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ABSTRACT

Faster R-CNN is a well-known approach for object detection
which combines the generation of region proposals and their
classification into a single pipeline. In this paper we apply
Faster R-CNN to the task of company logo detection. Mo-
tivated by the weak performance of Faster R-CNN on small
object instances, we perform a detailed examination of both
the proposal and the classification stage, examining their be-
havior for a wide range of object sizes. Additionally, we look
at the influence of feature map resolution on the performance
of those stages. We introduce an improved scheme for gener-
ating anchor proposals and propose a modification to Faster
R-CNN which leverages higher-resolution feature maps for
small objects. We evaluate our approach on the Flicker data
set improving the detection performance on small object in-
stances.

Index Terms— Small objects, Faster R-CNN, RPM, Fea-
ture map resolution, Company logos

1. INTRODUCTION

Current object detection pipelines like Fast(er) R-CNN [1] [2]
are built on deep neural networks whose convolutional layers
extract increasingly abstract feature representations by apply-
ing previously learned convolutions followed by a non-linear
activation function to the image. During this process, the in-
termediate feature maps are usually downsampled multiple
times using max-pooling.

This downsampling has multiple advantages: (a) It re-
duces the computational complexity of applying the model,
(b) helps to achieve a certain degree of translational invari-
ance of the feature representation and (c) also increases the
receptive field of neurons in the deeper layers. The flipside
of these advantages is a feature map which has a significantly
lower resolution than the original image. As a result of this
reduced resolution it is difficult to associate features with a
precise location in the original image.

Despite this potential drawback, this approach has been
extremely successful in the areas of image classification and
object detection. For most applications, pixel-accurate local-
ization is not important.

In this paper we examine the suitability of feature repre-
sentations from different levels of the feature hierarchy for
the problem of company logo detection. Company logo de-
tection is an application of object detection which attracts lots
of commercial interest. On a superficial level, company logo
detection is nothing but a special case of general object detec-
tion. However, company logos are rarely the objects which
were intended to be captured when the picture was taken. In-
stead, they usually happen to get caught in the picture by ac-
cident. As a result, company logos tend to occupy a rather
small image area.

Intersection over union (IoU) is the usual criterion by
which the quality of the localization is assessed. By this mea-
sure, a detection which is off by a given amount of pixels has
a greater influence on small object instances than large ones.
Therefore, small object instances require a more precise local-
ization than large instances in order to be classified as correct
detections.

A simple way to resolve this problem would be to up-
sample the image and to repeat the detection but this simple
approach is not very appealing since the effort for applying
the convolutions grows quadratically with the side length of
the image. This is especially true for company logo detection
in which the object is typically small compared to the image,
resulting in much unnecessary computation.

Our contributions are as follows:

1. We theoretically examine the problem of small objects
at the proposal stage. We derive a relationship which
describes the minimum object size which can reason-
ably be proposed and provide a heuristic for choosing
appropriate anchor scales.

2. We perform detailed experiments which capture the be-
havior of both the proposal and the classification stage
as a function of object size using features from differ-
ent feature maps. Deeper layers are potentially able to
deliver features of higher quality which means that in-
dividual activations are more specific to input stimuli
than earlier layers. We show that in the case of small
objects, features from earlier layers are able to deliver
a performance which is on par with — and can even ex-
ceed — the performance of features from deeper layers.



3. We evaluate our observations on the well-known Flickr-
Logos dataset [3] in the form of an extension to the
Faster R-CNN pipeline

Since FlickrLogos has been originally been conceived as
a benchmark for image retrieval we have re-annotated the
dataset for the task of object detection!.

2. RELATED WORK

Low-resolution data has been previously studied by Wang
et al. [4] in the context of image classification. They con-
clude that low-resolution classification problems do not ben-
efit from deeper network architectures, more filters or larger
filter sizes and also note substantial differences between the
feature representation of large and small objects. However,
[4] does not discuss its impact on object detection.

Bell et. al. [5] and [6] do consider object detection of
small objects in the context of Fast-RCNN [1]. [6] explicitly
consider the problem of company logo detection and notice
a relationship between receptive field, object size and detec-
tion performance. [5] apply techniques like skip-pooling to
create multi-scale feature representations. They also consider
context features obtained by an recurrent network. However,
both [5] and [6] only consider the classification stage of the
pipeline. Also, they do not explicitly analyze the behavior of
Fast R-CNN across multiple feature maps and scales.

