture

continuity in subsection 3.1. Then we will project the ref-

erence pixels in the neighboring face to the current face to

guarantee exact texture continuity in subsection 3.2. Finally,



Front

Top

Bottom

Right Rear

(a) Model complementation (b) Actual complementation

Fig. 4. Typical complementation results

in subsection 3.3, we will introduce some implementation de-

tails.

3.1. Approximated texture continuity

As each face of a cube has four edges, to achieve approx-

imated texture continuity, we should first try to make all the

four neighboring faces of the current face available. As shown

in Fig. 3 (a), the front face has three neighboring faces, the

right and rear faces have two neighboring faces, and the top,

bottom, and left faces have only one neighboring face. We

will complement the neighboring faces of all the faces to four

neighboring faces. Using the right face as an example, besides

the existing front and rear faces, we will complement the top

and bottom faces for the current face. The complementation

result is shown in Fig. 4 (a), and the actual result of a typical

sequence is presented in Fig. 4 (b).

As can be obviously seen from Fig. 4 (b), the complemen-

tation result still presents very obvious texture discontinuity

in the common edges between the center face and top/bottom

faces. The main reason is that the common edges of the neigh-

boring faces are not aligned together. To guarantee the align-

ment of the common edges, the top face should be rotated by

90 degrees clockwise, and the bottom face should be rotated

by 90 degrees anticlockwise. The final approximated texture

continuity results are shown in Fig. 5. The above process is

just a typical example for the right face, and the other faces

can be done in a similar way to achieve approximated texture

continuity.

3.2. Exact texture continuity

After the approximated texture continuity is achieved, if we

take a look at Fig. 5 (b) carefully, we can still see that straight

lines on the car become broken lines when crossing the face

boundary. This is mainly caused by the cube map projection

from inscribed sphere to difference faces. Therefore, in this

subsection, we will propose a co-projection-plain based 3-D

padding to achieve exact texture continuity.

Front

T
o

p

B
o

tt
o

m

Right Rear

(a) Model complementation (b) Actual complementation

Fig. 5. Typical approximated texture continuity

As shown in Fig. 6, under the co-projection-plain based

3-D padding method, we will try to extend the current face

ABCD into a larger one A′B′C′D′, and the values of the

extended pixels will be determined by the projection of the

neighboring faces, which are generated in the approximated-

texture-continuity step, to the current face. Using the bottom

face as an example, for a point T in the extended zone of the

bottom face, assume that the top left position A′ is (0, 0), the

position T in the extension face is (x, y), the face extension

range is S, and the edge length of the cube is a. Then the

lengths of TK and JK can be calculated as

TK =
a

2
+ S − y (1)

JK = x− a− S (2)

Therefore, according to the principle of similar triangles, we

can obtain the length of HS as

HS =
ST

O′T
×OO′ =

JK

O′K
× OO′ (3)

Similarly, we can also obtain the length of SJ as

SJ =
O′J

O′K
× TK (4)

In this way, the coordinate of the corresponding position in

the right face can be derived. The other projection positions

of the neighboring faces can be derived in a similar way.

It should be noted that the calculated coordinate may not

be always in the integer position. In the current implementa-

tion, the bilinear interpolation is used to interpolate the pixels

in the fractional positions. It should also be mentioned that

the pixels belonging to lines AA′, BB′, CC′, and DD′ will

be projected to the common edges of two neighboring faces.

If the bilinear interpolation is still used, the final pixel val-

ues will be interpolated from the neighboring pixels coming

from two different faces, which is obviously unreasonable. In

our implementation, the pixels belonging to lines AA′, BB′,

CC′, and DD′ are derived through the average of the neigh-

boring pixels in the extended zones. After these operations,



A B

C D

E F

G H

O
A B

C D

O

T

J K

S

H

Fig. 6. Co-projection-plain based 3-D padding

(a) Original face extension (b) Proposed face extension

Fig. 7. Face extension comparison

the interpolation results are shown in Fig. 7 (b). Compared

with the results generated by the HEVC reference software as

shown in Fig. 7 (a), it can be obviously seen that the pro-

posed algorithm can achieve exact texture continuity. Not

only the gray zones but also the discontinuous face bound-

aries are filled with suitable values to guarantee exact texture

continuity.

