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Abstract

Visual question answering (VQA) task not only bridges the
gap between images and language, but also requires that spe-
cific contents within the image are understood as indicated
by linguistic context of the question, in order to generate the
accurate answers. Thus, it is critical to build an efficient em-
bedding of images and texts. We implement DualNet, which
fully takes advantage of discriminative power of both image
and textual features by separately performing two operations.
Building an ensemble of DualNet further boosts the perfor-
mance. Contrary to common belief, our method proved effec-
tive in both real images and abstract scenes, in spite of signif-
icantly different properties of respective domain. Our method
was able to outperform previous state-of-the-art methods in
real images category even without explicitly employing atten-
tion mechanism, and also outperformed our own state-of-the-
art method in abstract scenes category, which recently won
the first place in VQA Challenge 2016.

Introduction

Recent rise of deep learning methods including convolu-
tional neural networks (CNN) and recurrent neural networks
(RNN) has escalated a large number of artificial intelligence
tasks to an unprecedented stage, where the performance fre-
quently rivals that of humans. Tasks such as object classifica-
tion, scene classification, and object detection demonstrated
the ability to correctly recognize and locate the images both
holistically and regionally, whereas tasks such as caption
generation or object retrieval demonstrated that deep learn-
ing methods can successfully bridge the gap between images
and language. Visual question answering (VQA) task further
promotes the boundary of deep learning applicability and
complicates the problem by necessitating multiple prerequi-
sites, potentially encompassing all of the above-mentioned
capabilities; as it needs to understand the question, locate or
classify the objects/scenes mentioned in the question, and
generate appropriate answers.

In this paper, we introduce DualNet, which attempts to
fully exploit the discriminative information provided by the
images and textual features, by separately performing addi-
tion and multiplication of input features to form a common
embedding space. As we shall see in Experiment Section, it
shows clear advantage over performing only one operation,
and outperforms many recent state-of-the-art methods, with-
out using any attention mechanism. Furthermore, it turns

out that building an ensemble of DualNets with varying di-
mensions leads to even more superior performances, despite
feeding identical set of input features to all DualNet units.

Another advantage of our DualNet is that it is applicable
to both real images and abstract scenes categories. So far,
it has widely been considered that successful methods for
real images cannot be directly ported to abstract scenes do-
main, as they have fundamentally different characteristics.
In fact, applying the basic setting of fc7 features for images
and long short-term memory (LSTM) with one hidden layer
for questions, which results in 58.16 for real images, yields
only about 55 in abstract scenes domain. Indeed, most of
the previous papers on VQA have tackled only one domain,
presumably due to such reason. Our DualNet, however, re-
sults in superior performances in both domains, demonstrat-
ing that it is applicable to a wider domain, provided that fea-
tures are plausible.

It is also noteworthy that we do not employ any atten-
tion mechanism, which has become one of the most com-
mon approaches in VQA. While useful, building attention
mechanism necessitates a separate stage of training to map
language to specific regions of image, and complicates the
procedure. Instead, our method demonstrates that basic set
of features can provide rich amount of information with-
out building attention mechanism, provided a network is de-
signed in a way that fully exploits the features’ discrimina-
tive capacity.

This paper is hereafter structured as follows; In Related
Works, we review the recent innovations and trends in VQA,
and briefly discuss how our method diverts from them. In
Method, we describe both the motivation behind and the im-
plementation details of our DualNet architecture. In Exper-
iment, we apply our proposed model to actual VQA dataset
and discuss the results with examples and comparisons to
other methods. Finally, we conclude the paper and discuss
future work in Conclusion.