3. SMALL OBJECTS IN FASTER R-CNN

Current object detection pipelines usually consist of two
stages: The first step of current detection pipelines is usu-
ally to identify regions of interest (ROIs) from images. These
ROIs serve as an attention model and propose potential object
locations which are more closely examined in a second stage.

For our experiments we use a re-implementation of the
Faster R-CNN [2] approach. Faster R-CNN extracts a feature
representation of the image through a series of learned con-
volutions. This feature map forms the basis of both the object
proposal stage and the classification stage. The first step is
accomplished by a Region Proposal Network (RPN) which
starts by generating a dense grid of anchor regions with spec-
ified size and aspect ratio over the input image.

For each anchor, the RPN — which is a fully convolutional
network — predicts a score which is a measure of the proba-
bility of this anchor containing an object of interest. Further-
more, the RPN predicts two offsets and scale factors for each
anchor which are part of a bounding box regression mecha-
nism which refines the object’s location. The refined anchors
are sorted by score, subjected to a non-maximum suppres-
sion and the best scoring anchors are kept as object proposals
which are fed into the second stage of the network.

IThe updated annotations and evaluation script are made available here:
http://www.multimedia-computing.de/flickrlogos
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Fig. 1. Distribution of object instance sizes in VOC2007
and FlickrLogos. Because of dynamic rescaling of images
in Faster R-CNN, the effective size distribution is shifted to-
wards larger object instances.

At training time, anchors are divided into positive and
negative examples, depending on the overlap they have with
a groundtruth instance. Typically, an anchor is considered to
be a positive example if it has an IoU greater than 0.5 with a
groundtruth object.

Ren et. al [2] use anchors whose side length are powers of
two, starting with 128 pixels. This choice of anchors delivers
good results on datasets such as VOC2007 [8] where the ob-
jects are typically relatively large and fill a sizeable proportion
of the total image area. Furthermore, [2] also dynamically re-
scale input images to enlarge the objects.

Upscaling of input images is typically not feasible for
company logo detection. Figure 1 shows the size distribu-
tion of the FlickrLogos [3] dataset. The average object size
is quite small compared with the average side length of the
images (which is typically around 1000 pixels).

Figure 1 also makes it clear, that an anchor of side length
of 128 is inadequate to cover the range of object sizes. In or-
der to counter this problem one could simply add additional
anchors using the same powers-of-two scheme used by [2].
However, we show that this scheme leads to difficulties — par-
ticularly for small objects — as it might fail to generate an
anchor box with sufficient overlap.

To illustrate the problem we consider the situation in Fig-
ure 2a: We assume a quadratic groundtruth bounding box B,
of side length s, and a quadratic anchor box B, of side length
54. Furthermore we will assume w.l.0.g. that s, < s, and that
both side lengths are related through a scaling factor « > 1 by
54 2 asq. Under these conditions we can move B, anywhere
inside of B, without changing the ToU.

In this case we can express the IoU as the ratio between
the areas enclosed by these boxes:
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Fig. 2. (a) IoU can be expressed as the ratio of bounding box
arcas in the case of aligned bounding boxes of equal aspect
ratio. (b) Worst case displacement of two bounding boxes of
equal size when anchors are sampled with stride d

In order for an anchor box to be classified as positive ex-
ample we require the IoU to exceed a certain threshold ¢.

It follows that for & > v/ " an anchor is unable to cover
a groundtruth box with sufficient overlap to be classified as
a positive example. The same relationship holds for non-
quadratic anchors — provided the aspect ratio of groundtruth
boxes and anchor boxes match.

Therefore, the side length of anchor boxes of neighboring

scales s,, and s,, should be related by s,, = \/E_lsal.

For the previous considerations we assume that there ex-
ists an anchor position at which the corner of an anchor is
completely aligned with the groundtruth instance. In prac-
tice this is not true since the feature map of the network upon
which the RPN is based usually has a much smaller resolution
than the original image. A downsampling factor d ! between
the original image and the feature map effectively results in a
grid of anchors with stride d.