3.3. Implementation details

The proposed algorithm is implemented in the HEVC refer-

ence software. Our current implementation can be roughly

divided into two parts and will not lead to any modification of

the coding tools in the coding unit (CU) level. The first part is

to get the extension for all the 6 faces for the reference frames.

To be more specific, after the encoding of the current frame is

finished, if the current frame is a reference frame, the neigh-

bor faces of all the 6 faces will be first complemented using

the method introduced in subsection 3.1 to generate the image

similar to Fig. 5 (b). Then the method introduced in subsec-

tion 3.2 will be used to generate the extended faces similar to

Fig. 7 (b) to achieve exact texture continuity.

Then the second part is to fill the reference frame with the

face extension when encoding each CU. For example, when

Fig. 8. Typical reference frame

we are encoding a CU in the right face, we will fill in the right

face extension to the each reference frame for the current CU.

The results can be seen from Fig. 8. It seems discontinu-

ous for the whole frame but for the right face in a predefined

search range S, the texture is continuous. And after the cod-

ing of CUs belonging to the current face, the reference frame

will be refilled with the original values and prepare to be filled

with the extension of other faces in the future encoding pro-

cess. It should be noted that in the decoding process before

the reference frame will be used for each CU, we will already

know the MV of the current CU. Therefore, we can determine

whether the current CU needs to fill in the extension of a cur-

rent face or not according to the value of MV so as to avoiding

the unnecessary extension operations and reducing decoding

complexity.

4. EXPERIMENTAL RESULTS

The proposed co-projection-plain based 3-D padding method

is implemented in the HEVC reference software HM-16.6 to

compare with HEVC without the proposed algorithm. All the

test conditions specified for inter frames including random ac-

cess (RA) main 10, low delay (LD) main 10, low delay P

(LDP) main 10 are used as the test conditions. The quantiza-

tion parameters (QP) tested in our experiments are 22, 27, 32,

37 following the HEVC common test conditions. The face ex-

tension range S is set as 64 in our experiments. Besides, the

BD-rate (Bjontegaard Delta rate) [9] is used to measure the

difference between the anchor and the proposed algorithm.

In the current implementation, the Peak Signal to Noise Ra-

tio (PSNR) is used to measure the quality of between the re-

constructed and original sequences. We will use the quality

metrics, which are more suitable for 360-degree videos such

as WS-PSNR [10] and S-PSNR [11], as the quality measure-

ments in our future work.

For the test sequences, we use the test sequences speci-



Table 1. The characteristics of the test sequences

Sequence name Resolution frame count

Train le 4736× 3552 64

SkateBoardingTrick le 4736× 3552 64

SkateboardInLot 4736× 3552 32

ChairLift 4736× 3552 32

KiteFlite 4736× 3552 32

Harbor 4736× 3552 32

PoleVault le 3840× 2880 32

AerialCity 3840× 2880 32

DrivingInCity 3840× 2880 32

DrivingInCountry 3840× 2880 32

Table 2. The performance in RA case

Sequence name Y U V

Train le –0.2% –0.1% –0.1%

SkateBoardingTrick le –0.4% –0.9% –0.7%

SkateboardInLot –0.9% –1.2% –2.5%

ChairLift –2.6% –3.2% –3.0%

KiteFlite –0.1% –0.1% –0.1%

Harbor –0.1% –0.8% –0.3%

PoleVault le –0.2% –0.1% –0.2%

AerialCity –2.1% –2.1% –1.8%

DrivingInCity –0.6% –1.0% –1.0%

DrivingInCountry –3.3% –3.6% –3.3%

average –1.1% –1.3% –1.3%

fied in [12] to measure the performance of the proposed algo-

rithm. To be more specific, we used the conversion tool spec-

ified in [3] to convert the high fidelity input test sequences in

equirectangular format to the 10 bit 4 × 3 cubic formate test

sequences. The detailed information and characteristics of the

test sequences can be seen in Fig. 1. The frame count tested

is approximated as 1 second as shown in Fig. 1.