Related Work

Visual question answering (VQA) task itself has only re-
cently been introduced with the advent of dataset provided
by (Antol et al. 2015)), consisting of 0.25M images, 0.76M
questions, and 10M answers. They also report baseline re-
sults from methods with multi-layer perceptron and LSTM
(Hochreiter and Schmidhuber 1997).
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VQA: Real Images Real images category is cur-
rently by far the more popular and competitive task in
VQA. (Malinowski, Rohrbach, and Fritz 2016) introduced
Ask Your Neurons. Unlike the baseline provided by
(Antol et al. 2015)), in which image features and question
features are embedded to common space at the last stage
prior to classification, they built a system where image fea-
tures are shared at each LSTM unit for processing question
features. They also performed comparison of different op-
erations for fusing input features, and concluded that sum-
mation performs better than multiplication. In our work,
however, both summation and multiplication are performed,
which demonstrates significant improvements.

Many recent papers reporting competitive results have
relied heavily on various types of attention mechanism.
(Yang et al. 2016) introduced stacked attention networks
(SANs), which relies on semantic representation of each
question to search for relavant regions in the image. More
specifically, they built multiple-layer attention mechanism,
which locates the relevant region multiple times so that more
accurate region of interest can be retrieved.

In a similar manner, (Shih, Singh, and Hoiem 2015) at-
tempts to locate relevant regions in the image. They map the
textual queries to features from different regions by embed-
ding them to a common space and comparing their relevance
via inner product.

(Xiong, Merity, and Socher 2016) proposed a number of
improvements to dynamic memory network (DMN). Their
proposed DMN+ model introduced a novel input module
based on a two-level encoder with sentence reader and in-
put fusion layer, and implemented memory based on gated
recurrent units (GRU).

(Iievski, Yan, and Feng 2016) proposed focused dy-
namic attention (FDA) model, which exploits an object de-
tector to determine regions of interest. LSTM is used to em-
bed the region features and global features into common
space.

(Xu and Saenko 2015) proposed spatial memory network
in which neuron activations of different spatial regions are
stored in memory, and regions with high relevance are cho-
sen depending on the question. The latter step was made pos-
sible by their novel spatial attention architecture designed to
align words with patches.

Unlike most of the works mentioned above, our work does
not employ any attention mechanism, yet demonstrates su-
perior performance by fully exploiting features provided to
the network.

VQA: Abstract Scenes Relatively few results have been
reported on abstract scene categories compared to real im-
ages.

(Zhang et al. 2016) converted the questions to a tuple con-
taining essential clues to the visual concept of the images.
Each tuple (P, R, S) consists of a primary object (P), sec-
ondary object (S), and their relation (R). Mutual information
was employed to determine which object corresponds to pri-
mary object and secondary object. They also augmented the
dataset using crowd-sourcing in order to balance the biases
in the dataset. Their visual features included histogram-like
vectors for primary and secondary objects, as well as abso-

lute and relative locations of the objects modeled by GMMs.
We show that this model’s performance is enhanced by ad-
dition of deep features, both holistically and regionally, and
applying our DualNet further improves the performance.

Method

In this section, we describe the details of our proposed
network architecture “DualNet”, which we demonstrate to
work well both on real images and abstract image. Further-
more, we demonstrate that it performs well on various com-
binations of image features when combined with sentence
features from encoders such as LSTM.

Motivation In the VQA task, it is necessary to determine
how to combine visual features with sentence features be-
cause a network cannot answer correctly unless they have
enough knowledge about what the questions are asking and
which features are necessary to answer them correctly. Fig-
ure 1 shows an example of fusing features which employs
element-wise multiplication (Antol et al. 2015). There are
other options to fuse the features such as element-wise sum-
mation. Some of the previous works have examined and
compared the behaviors of network depending on the fusing
mechanisms (Malinowski, Rohrbach, and Fritz 2016). Ac-
cording to them, the performance of network varies depend-
ing on the way the image features and sentence features are
fused. This indicates that, even with non-linearity of net-
work, the information can vary according to the fusing meth-
ods. Most architectures only used one method to fuse the
features; for example, summation or multiplication only.