To examine the influence of feature map resolution on the
RPNs potential to identify small object instances we consider
the situation in Figure 2b. We assume a quadratic groundtruth
instance BB, and the existence of an anchor box B, of iden-
tical scale and aspect ratio. In the worst case, both boxes are
displaced against each other by a distance of g The IoU be-
tween these boxes can be expressed by:

I0U(By, By) =
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Solving t < IoU(By, B,) for s, while assuming d >
0and 0 < ¢t < 1 and ignoring negative solutions for this
quadratic expression, we obtain the following relationship for
the minimum detectable object size:

d(t+1) + dv/2t(t + 1)
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For the VGG16 [9] architecture which is used as basis for
Faster R-CNN d = 16. Assuming ¢ = 0.5, this translates
into a minimum detectable object size of s, ~ 44px. This
suggests that for the small end of our size distribution a fea-
ture map of higher resolution is needed. For the conv4 feature
map (d = 8) the minimum detectable object size is given by
54 ~ 22px. Since we do not expect to reliably classify objects
smaller than 30px we use the next power of two as smallest
anchor size.

Making use of our previous result we choose as our an-
chor set A = 32,45,64,90, 128, 181,256 since we follow
the recommendation of [2] and set ¢ = 0.5.

3.1. Region Proposals of small objects

We want to evaluate the effectiveness of RPNs for different
object sizes. The primary measure of an RPN’s quality is the
mean average best overlap (MABO). It measures the RPN’s
ability to generate at least one proposal region for each object
with high overlap. If C represents the set of object classes, G
the set of groundtruth objects of a particular class ¢ € C and £
the set of object proposals, we can evaluate the performance
of the RPN for a particular class c via its average best overlap
ABO(c) given by:

1
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where IoU(g,!) is the intersection over union between
the groundtruth item g and the proposal [. The MABO is the
mean over all ABO values for each object class.

In order to examine the influence of object size on the per-
formance of the RPN, we create differently scaled synthetic
variants of the FlickrLogos [3] datasct by applying the fol-
lowing algorithm to each image:

We start by selecting the point which has the maximum
distance between two non-overlapping groundtruth bounding
boxes. This point defines two axes along which the image
is to be partitioned into four parts. We ensure that the axes
of the split do not intersect with any other groundtruth items.
If no such split can be found, the image is discarded. For
each of the resulting partitions which contain more than one
groundtruth item, the process is applied recursively. After
applying this algorithm, each image contains only a single
object instance which is then rescaled to match the desired
target size.

Using this algorithm we create 11 differently scaled ver-
sions of the test set which we call Fics, where x €
{10 %4+ 20J¢ = 0...10} represents the target object size,
measured as square root of the object area. Additionally, we
create a single training dataset F;,4;, in which the objects are
scaled in such a way that the square root of the object area is
distributed evenly in the interval [20px, 120px].

In order to observe the performance of the RPN for dif-
ferent layers we create three RPNs RPN opnv3, P Neonova



and RP N_,,,5 based on the VGG16 [9] architecture used by
[2]. These networks use features from the conv3?, conv4 and
conv5 layer, respectively to predict object proposals. The fea-
tures are passed through a normalization layer which normal-
izes the activations to have zero-mean and unit-variance. This
is similar to batch normalization [10]. However we normalize
the activations with respect to the training set and not with re-
spect to the current batch as in [10]. We do this so that we can
easily use an off-the-shelf Imagenet [11] pre-trained VGG16
network. Those pre-trained models usually have the property
that the variance of activations decreases from layer to layer
as the data progresses through the network. This property
makes it hard to make certain changes to the network archi-
tecture. For example, adding additional branches of differ-
ent depths will result in differently scaled activations in each
branch which in turn leads to different effective learning rates
in each branch. This normalization scheme circumvents this
problem.

We place a standard RPN on top of this feature normal-
ization which consists of a 3 x 3 convolution using the same
number of channels than the preceeding layer. The output of
this RPN is then used in two additional convolutional layers
which predict anchor scores and regressors (see [2] for de-
tails). In the case of RPN,,,,3 we use the features from the
conv3 layer for predicting bounding boxes.