The test results of the proposed algorithm in RA main10,

LD main10, and LDP main10 are shown in Table 2, Table 3,

and Table 4, respectively. From the test results, we can see

that about for the Y component, compared with the HEVC

anchor, about averagely 1.1%, 1.2% and 1.2% R-D perfor-

mance improvement can be achieved in RA, LD, and LDP

cases, respectively. For U and V components, about aver-

agely 1.3%, 1.5%, and 1.3% bitrate reduction are observed

accordingly. Besides, we can also see from these tables that

for the sequence with relatively larger motion, the maximum

bitrate saving for the Y component can be as high as 3.3%,

3.4%, and 3.3% in RA, LD, and LDP cases, respectively.

Except for the average and maximum bitrate reduction,

we can also see that the proposed algorithm can lead to con-

sistently better R-D performance for all the test sequences

even if the RDO based selection between the proposed refer-

Table 3. The performance in LD case

Sequence name Y U V

Train le –0.1% –0.1% –0.1%

SkateBoardingTrick le –0.4% –1.1% –0.8%

SkateboardInLot –1.6% –1.7% –1.9%

ChairLift –3.0% –4.0% –3.6%

KiteFlite –0.1% –0.2% –0.1%

Harbor 0.0% 0.0% 0.1%

PoleVault le –0.2% –0.1% –0.2%

AerialCity –2.6% –2.5% –2.7%

DrivingInCity –0.9% –1.6% –0.8%

DrivingInCountry –3.4% –3.4% –4.5%

average –1.2% –1.5% –1.5%

Table 4. The performance in LDP case

Sequence name Y U V

Train le –0.1% –0.1% –0.1%

SkateBoardingTrick le –0.3% –0.7% –0.6%

SkateboardInLot –1.8% –1.9% –0.7%

ChairLift –2.9% –3.8% –3.0%

KiteFlite –0.1% –0.2% –0.3%

Harbor 0.0% 0.0% 0.2%

PoleVault le –0.1% 0.2% –0.2%

AerialCity –2.5% –2.5% –2.2%

DrivingInCity –0.7% –1.1% –1.1%

DrivingInCountry –3.3% –3.2% –3.8%

average –1.2% –1.3% –1.2%

ence frame and the original reference frame is not used in the

proposed framework. This can obviously demonstrate that the

reference frame in the proposed framework can always lead

to better or equivalent compression results compared with that

in the original framework. However, we can also see that the

performance improvement may vary due to the differences of

the characteristics of various sequences. For the sequences

with large motion in the face boundary such as the sequence

DrivingInCountry, the situation where the MC cross the face

boundary will be quite a lot, thus the proposed algorithm can

lead to significant bitrate reduction. On the contrary, for the

sequences with almost zero motion in the face boundary such

as the sequence Harbor, the situation where the MC cross the

face boundary will be very rare, thus the proposed algorithm

cannot provide an obvious performance improvement.

Some typical R-D curves in various test conditions with

different test sequences are shown in Fig. 9. The R-D curves

also demonstrate that the proposed algorithm can lead to some

performance improvement compared with HEVC anchor. Be-

sides, from these typical R-D curves, we can also see that the

proposed algorithm can lead to similar performance improve-

ment for both high bitrate and low bitrate.