However, the features combined with different fusing
methods should contain different information. For example,
some information should be preserved (or lost) only by sum-
mation, whereas some are preserved only by multiplication.
For this reason, we propose to integrate two kinds of oper-
ations, namely element-wise summation and element-wise
multiplication. Moreover, we propose to use different kinds
of image features. The motivation is to fully take advantage
of different information present in different kinds of fea-
tures. For example, holistic features used in abstract scenes
(Zhang et al. 2016)) display completely different characteris-
tics from CNN features. Likewise, for CNN features, differ-
ent network structures also result in different characteristics
of the extracted features. Thus, our DualNet benefits further
by exploiting a combination of features from different net-
works and different methods.

Implementation We now go through the theoretical back-
ground of our network. We skip notations for bias parame-
ters in the following equations for clarity.

Q = LSTM (1,22, x3,...2¢) (1)

First, we input one-hot vector of words sequentially and ob-
tain question vector from the last hidden layer of LSTM.

Ingy = tanh(Wag, Ih) 2
Ingy = tanh(WayoIo) ©)
Qu = tanh(W,Q) )

Fy = IMll o IIW/Q oQum (5)
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Figure 1: Basic network archi-
tecture for VQA

Eq. (2) to (5) correspond to the fusing of image features and
text features by multiplication. o refers to the element-wise
multiplication.

Is; = tanh(Ws,11) (©6)
Isy = tanh(Wsyls) )
Qs = tanh(Ws,Q) ®)
Fs =1Is) + Isy + Qs ©)

Eq. (6) to (9) correspond to the fusing of the features by
summation. Our proposed network does not share the weight
between multiplication and summation because we expect
each operation to extract different kinds of information.

F = Concat(Fy, Fs) (10)
Output = Wy tanh(Wy, F) 1)

We concatenate the features from element-wise multiplica-
tion and element-wise summation. In this example, we have
shown the case where we use two kinds of image features.
We can change the number of image features depending on
the needs, but the overall workflow will remain the same re-
gardless of the number of features.

The proposed model architecture for real image
is described in Fig.2. It uses L2-normalized features
from the first fully-connected layer (fc6) of VGG-
19(Simonyan and Zisserman 2014) extracted using Caffe
(Jia et al. 2014) trained on ImageNet(Deng et al. 2009), and
the uppermost fully-connected layers from ResNet-152 and
ResNet-101 (He et al. 2015) for image features, in order to
construct DualNet. The proposed model architecture for ab-
stract image is described in Fig.3. It uses L2-normalized
holistic feature, and fully-connected layer of ResNet-152 for
image features.

Experiment

In this section, we describe and discuss the results from
the experiments using our DualNet architecture on VQA
dataset.

Real Images

The dataset consists of 82,783 training images, 40,504 val-
idation images and 81,434 test images. 3 questions are at-
tached to each image. We can evaluate the model by using a
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Figure 2: DualNet for real images
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Figure 3: DualNet for abstract scenes

subset of test split called test-dev split on the VQA evalua-
tion server. In this experiment, we used both train and vali-
dation splits for training, and tested on both test-dev and test
splits. Since the number of test submissions for the complete
test split is limited, the evaluation on the complete test split
was restricted to selected key methods.

LSTM in our model consists of 2 layers with 512 hidden
units. We used 2,000 most frequent answers as labels, and
relied on rms-prop to optimize our model. The batch size
was 300 and learning rate was set to 0.0004. We optimized
the hyper-parameters based on the evaluations on test-dev
split.

The model performance slightly changed according to the
dimension of common space. We show the result of 1024
dimension as single DualNet’s result. For the ensemble of
DualNets, we set the common space dimensions differently
for each unit. We changed common space dimension from
500 to 3000 for each DualNet unit in our ensemble, which
consists of 19 DualNet units. We tuned the weight for each
unit in the ensemble based on their result on test-dev split.

Abstract Scenes

Abstract scenes category contains 20,000 images for train-
ing, 10,000 images for validation, and 20,000 images for test
images, where each image is accompanied by 3 questions.
Unlike real images, there is no test-dev split.

So far, it has widely been believed that abstract scenes
possess fundamentally different properties from those of real
images, and thus successful methods for real images cannot
be directly ported to abstract scenes, necessitating a signifi-
cantly different approach.