We fine-tune each of our RPNs on the F},.;n dataset for
40000 iterations with an initial learning rate of p = 0.001
on our set of anchors A. The learning rate is decreased by
a factor of v = 0.1 after 30000 iterations. We then evalu-
ate the trained RPNs on the different Fics; , datasets while
only considering the outputs for a single anchor at a time. As
a result we are able to plot how effective the different fea-
ture maps are at predicting object proposals of a given size.
Figure 3 shows the result of this experiment. Each point on
the abscissa represents the result of an experiment with the
corresponding Fj.,, , dataset while the ordinate reports the
performance for this experiment as MABO.

Figure 3 shows that for small objects the conv5 feature
map delivers results which are noticably inferior than the re-
sults generated by the conv3 or conv4 feature maps.

Another observation to be made is that earlier feature
maps deliver a more localized response for every anchor than
the conv5 feature map. This manifests itself in a steeper per-
formance drop as the object size moves away from the ideal
anchor size. This is a consistent pattern over all examined
object sizes: Even medium sized objects with a side length
between 80px and 100px are better predicted by the conv4
feature map. However, this in only true if the object size
closely matches the anchor size. The conv5 feature map is
able to deliver a more stable performance over a larger range
of object sizes.

2conv3 refers to the output of the last layer of the conv3 block which is
conv3_3 when using the naming convention of [9]

3.2. ROI Classification of small objects

After identifying ROIs, Faster RCNN predicts a score and
bounding box regressants for each ROI and for every class. In
the original approach, this stage re-uses the previously com-
puted conv5 feature map which was used to generate the ob-
ject proposals. An ROI-Pooling [1] layer projects the ROI
coordinates identified by the RPN onto the feature map using
the downsampling factor of the network. The corresponding
area of the feature map is converted into a fixed-dimensional
representation with a pre-determined spatial resolution (usu-
ally 7 x 7). Each of these feature representations is then fed
into several fully connected layers for classification and class-
specific bounding box regression.

We perform an analysis of the performance of the classi-
fication stage by object size which is similar to our analysis
of the RPN. Unlike RPNs, where each anchor by virtue of its
size and the overlap criterion self-selects appropriate training
examples, the classification stage does have this property. We
therefore need to be careful about the size distribution in the
training set.

For the scope of this paper we are interested in the
maximum performance each feature map can deliver for a
specific object size. In order to avoid any effects from size
distribution we ideally want a separate training set for each
test set Fiest . To reduce the training effort, we combine
multiple sizes into a single training set. For this purpose
we generate four training sets Firqin,q,» Where a represents
the minimum object size and b the maximum object size
as the square root of the object area. We choose (a,b) €
{(20pz, 60px), (40pz, 80pz), (60px, 100px), (80pz, 120pz) }
to adequately cover the range of small objects in the Flickr-
Logos dataset (Figure 1).

Similar to our evaluation of the RPN, we generate three
versions of the classification pipeline: C'LS¢ony3, CLSconva
and C' LS ony5. C'LSconys is identical in architecture to the
default pipeline described in [1]. The other two networks are
similar: They only differ in the feature map that they are based
on, and the normalization layer described in chapter 3. During
training, we only train the fully-connected layers and com-
pare these results to a network where all layers are optimized
(CLSconv5(all))-

We train each of these networks on all of the training sets
Firain,a.p and evaluate their mean average precision (mAP)
on all the test sets Fjeq; », Wwhere a < o < b. Since the ranges
of object sizes between the training sets overlap with each
other, we obtain multiple mAP values for each object size x
— represented by the test set Fiege . We take the maximum
mAP for each version of the classification pipeline. To elim-
inate the influence of bad proposals on the classification per-
formance we assume a perfect RPN for our experiment and
evaluate our networks using the groundtruth bounding boxes
as object proposals.

Figure 4 shows the results of this experiment. Unsurpris-
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Fig. 4. Performance of the classification pipeline by size. The
performance for conv5 features drops noticeably for small ob-
ject sizes. However, a full optimization (conv5 (all)) is able to
adapt to a wide range of scales.

ingly, the classification performance generally declines for
small object instances. The performance of the C' LS ony5
network declines more strongly than the performance of the
CLS.onv3 network. However, when all layers of the network
are being optimized, the conv5 feature delivers a good perfor-
mance across all object sizes.