35 

37 

39 

41 

43 

45 

0 5000 10000 15000 20000 25000 

Y
-P

S
N

R
 (

d
B

)

bitrate (kbps)

DrivingInCountry RA

HEVC anchor

proposed

(a) RA

35 

37 

39 

41 

43 

45 

47 

0 5000 10000 15000 20000 25000 

Y
-P

S
N

R
 (

d
B

)

bitrate (kbps)

ChairliftRide LD

HEVC anchor

proposed

(b) LD

37 

39 

41 

43 

45 

0 5000 10000 15000 20000 

Y
-P

S
N

R
 (

d
B

)

bitrate (kbps)

AerialCity LDP

HEVC anchor

proposed

(c) LDP

Fig. 9. Typical R-D curves

5. CONCLUSION

In this paper, we first point out the existence and influences

of the very serious texture discontinuities in the face bound-

ary in the polyhedron projection. Then we propose to fill the

corresponding neighboring faces in the suitable positions as

the extension of the current face to keep approximated tex-

ture continuity. After that, a co-projection-plane based 3-D

padding method is proposed to project the reference pixels

in the neighboring face to the current face to guarantee ex-

act texture continuity. The proposed scheme is implemented

in the reference software of High Efficiency Video Coding.

Compared with the existing method in the High Efficiency

Video Coding reference software, the proposed algorithm can

bring averagely 1.1% and maximum 3.4% bitrate savings in

different test conditions. The experimental results obviously

demonstrate that the texture discontinuity in the face bound-

ary can be well handled by the proposed algorithm.

6. REFERENCES

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and

A. Luthra, “Overview of the H.264/AVC Video Coding

Standard,” IEEE Trans. Cir. and Sys. for Video Technol.,

vol. 13, no. 7, pp. 560–576, July 2003.

[2] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand,

“Overview of the high efficiency video coding (hevc)

standard,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 22, no. 12, pp. 1649–1668,

Dec 2012.

[3] Yuwen He, Bharath Vishwanath, Xiaoyu Xiu, and Yan

Ye, “AHG8: InterDigital’s projection format conver-

sion tool,” Document JVET-D0021, Chengdu, CN, Oct.

2016.

[4] Minhua Zhou, “AHG8: A study on compression ef-

ficiency of cube projection,” Document JVET-D0022,

Chengdu, CN, Oct. 2016.

[5] Minhua Zhou, “AHG8: A study on compression ef-

ficiency of icosahedral projection,” Document JVET-

D0023, Chengdu, CN, Oct. 2016.

[6] “High Efficiency Video Coding test model, HM-16.6,”

https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/tags/,

Accessed: 2016.

[7] M. Li, Y. Chang, F. Yang, and S. Wan, “Rate-distortion

criterion based picture padding for arbitrary resolution

video coding using h.264/mpeg-4 avc,” IEEE Transac-

tions on Circuits and Systems for Video Technology, vol.

20, no. 9, pp. 1233–1241, Sept 2010.

[8] “Lanczos resampling, Lanczos interpolation,”

https://en.wikipedia.org/wiki/Lanczos resampling,

Accessed: 2016.

[9] Gisle Bjontegaard, “Calculation of average PSNR dif-

ferences between RD-curves,” Document VCEG-M33,

Austin, Texas, USA, April 2001.

[10] Y. Sun, A. Lu, and L. Yu, “AHG8: WS-PSNR for 360

video objective quality evaluation,” Document JVET-

D0040, Chengdu, CN, Oct. 2016.

[11] M. Yu, H. Lakshman, and B. Girod, “A framework

to evaluate omnidirectional video coding schemes,” in

2015 IEEE International Symposium on Mixed and Aug-

mented Reality, Sept 2015, pp. 31–36.

[12] Jill Boyce, Elena Alshina, Adeel Abbas, and Yan Ye,

“JVET common test conditions and evaluation proce-

dures for 360-degree video,” Document JVET-D1030,

Chengdu, CN, Oct. 2016.


	1  Introduction
	2  A brief introduction of the polyhedron projection
	3  The proposed co-projection-plain based 3-D padding
	3.1  Approximated texture continuity
	3.2  Exact texture continuity
	3.3  Implementation details

	4  Experimental results
	5  Conclusion
	6  References