Baseline 1 As our first baseline, we follow Zhang et al.
(Zhang et al. 2016) whose method was described in Related
Works.

Baseline 2 'We now describe the second baseline also im-
plemented by ourselves, which recently won the first place
in VQA Challenge 2016, and is currently the state-of-the-art
method in the abstract scenes category.

On top of the features described in (Zhang et al. 2016)),
we added features from the uppermost fully-connected layer
from ResNet with 152 layers, and fc7 layer of VGG with
19 layers for holistic features. We alternated between two
different setups for regional features as following:

Elementwise



Table 1: Performances of each method on test-dev split of real images category

Open-Ended Multiple-Choice
All Y/N Num Others All Y/N Num Others
DPPnet (Noh, Seo, and Han 2015) 57.22 80.7 372 41.7 62.50 80.8 38.9 52.2
deeper LSTM Q+norm (Lu et al. 2015)  57.75 80.5 36.8 43.1 6270 80.5 382 53.0
SAN (Yang et al. 2016) 58.70 79.3 36.6 46.1 - - - -
FDA(llievski, Yan, and Feng 2016) 59.24 81.1 36.2 45.8 64.01 81.5 39.0 54.7
DMN+(Xiong, Merity, and Socher 2016) 60.30 80.5 36.8 48.3 - - - -
Sum only 56.81 784 352 433 - - - -
Mul only 59.15 80.6 37.0 45.8 - - - -
DualNet 60.47 81.0 37.1 48.2 65.80 80.8 39.8 58.9
DualNet (ensembled) 6147 82.0 37.9 49.2 66.66 82.1 39.8 59.5

Table 2: Performances of each method on test-std split of real images category

Open-Ended Multiple-Choice
All Y/N Num  Others All Y/N Num  Others
DPPnet (Noh, Seo, and Han 2015)) 57.36 80.28 36.92 4224 62.69 80.35 38.79 52.79
D-NMN (Andreas et al. 2016) 58.0 - - - - - - -
deeper LSTM Q+norm (Lu et al. 2015) 58.16 80.56 36.53 43.73 63.09 80.59 37.70 53.64
AYN (Malinowski, Rohrbach, and Fritz 2016) 58.43 78.24 36.27 46.32 - - - -
SAN (Yang et al. 2016) 58.90 - - - - - - -
FDA (Ilievski, Yan, and Feng 2016) 59.54 81.34 35.67 46.10 64.18 81.25 38.3 55.20
DMN+ (Xiong, Merity, and Socher 2016) 60.36 8043 36.82 48.33 - - - -
DualNet (ensembled) 61.72 8192 37.84 49.66 66.72 8195 39.72 59.55
1) Avg. Softmax of Top Regions: we first ex- Training was performed for 100 epochs.

tract 10 regions from each image using Deep Proposal
(Ghodrati et al. 2015), which proposes regions based on ob-
jectness measure and applies non-maximum suppression
to filter out overlaps. We then extract softmax probabili-
ties for each region, which correspond to 201 classes used
in ILSVRC object detection task. We used Fast-RCNN
(Girshick 2015) and VGG-16 trained for the task. Finally,
we average the softmax probabilities of all 10 regions to ob-
tain one 201-dimensional vector.

2) VLAD Coding of CNN with Coordinates: The general
procedure is similar to (Shin et al. 2016) except we do not
employ spatial pyramid. We run selective search for each
image, which returns approximately 1,000 region proposals
for each image. Using Fast-RCNN, we extract fc7 features
from all regions. Dimensionality of fc7 features is reduced to
256 using PCA. We then concatenate 8-dimensional coordi-
nate vector (X_min, y_min, X_max, y_max, X_center, y_center,
width, height) as in (Hu et al. 2016)) so that each region is
264-dimenisonal. Finally, we apply VLAD coding to all re-
gions of an image with one cluster to obtain the final one
264-dimensional vector for each image.