We therefore conclude that the classification stage in prin-
ciple has similar difficulties to classify small objects given
only low-resolution feature maps. However, the filters are
able to adapt accordingly when given the option.

4. AN INTEGRATED DETECTION PIPELINE

We have shown that earlier feature maps can help to improve
region proposals for small object instances. Furthermore, we
have shown that the classification stage does not benefit from
higher resolution feature maps if all layers of the network are
being optimized. We want to exploit our observations in order

to demonstrate their benefit on a real-world dataset. For this
purpose, we propose a straightforward extension to the Faster
R-CNN pipeline:

The results shown in Figure 3 show only a marginal per-
formance benefit when using the conv3 feature map compared
to conv4 features. For simplicity, we therefore only consider
conv4 and conv5 features.

We have shown in Figure 4 that classification works best
when using (fully optimized) conv5 features. Figure 3 shows
that anchors up to 64px are consistently predicted more accu-
rately using the conv4 feature map.

We therefore propose the following modified pipeline for
Faster R-CNN: An additional branch is added to the origi-
nal network architecture, beginning at the conv4 feature map.
This branch consists of a normalization layer (as described in
section 3) and a separate RPN which is responsible for pre-
dicting a subset of anchors with scales A’ = {32, 45,64}.

The main branch of the network remains unchanged.
All other anchors are still predicted using the conv5 feature
map. There exists a single classification pipeline operating
on conv5 features. Like Faster R-CNN, the network can be
fine-tuned end.

During test time, the proposals generated in each branch
are subjected to their own non-maximum suppression. The
proposals from both branches are then merged and undergo a
joint non-maximum suppression. The number of all proposals
is limited to n = 2000 which are fed into the classification
stage.

We evaluate our approach by separately evaluating the
RPN and classification performance on the original Flickr-
Logos dataset for several versions of the detection pipeline.

RPN (orig,default) refers to the RPN performance (in
terms of MABO) for the original Faster R-CNN approach
with the default anchor set. RPN (orig,adj,old) describes
the original RPN with a set of anchors scales Ac,; =
{32,64,128,256} which as been adjusted for better cover-



Configuration RPN (MABO) CLS (mAP)
orig,default 0.52 0.51
orig,adj,old 0.66 0.62
orig,adj,new 0.68 0.66
mres,adj,new 0.69 0.66

Table 1. Performance evaluation for both the proposal (RPN)
and classifcation (CLS) stage on the FlickrLogos dataset.

age of the size distribution of the FlickrLogos datset but is
following the traditional power-of-two approach of [2]. Sim-
ilarly, RPN (orig,adj,new) describes the original RPN archi-
tecture which uses the anchor set .4 which employs our new
strategy for scale selection as described in section 3. Finally,
RPN (mfeat,adj,new) shows the performance of the new net-
work architecture using multiple feature maps and our new
set of anchors A.

Likewise, CLS (orig,default) shows the classification per-
formance (in terms of mAP) of the original pipeline using the
default anchor set. CLS (orig,adj,new) refers to the original
classification pipeline using our improved anchor set A and
CLS (mfeat,adj,new) measures the performance of our new
network architecture using the anchor set A.

The results of this evaluation are shown in Table 4. The lo-
calization performance of the RPN can be improved by select-
ing anchors according to our scheme in chapter 3. If addition-
ally, higher resolution feature maps are used, the quality of
the proposals can be increased further. The above-mentioned
techniques also improve the detection performance. However,
the performance gains are less noticeable.

5. CONCLUSION

‘We have evaluated in detail the behavior of Faster R-CNN for
small objects for both the proposal and the classification stage
using artificial datasets. In our experiments we have observed
that small objects pose a problem for the proposal stage in
particular.

These difficulties are partially due to the inability of the
RPN to accurately localize these objects because of the low
resolution of the feature map. Also, we have shown that for
small objects the choice of anchor scales is of great impor-
tance and have provided a criterion by which to choose anchor
scales depending on the desired localization accuracy.

We have shown that the classification stage is able to adapt
to small objects. Finally, we have validated our observation
in the form of a simple extension to Faster R-CNN which is
able to improve the overall detection performance on a real
world dataset for company logo detection. In future work we
would like to address how to improve the performance of the
classification stage for small objects.
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