It turns out that 1) performs better on yes/no and num-
ber questions, while 2) performs better on others category.
We thus alternated between the two methods depending on
the type of question, which was predicted by key phrase ex-
traction; e.g., ‘how many’ indicating number category, etc.
We had batch size of 400, and 500 possible answers, and set
number of word embeddings for questions as 1,000. LSTM
with one hidden layer of 256 hidden units was employed.

Results & Analysis

Table 1 shows the results of each method on test-dev split,
and Table 2 reports results on test-std split. As shown in the
tables, we outperformed the previous state-of-the-art meth-
ods on real image category published prior to the 2016 VQA
Challenge. We can clearly see the effectiveness of our net-
work structure through comparison to the summation-only
network and multiplication-only network. The multiplica-
tion network obtained 59.15 and summation network ob-
tained only 56.81. The performance of summation network
is much poorer than multiplication network. However, when
combining two paths, we were able to improve the perfor-
mance significantly. This indicates that the two paths extract
different kinds of information from more than three kinds
of features, reminiscent of the way ”And” and ”Or” gates
behave in electronic circuits.

Comparing with the methods such as DMN
(Xiong, Merity, and Socher 2016) , SAN (Yang et al. 2016)
and FDA (llievski, Yan, and Feng 2016), which used the
attention mechanism, our model still achieves better per-
formance. This indicates that we can construct an efficient
model without explicitly including spatial information
from local features. It also suggests that the image features
from VGG and ResNet must contain spatial information
to a useful extent, since our model demonstrates high
performance on the questions that require the model to
have knowledge about particular image regions in order to
answer correctly. Figure 4 shows examples of questions and



Table 3: Performances of each method on test data of abstract scenes category

Open-Ended Multiple-Choice
All Y/N Num Others All Y/N Num Others
Baselinel (Zhang et al. 2016)  65.02 77.5 52.5 56.4 69.21 77.5 52.9 66.7
Baseline 2 67.39 79.6 57.1 58.2 71.18 79.6 56.2 67.9
MRN 62.56 79.1 51.6 48.9 67.99 79.1 52.6 62.0
DualNet 68.87 80.0 57.9 61.1 73.29 80.0 58.5 71.8
DualNet (ensembled) 69.73 80.7 58.8 62.1 74.02 80.8 59.2 72.4

(a) Q: What fruit is yellow and brown?
A: banana

(b) Q: Is this a laptop? A: yes

(c) Q: How many screens are there? A: 2

Figure 4: Examples of question and generated answers in real images

(a) Q: What is the boy playing with?
A: teddy bear

the pond? A: No

(b) Q: Are there any animals swimming in

(c) Q: How many trees? A: 1

Figure 5: Examples of question and generated answers in abstract scenes

generated answers in real images along with the images.

As for abstract image, our DualNet method significantly
outperformed the result of Baseline2 which won the first
place VQA Challenge 2016. The idea of combining two
paths proves to be effective when using different kinds of
image features for abstract images as well. Although many
works have been published for VQA, few works have tack-
led the task with abstract image dataset. We suspect that
this is because the abstract scenes dataset is too small to
construct a large network architecture, which frequently in-
cludes attention mechanism. Due to the small number of
training samples, training complex network can decrease the
performance. On the other hand, in our model, the architec-
ture is so simple that our model is not influenced by the limi-
tation of samples. Figure 5 shows examples of questions and
generated answers in abstract scenes along with the images.

Conclusion

We implemented DualNet to efficiently and fully account for
discriminative information in images and textual features by
performing separate operations for input features and build-

ing ensemble with varying dimensions. Experiment results
demonstrate that DualNet outperforms many previous state-
of-the-art results and that it is applicable to both real im-
ages and abstract scenes despite their fundamentally differ-
ent characteristics. In particular, we were able to outperform
our own previous state-of-the-art results on abstract scenes
category, which recently won the first place at VQA Chal-
lenge 2016. Since our method was able to perform well even
without attention mechanism, it will be an interesting future
work to examine the combination of DualNet and attention
mechanism.
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